数理统计教程课后重要答案习题

合集下载

数理统计第三版课后答案师义民

数理统计第三版课后答案师义民

数理统计第三版课后答案师义民引言数理统计是一门应用广泛的学科,可用于各种领域的数据分析和决策支持。

《数理统计第三版》是师义民教授编写的一本经典教材,已经成为数理统计领域的标准教材之一。

本文是对该教材中课后习题的答案解析,旨在帮助读者更好地理解和掌握数理统计的概念和方法。

第一章简介1.1 数理统计的基本概念习题1.1解:数理统计是研究如何利用数学方法来处理收集到的数据,并通过统计模型对总体参数进行估计和假设检验。

1.2 统计数据的表示方法习题1.2解:给定一组数据,可以使用频数表、频率表、累计频数表、累计频率表等形式进行表示和描述。

第二章随机变量及其分布2.1 随机变量习题2.1解:随机变量是指试验结果的某种表示,通常用大写字母表示,如X、Y等。

根据随机变量取值的类别分为离散随机变量和连续随机变量两种。

2.2 随机变量的分布习题2.2解:对于离散随机变量,可以通过概率质量函数(PMF)或概率分布列来描述其分布。

对于连续随机变量,可以通过概率密度函数(PDF)来描述其分布。

2.3 一维随机变量的数学期望和方差习题2.3解:一维随机变量的数学期望和方差是对其分布特征的度量。

数学期望表示随机变量的平均值,方差表示随机变量的离散程度。

第三章多维随机变量及其分布3.1 二维随机变量习题3.1解:二维随机变量是指由两个随机变量组成的向量。

可以通过联合分布函数、边际分布函数和条件分布函数来描述二维随机变量的分布。

3.2 二维随机变量的数学期望和协方差习题3.2解:二维随机变量的数学期望是对其分布特征的度量,协方差表示两个随机变量之间的相关性。

可以通过相关系数来度量协方差的强度和方向。

3.3 二维正态分布习题3.3解:二维正态分布是指由两个相互独立的正态分布组成的二维随机变量。

可以通过联合概率密度函数来描述二维正态分布的分布特征。

结论本文对《数理统计第三版》中的课后习题进行了答案解析,涵盖了数理统计的基本概念、统计数据的表示方法、随机变量及其分布等内容。

数理统计课后答案-第二章

数理统计课后答案-第二章

X 1 , X 2 , L, X 5 相互独立,所以
X 1 + X 2 ~ N (0 , 2) , X 3 + X 4 + X 5 ~ N (0 , 3) ,而且相互独立,
即有
X1 + X 2 2
~ N (0 ,1) ,
X3 + 1) ,而且相互独立。
由 χ 分布的定义可知
Xi − a , i = 1, 2, L, n , b
1 n 1 n X 与 Y = ∑ i ∑ Yi 之间的关系; n i =1 n i =1 1 n 1 n 2 ( X i − X )2 与 S y = ∑ (Yi − Y ) 2 之间的关系。 ∑ n i =1 n i =1
(2)它们的样本方差 S x =
∑ (X i − X )2 =
i =1
n
S x2 。 b2
2.4 设有样本 ( X 1 , X 2 , L , X n ) , X = 本方差, μ 是常数,证明
1 n 1 n 2 X 是样本均值, S = ( X i − X ) 2 是样 ∑ ∑ i n i =1 n i =1
1 n ∑ ( X i − μ)2 = S 2 + ( X − μ)2 。 n i =1
n −1 ⎤ ⎡ n E ⎢∑ ( X i + Yi − X − Y ) 2 ⎥ = E (nS z2 ) = nE ( S z2 ) = n ⋅ Dζ n ⎣ i =1 ⎦ = n⋅ n −1 ⋅ 2σ 2 = 2(n − 1)σ 2 。 n
2.8
设 ( X 1 , X 2 , X 3 , X 4 , X 5 ) 是总体 ξ ~ N (0 , 1) 的样本。
2 2
2
(1)求常数 a, b ,使得 a ( X 1 + X 2 ) + b( X 3 + X 4 + X 5 ) 服从 χ (2) 分布,并指出其自 由度; (2)求常数 c ,使得

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 247C 3C 35= 247C 2C 35= 2247C C 6C 35=112247C C 12C 35=1247C 2C 35= 27C /C =212247C C 6C 35=2247C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sinsin sin sin 0sin sin 0sin 4346361).4=--+=题3图说明:也可先求出密度函数,再求概率。

4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12e d d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他 所以(,),()()X Y f x y X Y f x f y 独立 5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)dY f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰5227d ,01,20,0, .x y x y y ⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.x x y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立(2) X 与Y 是否相互独立?(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e (1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 21(1)(0)]0.1445.x y x y-==-Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y x x yx y +∞≥==⎰⎰⎰⎰ 336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-< 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n k i k n kP X i P Y k i n n p q p q i k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=10{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3i = 于是(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d d π1d d πRR r rR r rR θθ=⎰⎰⎰⎰3/83;1/24== (2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤00131{0,0}1(,)d 1.44x y P X Y f x y σ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?题21图【解】区域D 的面积为 22e e 0111d ln 2.S x x x===⎰(X ,Y )的联合密度函数为211,1e ,0,(,)20,.x y f x y x ⎧≤≤<≤⎪=⎨⎪⎩其他(X ,Y )关于X 的边缘密度函数为1/2011d ,1e ,()220,.x X y x f x x⎧=≤≤⎪=⎨⎪⎩⎰其他 所以1(2).4X f =22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=.(2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!mm n mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=. 26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4. 由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.习题四1.设随机变量X 的分布律为求E (X ),E (X ),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E XP ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量且已知E (X )=0.1,E (X )=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-=……②,222212313()(1)010.9E X P P P P P =-++=+=……由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ).【解】1221()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因11(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =2 1()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x==⎰5(5)5()ed5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他 于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e 求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2e d [e ]e d x x xX X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y yy +∞+∞--∞==⎰⎰22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯=11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d e d 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 2220()()d()2e dk x E X xf x x x k x x +∞+∞--∞==⎰⎰222202e d 2k x kx x k +∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故2222214π()()[()].4D X E X E X k k -=-=-=⎝⎭12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯=由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元/41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=- 故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(E =μ,)(D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nni i i ii i i D X D X D X X DX n nn ===⎛⎫== ⎪⎝⎭∑∑∑之间相互独立2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+ 同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3) 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰ 同理E (Y )=0. 而 C o v (,)[()][()](,X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,1()X f x y 当|y |≤1时,1()Y f y x 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表由期望定义易得E(X)=E(Y)=E(XY)=0.从而E(XY)=E(X)·E(Y),再由相关系数性质知ρXY=0, 即X与Y的相关系数为0,从而X和Y是不相关的.又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=-从而X与Y不是相互独立的.18.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY.【解】如图,S D=12,故(X,Y)的概率密度为题18图2,(,),(,)0,x y Df x y∈⎧=⎨⎩其他.()(,)d dDE X xf x y x y=⎰⎰11001d2d3xx x y-==⎰⎰22()(,)d dDE X x f x y x y=⎰⎰112001d2d6xx x y-==⎰⎰从而222111 ()()[()].6318 D X E X E X⎛⎫=-=-=⎪⎝⎭同理11 (),().318 E Y D Y==而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=-. 从而112)()XY D Y ρ-===-19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x xx y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4(π4)π8π164.πππ8π32π8π32)()2162XY D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故122)()Z Z D Z ρ===21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5.依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.。

数理统计教程课后重要答案习题

数理统计教程课后重要答案习题

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。

数理统计课后题答案完整版

数理统计课后题答案完整版

第一章3. 解:因为i i x ay c-=所以 i i x a cy =+11nii x x n ==∑()1111ni i ni i a cy n na cy n ===+⎛⎫=+ ⎪⎝⎭∑∑1nii c a y n a c y==+=+∑所以 x a c y =+ 成立因为 ()2211n x i i s x xn ==-∑()()()22122111ni i ini i nii a cy a c y n cy c y n c y y n====+--=-=-∑∑∑又因为 ()2211n y i i s y yn ==-∑所以 222xys c s = 成立 6. 解:变换()1027i i y x =-11li i i y m y n ==∑()13529312434101.5=-⨯-⨯+⨯+=- 2710yx=+= ()2211lyi i i s m y yn ==-∑()()()()22221235 1.539 1.5412 1.534 1.510440.25⎤=⨯-++⨯-++⨯+++⎡⎣⎦= 221 4.4025100x y s s == 7解:*11li i i x m x n ==∑()1156101601416426172121682817681802100166=⨯+⨯+⨯+⨯+⨯+⨯+⨯=()22*11li i i s m x xn ==-∑()()()()()()()2222222110156166141601662616416628168166100121721668176166218016633.44=⨯-+⨯-+⨯-+⨯-⎡⎣⎤+⨯-+⨯-+⨯-⎦=8解:将子样值重新排列(由小到大) -4,,,,,0,0,,,,,,()()()()()172181203.2147.211.2e n n e nM X X R X X M X X +⎛⎫ ⎪⎝⎭⎛⎫+ ⎪⎝⎭====-=--==== 9解:121211121211n n i j i j n x n x n n x n n ==+=+∑∑112212n x n x n n +=+()12221121n n ii s x x n n +==-+∑()()()1212221122111122121222222111222112212122222211221122112212121222211211122121n n i i n n i ji j x xn n x x n x n x n n n n n s x n sx n x n xn n n n n s n s n x n x n x n x n n n n n n n n n x n n s n sn n +====-++⎛⎫+=- ⎪++⎝⎭+++⎛⎫+=-⎪++⎝⎭⎛⎫+++=+- ⎪+++⎝⎭+++=++∑∑∑()()()()()()22212211222122222112212112212122121222212121122212122n n x n x n x n n n s n s n n x n n x n n x x n n n n n n x x n s n sn n n n +-++++-=+++-+=+++12. 解:()ix P λ i Ex λ= i Dx λ= 1,2,,i n =⋅⋅⋅1122111111n n i i i i nni i i i n E X E x Ex n n n n DX D x Dx n nn n λλλλ============∑∑∑∑13.解:(),ix U a b 2i a b Ex += ()212i b a Dx -= 1,2,,i n =⋅⋅⋅ 在此题中()1,1i x U - 0i Ex = 13i Dx = 1,2,,i n =⋅⋅⋅112111101113n ni i i i nni ii i E X E x Ex n n DX D x Dx n nn ==========∑∑∑∑14.解:因为()2,iXN μσ 0i X Eμσ-= 1i X Dμσ-=所以 ()0,1i X N μσ- 1,2,,in =⋅⋅⋅由2χ分布定义可知()222111nniii i X Y Xμμσσ==-⎛⎫=-= ⎪⎝⎭∑∑服从2χ分布所以 ()2Yn χ15. 解:因为()0,1iX N1,2,,i n =⋅⋅⋅()1230,3X X X N ++0=1=所以()0,1N()221χ同理()221χ由于2χ分布的可加性,故()222123Y χ=+可知 13C =16. 解:(1)因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以 ()22121ni i X Y n χσσ=⎛⎫= ⎪⎝⎭∑(){}11122Y Yy F y P Y y P σσ⎧⎫=≤=≤⎨⎬⎩⎭()220yf x dx σχ=⎰()()211'221Y Y y f y F y f χσσ⎛⎫==⨯ ⎪⎝⎭因为 ()2122202200n x n x e x n f x x χ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≥⎩所以 ()21122202200ny n nY y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(2) 因为 ()20,i X N σ 1,2,,i n =⋅⋅⋅()0,1iX N σ所以()22221ni i X nY n χσσ=⎛⎫= ⎪⎝⎭∑(){}()22222220nyY nYny F y P Y y P f x dx σχσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()222'22Y Y ny nf y F y f χσσ⎛⎫== ⎪⎝⎭故 ()221222202200n nny n n Y n y e y n f y y σσ--⎧⎪>⎪⎛⎫=⎨Γ⎪⎪⎝⎭⎪≤⎩(3)因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =所以()22311n i Y n χσ=⎛= ⎝(){}()()22333210yn Y Y F y P Y y P y f x dx n σχσ⎧⎫=≤=≤=⎨⎬⎩⎭⎰()()()233'2211Y Y y f y F y f n n χσσ⎛⎫== ⎪⎝⎭()()221000x x f x x χ-⎧>=≤⎩故 ()232000y n Y y f y y σ-⎧>=≤⎩ (4)因为()20,iX N σ 1,2,,i n =⋅⋅⋅所以()()1224210,11ni ni N Y χσ==⎛= ⎝(){}()()()()()224224442210'2211yY Y Y y F y P Y y P f x dxy f y F y f σχχχσσσσ⎧⎫=≤=≤=⎨⎬⎩⎭⎛⎫== ⎪⎝⎭⎰ 故()242000yY y f y y σ-⎧>=≤⎩17.解:因为 ()Xt n存在相互独立的U ,V()0,1UN ()2Vn χ 使X = ()221Uχ则 221U X V n=由定义可知 ()21,F n χ18解:因为 ()20,iX N σ 1,2,,i n =⋅⋅⋅()10,1ni N =()221n mi i n X m χσ+=+⎛⎫ ⎪⎝⎭∑所以()1nniX Yt m ==(2)因为()0,1iX N σ1,2,,i n m =⋅⋅⋅+()()221221ni i n mi i n X n X m χσχσ=+=+⎛⎫ ⎪⎝⎭⎛⎫ ⎪⎝⎭∑∑所以 ()221122211,ni n i ii n mn mi ii n i n X m X n Y F n m X n X mσσ==++=+=+⎛⎫⎪⎝⎭==⎛⎫ ⎪⎝⎭∑∑∑∑19.解:用公式计算()20.010.019090χ=查表得 0.01 2.33U =代入上式计算可得()20.01909031.26121.26χ=+=20.解:因为()2Xn χ 2E n χ= 22D n χ=由2χ分布的性质3可知()0,1N{}P X c P ≤=≤22lim t n P dt -→∞-∞≤==Φ 故 {}PX c ≤≈Φ第 二 章 1.,0()0,0()()1()111x x x x xe xf x x E x f x xdx xe dxxe e d x e xλλλλλλλλλλλλ-+∞+∞--∞+∞+∞--+∞-⎧≥=⎨<⎩=⋅==-+=-==⎰⎰⎰令从而有1x λ∧= 2.()111121).()(1)(1)1111k k x x E x k p p p k p ppp ∞∞--===-=-==⎡⎤--⎣⎦∑∑令1p =X所以有1p X ∧=2).其似然函数为1`11()(1)(1)ni x i i nX nni L P P p p p -=-=∑=-=-∏1ln ()ln ()ln(1)ni i L P n p X n p ==+--∑1ln 1()01ni i d L n X n dp p p ==--=-∑解之得11nii np X X∧===∑3. 解:因为总体X服从U(a ,b )所以()2122!2!!()12ni i a b n E X r n r X X X X a b S X b X =∧∧+=--⎧=⎪⎪⎨-⎪=⎪⎩⎧=⎪⎨⎪=⎩∑222(a-b )() D (X )=12令E (X )= D (X )=S ,1S =n a+b 2()a 4. 解:(1)设12,,n x x x 为样本观察值则似然函数为:111()(),01,1,2,,ln ()ln ln ln ln 0nni i i nii in i i L x x i nL n x d L nx d θθθθθθθθ-====<<==+=+=∏∑∑(-1)解之得:11ln ln nii nii nxnxθθ=∧==-==∑∑(2)母体X 的期望1()()1E x xf x dx x dx θθθθ+∞-∞===+⎰⎰而样本均值为:11()1nii X x n E x X X Xθ=∧===-∑令得5.。

《概率论与数理统计教程》课后习题解答

《概率论与数理统计教程》课后习题解答

第一章 事件与概率1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的?(4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2)C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

解 (1)n i iA 1=; (2) n i i n i i A A 11===; (3) n i nij j ji A A 11)]([=≠=;(4)原事件即“至少有两个零件是合格品”,可表示为nji j i jiAA ≠=1,;1.5 在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率。

解 样本点总数为7828⨯=A 。

所得分数为既约分数必须分子分母或为7、11、13中的两个,或为2、4、6、8、12中的一个和7、11、13中的一个组合,所以事件A “所得分数为既约分数”包含6322151323⨯⨯=⨯+A A A 个样本点。

于是14978632)(=⨯⨯⨯=A P 。

1.8 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以相互吃掉的概率。

解 任意固定红“车”的位置,黑“车”可处于891109=-⨯个不同位置,当它处于和红“车”同行或同列的1789=+个位置之一时正好相互“吃掉”。

《概率论与数理统计》课后习题答案2

《概率论与数理统计》课后习题答案2

1. 试分别给出随机变量的可能取值为可列、有限的实例.解 用X 表示一个电话交换台每小时收到呼唤的次数,X 的全部可能取值为可列的 0,1,2,3,…,;用Y 表示某人掷一枚骰子出现的点数,Y 的全部可能取值为有限个 1,2,3,4,5,6 ;2. 试给出随机变量的可能取值至少充满一个实数区间的实例.解 用X 表示某灯泡厂生产的灯泡寿命(以小时记),X 的全部可能取值为区间 (0,+∞)3. 设随机变量X 的分布函数()F x 为()F x = 2 1, >20, 2A x xx ⎧-⎪⎨⎪≤⎩ 确定常数A 的值,计算(04)P X ≤≤.解 由(20)(2),F F +=可得10, =44AA -= (04)(04)(4)(0)0.75P X P X F F ≤≤=<≤=-=.4.试讨论:A 、B 取何值时函数()arctan3xF x A B =+ 是分布函数. 解 由分布函数的性质,有()()0,1F F -∞=+∞=,可得0,211,,21,2A B A B A B πππ⎧⎛⎫+-= ⎪⎪⎪⎝⎭⇒==⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩于是()11arctan ,.23xF x x π=+-∞<<+∞1.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的概率分布.解 由题意知,X 的取值可以是0,1,2,3.而X 取各个值的概率为{}{}70,103771,10930P X P X ====⨯= {}{}32772,1098120321713.10987120P X P X ==⨯⨯===⨯⨯⨯= 因此X 的概率分布为012 377711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦2.从分别标有号码1 ,2 ,… ,7的七张卡片中任意取两张, 求余下的卡片中最大号码的概率分布.解 设X 为余下的卡片的最大号码 ,则X 的可能取值为5、6、7,且1{5}21P X ==5{6}21P X ==15{7}21P X ==即所求分布为567 1515212121X ⎡⎤⎢⎥⎢⎥⎣⎦ 3.某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数的概率分布.解 设此人将门打开所需的试开次数为X ,则X 的取值为1,2,3,...,k n =,事件{}{}1X k k k ==-前次未打开,第次才打开,且{}11P X n ==, {}11121n P X n n n-==⋅=-,… …,{}()121112111,2,....,n n n k P X k n n n k n k k n n ---+==⋅⋅⋅⋅--+-+== 故所需试开次数的分布为12~111X n nn ⎡⎤⎢⎥⎢⎥⎣⎦ ... n .... 4.随机变量X 只取1 、2 、3共三个值,并且取各个值的概率不相等且组成等差数列,求X 的概率分布.解 设{}{}{}1,2,3P X a P X b P X c ======,则由题意有1a b c c b b a ++=⎧⎨-=-⎩解之得2313a c b ⎧+=⎪⎪⎨⎪=⎪⎩设三个概率的公差为d ,则11,33a d c d =-=+,即X 的概率分布为 12 3111333X d d⎡⎤⎢⎥⎢⎥-+⎢⎥⎣⎦,103d << 5.设随机变量X 的全部可能取值为1 ,2 ,… ,n ,且()P X k = 与k 成正比,求X 的概率分布.解 由题意,得{}() 1,2,,k P X k p ck k n ====其中c 是大于0的待定系数.由11nkk p==∑,有12....1nk k cp c c n c ==+++=∑ 即()112n n c +=,解之得 ()21c n n =+.把()21c n n =+代入k p ,可得到X 的概率分布为{}()2,1,2,...,.1kP X k k n n n ===+6.一汽车沿街道行驶时须通过三个均设有红绿灯的路口.设各信号灯相互独立且红绿两种信号显示的时间相同,求汽车未遇红灯通过的路口数的概率分布.解 设汽车未遇红灯通过的路口数为X ,则X 的可能值为0,1,2,3.以()1,2,3i A i =表示事件“汽车在第i 个路口首次遇到红灯”,则123,,A A A 相互独立,且()()1,1,2,32i i P A P A i ===.对0,1,2,3k =,有{}()1102P X P A ==={}()()()1212211142P X P A A P A P A ===== {}()123311282P X P A A A ==== {}()123311382P X P A A A ==== 所以汽车未遇红灯通过的路口数的概率分布为012 311112488X ⎡⎤⎢⎥⎢⎥⎣⎦7.将一颗骰子连掷若干次,直至掷出的点数之和超过3为止.求掷骰子次数的概率分布.解 设掷骰子次数为X ,则X 可能取值为1,2,3,4,且31{1}62P X === 141515{2}6666612P X ==⨯+⨯+=;115111117{3}6666666216P X ==⨯⨯+⨯+⨯=; 1111{4}666216P X ==⨯⨯=所以掷骰子次数X 的概率分布为123 415171212216216X ⎡⎤⎢⎥⎢⎥⎣⎦ 8.设X 的概率分布为试求(1)X 的分布函数并作出其图形;(2) 计算{11}P X -≤≤ ,{0 1.5}P X ≤≤ ,{2}P X ≤ . 解(1)由公式 (){}()k kx xF X P X x p x ≤=≤=-∞<<+∞∑,得()0,00.2,010.5,120.6,231,3x x F X x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2) {}11(1)(10)0.500.5P X F F -≤≤=---=-= {}0 1.5(1.5)(00)0.500.5P X F F ≤≤=--=-={}2(2)0.6P X F ≤==9.设随机变量X 的分布函数为010.210()0.70212x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩,,,,试求(1) 求X 的概率分布;(2) 计算1322P X ⎧⎫-<≤⎨⎬⎩⎭,{1}P X ≤- ,{03}P X ≤< ,{1|0}P X X ≤≥解 (1)对于离散型随机变量,有{}()()0P X k F k F k ==--,因此,随机变量X 的概率分布为10 2 0.20.50.3X -⎡⎤⎢⎥⎣⎦ (2) 由分布函数计算概率,得13310.52222P X F F ⎧⎫⎛⎫⎛⎫-<≤=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭;{}()110.2P X F ≤-=-=;{}()0330(00)10.20.8P X F F ≤<=---=-=; {}{}{}{}{}1,0100010.50.625.00.8P X X P X X P X P X P X ≤≥≤≥=≥≤≤===≥10.已知随机变量X 服从0—1分布,并且{0}P X ≤=0.2,求X 的概率分布 . 解 X 只取0与1两个值,{0}P X =={0}P X ≤-{0}P X <=0.2,{1}1{0}0.8P X P X ==-==11.已知{}P X n == nP ,n =1,2,3,⋯,求P 的值 .解 因为1{}1,n P X n ∞===∑ 有 11=,1n n pp p∞==-∑解此方程,得0.5p =. 12.商店里有5名售货员独立地售货.已知每名售货员每小时中累计有15分钟要用台秤.(1) 求在同一时刻需用台秤的人数的概率分布;(2) 若商店里只有两台台秤,求因台秤太少而令顾客等候的概率.解 (1) 由题意知,每名售货员在某一时刻使用台秤的概率为150.2560p ==, 设在同一时刻需用台秤的人数为X , 则()~5,0.25X B , 所以{}550.250.75(0,1,2,3,4,5)kk k P X k C k -===(2) 因台秤太少而令顾客等候的概率为{}{}55553320.250.75k k k k k P X P X k C -==>===∑∑332445550.250.750.250.750.250.1035C C =++≈13.保险行业在全国举行羽毛球对抗赛,该行业形成一个羽毛球总队,该队是由各地区的部分队员形成.根据以往的比赛知,总队羽毛球队实力较甲地区羽毛球队强,但同一队中队员之间实力相同,当一个总队运功员与一个甲地区运动员比赛时,总队运动员获胜的概率为0.6,现在总队、甲队双方商量对抗赛的方式,提出三种方案:(1)双方各出3人; (2)双方各出5人; (3)双方各出7人.3种方案中得胜人数多的一方为胜利.问:对甲队来说,哪种方案有利?解 设以上三种方案中第i 种方案甲队得胜人数为(1,2,3),i X i =则上述3种方案中,甲队胜利的概率为(1){}331322(0.4)(0.6)0.352k k k k P X C -=≥=≈∑(2){}552533(0.4)(0.6)0.317k k k k P X C -=≥=≈∑(3){}773744(0.4)(0.6)0.290kk k k P X C -=≥=≈∑因此第一种方案对甲队最为有利.这和我们的直觉是一致的。

数理统计第二章课后习题参考答案

数理统计第二章课后习题参考答案

第二章 参数估计2.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()1f x ββ=;,0x β<<的总体,试用矩法估计总体均值、总体方差及参数β. 解: 1.30.6 1.7 2.20.3 1.1 1.26X μ+++++===.()()()()()()()22222222111 1.3 1.20.6 1.2 1.7 1.2 2.2 1.20.3 1.2 1.1 1.26ni i X X n σ=⎡⎤=-=-+-+-+-+-+-⎣⎦∑ ()222222210.10.60.510.90.10.4076σ=+++++==. ()()0112E X x f x dx xdx ββββ+∞-∞===⎰⎰;.令()E X X =,则12X β=,即2X β=.参数β的矩估计量为ˆ22 1.2 2.4X β==⨯=.2.6 设总体X 的密度函数为()f x θ;,1X ,2X ,…,n X 为其样本,求下列情况下θ的MLE.(iii )()()100x x e x f x ααθθαα--⎧>⎪=⎨⎪⎩,;,其它α已知解:当0i X >()12i n = ,,,时,似然函数为: ()()()()111111ni i i n n n x n x i i i i i i L f x x e x eαααθθαθθθαθα=----===∑⎛⎫=== ⎪⎝⎭∏∏∏;.()()11ln ln ln 1ln n ni i i i L n n x x αθθααθ===++--∑∑.由()1ln 0ni i L nx αθθθ=∂=-=∂∑,得θ的MLEˆθ,即1ˆnii nxαθ==∑.2.7 设总体X 的密度函数为()()1f x x ββ=+,01x <<,1X ,2X ,…,n X 为其子样,求参数β的MLE 及矩法估计。

今得子样观察值为0.3,0.8,0.27,0.35,0.62及0.55,求参数β的估计值。

概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章

概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章

概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章概率论与数理统计教程-魏宗舒-课后习题解答答案-7-8章第七章假设检验7.1 设总体2(,)N ξµσ~,其中参数µ,2σ为未知,试指出下⾯统计假设中哪些是简单假设,哪些是复合假设:(1)0:0,1H µσ==;(2)0:0,1H µσ=>;(3)0:3,1H µσ<=;(4)0:03H µ<<;(5)0:0H µ=.解:(1)是简单假设,其余位复合假设 7.2 设1225,,,ξξξ取⾃正态总体(,9)N µ,其中参数µ未知,x 是⼦样均值,如对检验问题0010:,:H H µµµµ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c µ=-≥,试决定常数c ,使检验的显著性⽔平为0.05解:因为(,9)N ξµ~,故9(,)25N ξµ~ 在0H 成⽴的条件下,00053(||)(||)53521()0.053cP c P c ξµξµ-≥=-≥??=-Φ=55()0.975,1.9633c cΦ==,所以c =1.176。

7.3 设⼦样1225,,,ξξξ取⾃正态总体2(,)N µσ,20σ已知,对假设检验0010:,:H H µµµµ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>,(1)求此检验犯第⼀类错误概率为α时,犯第⼆类错误的概率β,并讨论它们之间的关系;(2)设0µ=0.05,20σ=0.004,α=0.05,n=9,求µ=0.65时不犯第⼆类错误的概率。

解:(1)在0H 成⽴的条件下,200(,)nN σξµ~,此时00000()P c P ξαξ=≥=10,由此式解出010c αµ-=+在1H 成⽴的条件下,20(,)nN σξµ~,此时101010()(P c P αξβξµ-=<=<=Φ=Φ=Φ由此可知,当α增加时,1αµ-减⼩,从⽽β减⼩;反之当α减少时,则β增加。

《概率论与数理统计教程》魏宗舒 课后习题解答答案 1 8章

《概率论与数理统计教程》魏宗舒 课后习题解答答案 1 8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。

(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。

(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。

解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。

则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。

(1) 叙述C AB 的意义。

(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。

(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。

(3)当全系运动员都是三年级学生时。

(4)当全系女生都在三年级并且三年级学生都是女生时`。

1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。

用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。

(完整版)数理统计课后习题答案—杨虎

(完整版)数理统计课后习题答案—杨虎

习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。

概率论与数理统计(第三版)课后答案习题7

概率论与数理统计(第三版)课后答案习题7

第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。

2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。

注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案

概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。

概率论与数理统计教程第四版课后答案

概率论与数理统计教程第四版课后答案

如果在独立试验序列中事件 A 的概率为 p (0< p <1),则在 n
次试验中事件 A 恰好发生 m 次的概率
Pn
m
C
m n
pm
q
!
其中 p q 1 。
6
第一章 随机事件及其概率
一、几种概率
1、统计概率 2、古典概率 3、几何概率
P( A) M N
1.18. 设P (A) = 0.5, P (B)=0.7 ,则 (1)在怎样的条件下P (AB)最大? (2)在怎样的条件下P (AB)最小?
解 PA B P( A) P(B) P( AB) P( AB) P( A) P(B) PA B
当A B时,P (AB)最大 P( AB) P( A) 0.5 当A B 时,P (AB)最小
8. 3个球随机的投入4个盒子中,求下列事件的概率: (1)A是任意3个盒子中各有1个球; (2)B是任意1个盒子中有3个球; (3)C是任意1个盒子中有2个球,其它任意1个盒子中有1个球。

(1)P( A)
C
3 4
3!
43
3
0.375
8
(2)P ( B )
C
1 4
1 0.0625
43 16
(3)P(C )
P( A1 A2 ) P( A1 A2 )
(1)A是任取的3件产品中恰有2件等级相同的产品; (2)B是任取的3件产品至少有2件等级相同的产品。

(1)
P( A)
C 92 C 111
C
2 7
C113
C 42 C116
C
3 20
51 76
0.671
(2)
P(B)

数理统计课后题标准答案

数理统计课后题标准答案

(2)若 未知。
解:n=16, x 2.125, s* 0.017
(1)若已知
0.01(cm),构造函数u
x
/
n
:
N (0,1)
给定置信概率90%,有 P{u u } 1

P(x u
2
0
n
x u
2
0 ) 1 2
n
置信区间为(x u
2
0 )为(2.125 0.0041)
n
(2)若 未知
解:作变换
yi
xi
100, a
100,
y
1 n
i
yi
1 5
0
0
x a y 100
sx2
sy2
1 n
i
yi 2
2
y
1 5
[(8)2
(6)2
32
52
62 ]
0
34
3.设X1,X2,…,Xn是参数为的泊松分布的母体 的一个子样,是子样平均数,试求EX 和 X
D解:x。:
p( ),
Ex
E(1 n
a
cyi
xi (a cyi ), nx na cn y, x a c y
i
i
而sx2
1 n
i
( xi
x)2
1 n
i
(a
cyi
a
c
y)2
c2 n
i
( yi y)2 c2sy2
2. 在五块条件基本相同的田地上种植某种 农作物,亩产量分别为92,94,103,105, 106(单位:斤),求子样平均数和子样方 差。
i
( xi )2 i
i
yi 2

(完整版)数理统计课后习题答案—杨虎

(完整版)数理统计课后习题答案—杨虎

习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他 4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ 2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表1 0.9 0.8 0.7 0.6 0.5 0.4 0.30.2 0.11 2 3 4 xy5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().niX i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ 10.解:1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)nii DXX n σ=∴-=-∑ 11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du u du +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎛⎫⎛=Φ-Φ-=Φ-≥⎪⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-((12(2(12P T P T pP T p p P T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=-又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N nnσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P XP X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m n i i m X n χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m n i i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P c T P c S X P c S X P c X S P μμμ27.解:22cov(,)(,))(1()()1cov(,)()1(,)1j i j j i j i j i j i j i j X X X X r X X X X D X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=---=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:00ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x txEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰ Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ====极大似然估计:()()/1111exp ,ln ln i nx ni n L enx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫⎛== ⎪⎝⎝⎭∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。

数理统计教程第二章课后习题答案

数理统计教程第二章课后习题答案

数理统计第二章习题解答1.设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 2. 已知母体ξ均匀分布于()βα,之间,试求βα,的矩法估计量.解: 2βαξ+=E ,()122αβξ-=D 。

令()⎪⎪⎩⎪⎪⎨⎧=-=+22122n S αβξβα得 n S 3ˆ-=ξα,.3ˆnS +=ξβ 3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量.解: ()322adx x a a x E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a 中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i ix∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫ ⎝⎛⋅++=∏=n i i x n L ααα 令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα,得 ∑=--=ni iL xn1ln 1ˆα。

由于 ()01ln 222<+-=∂∂ααnL 故∑=--=ni iL xn1ln 1ˆα是α极大似然估计.(2) 由211+-=αξE 令ξα=+-211 得 .112ˆξξα--=5.用极大似然法估计几何分布 ()(),2,1,11=-==-k p p k P k ξ中的未知参数p .解:()()n x ni p p p L -∑-=1,令 ()01ln =---=∂∂∑pn x p n p p L i 得x p1ˆ=而01ln 2ˆ2<--=∂∂=x x n p Lpp ξ1ˆ=∴p是P 的极大似然估计. 6. 设随机变量ξ的密度函数为()0,,21>∞<<-∞=-σσσx e x f x,n ξξ,,1 是ξ的容量为n 的子样,试求σ的极大似然值. 解: ()()∑=--ix neL σσσ12,()01ln 2=+-=∂∂∑i x n L σσσσ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:统计量及其分布19.设母体ξ服从正态分布N(),,2σμξ和2n S 分别为子样均值和子样方差,又设()21,~σμξN n +且与n ξξξ,,,21 独立, 试求统计量111+--+n n S nn ξξ的抽样分布. 解: 因为ξξ-+1n 服从⎪⎭⎫⎝⎛+21,0σn n N 分布. 所以()1,0~121N nn n σξξ+-+ 而()1~222-n nS nχσ且2n S 与ξξ-+1n 独立,, 所以()1~1111--÷+--+n t S n n n n S nnn σξξ分布. 即111+--+n n S nn εε服从()1-n t 分布. 20.(),,,1,,n i i i =ηξ是取自二元正态分布N()ρσσμμ222121,,,的子样,设()∑∑∑===-===n i i i ni n i i n S n n 12111,1,1ξξηηξξξ2,()2121∑=-=n i i n S ηηη和 ()()()()∑∑∑===----=ni i ni ii ni ir 12211ηηξξηηξξ试求统计量()122221--+---n S rS S S ηξηξμμηξ的分布.解: 由于().21μμηξ-=-E ()()=-+=-ηξηξηξ,c o v 2D D D nn nn2122212σσρσσ-+.所以()()n 212221212σρσσσμμηξ-+---服从()1,0N 分布 .()()()()()()()[]211212121222122ηξηξηηξξηηξξ---=----+-=-+∑∑∑∑====i ini i i ni i ni i ni S rS S S ni i ηξ-是正态变量,类似于一维正态变量的情况,可证ηξηξS rS S S 222-+与ηξ-相互独立.()()1~22221222122--+-+n S rS S S n χσρσσσηξηξ, 所以 统计量()122221--+---n S rS S S ηξηξμμηξ()()()()1)2(222122212221222121--+-+-+---=n S rS S S n nσρσσσσρσσσμμηξηξηξ服从()1-n t 分布.第二章:估计量1. 设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 3. 对容量为n 的子样,求密度函数()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量. 解: ()322adx x a ax E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i i x ∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫⎝⎛⋅++=∏=n i i x n L ααα令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα, 得 ∑=--=ni iL xn1ln 1ˆα。

由于 ()01ln 222<+-=∂∂ααnL 故∑=--=ni iL xn1ln 1ˆα是α极大似然估计.(2) 由211+-=αξE 令ξα=+-211 得 .112ˆξξα--= 14. 设n ξξ,,1 为取自参数为λ的普哇松分布的一个子样.试证子样平均ξ和∑=*--=n i inn S 122)(11ξξ都是λ的无偏估计.并且对任一值10,≤≤αα()2*1n S αξα-+也是λ的无偏估计.证: 对普哇松分布有λξξ==D E , 从而.λξ=E ().11212*λξξξ==⎥⎦⎤⎢⎣⎡--=∑=D E n ESi n i n故ξ与2n S 都是λ的无偏估计. 又()[]()λλααλαξα=-+=-+112*n S E故()2*1n S αξα-+也是λ的无偏估计.15. 设,,,1n ξξ 为取自正态母体()2,σμN 的一个子样,试适当选择c ,使()21112∑-=+-=n i i i c S ξξ为2σ的无偏估计.解: 由μξ=i E 2σξ=i D 且n ξξ,,1 相互独立可知,2μξξξξ=⋅=j i j i E E E j i ≠ 从而()()()()[]212112211212122ξξξξξξE n E n c E E E E c ES i i i i ni ---=-+=++=∑()()12122-=-=n c D n c i σξ.取()121-=n c 时, n S 为2σ的无偏估计.17. 设随机变量ξ服从二项分布()(),1,0,1=-⎪⎪⎭⎫ ⎝⎛==-x x n x P xn x θθξ,n试求2θ无偏估计量.解: 由于θξn E = ()()()()222211θθθθθξξξ-+=+-=+=n n n n n E D E故()().122θξξ-=-n n E 从而当抽得容量为N 的一个子样后,2θ的无偏估计为:()().1ˆ22--∑=n Nn i i ξξθ量.解: ()322adx x a ax E a =-=⎰ξ 令ξ=3a 得ξ3ˆ=a .34. 设n ξξ,,1 是取自正态母体()2,σμN的一个子样,其中μ为已知,证明(i) ()2121∑=-=ni i nn S μξ是2σ的有效估计;(ii) ∑=-=ni i n 121μξπσ是σ的无偏估计,并求其有效率. 证()i 由()n nS n222~χσ知, .22σ=n ES nDS n422σ=, 又()2,σμN 的密度函数为()()22221σμσπ--=x ex f , 故()()22222ln 21ln σμπσ---=x f 对2σ求导得:()[]224221ln σμσσ--=∂∂x f 从而()()[]4422442221241ln σσμξσμξσσ=+---=⎪⎭⎫ ⎝⎛∂∂E f E ()()4222221ln σσσ=∂∂-=I L E或, 故R C -下界为nn 414221σσ=⎪⎭⎫ ⎝⎛⋅- 。

2n S ∴ 是2σ的有效估计.()ii . 由于()σππσμσπμξσμ2222122222==-=--∞--∞+∞-⎰⎰dy ey dx ex E y x i i故σσ=ˆE , 即σˆ是σ的无偏估计. 又 ()[]2222121122222221ˆσπσπσπμξμξπμξπσn n E E n D n D i n i -=⎪⎭⎫ ⎝⎛-=---=-⋅=∑=而()[]22222221ln σσμξσσ=⎥⎦⎤⎢⎣⎡--=⎪⎭⎫ ⎝⎛∂∂E f E故C —R 下界为n22σ, σˆ的有效率为876.022222=-σπσnn 。

30 .设n ξξ,,1 是取自具有下列指数分布的一个子样. ()⎪⎩⎪⎨⎧≥=-其它,00,1x e x f xθθ证明ξ∑==ni i n 11ξ是θ的无偏、一致、有效估计。

证: 由于()θθθξθ=Γ==-∞⎰20dx e xE xi ξ∴是θ的无偏估计.又()2222223θθθξ=Γ==-∞⎰dx e x E x i , 故2θξ=i D从而.2n D θξ=, 而()224211ln θθξθθ=-=⎪⎭⎫ ⎝⎛∂∂E f E 故R C -下界为,2nθ 因此ξ是θ的有效估计.另外,由契比可夫不等式()0222−−→−=≤≥-∞→n n D P εθεξεθξ 所以ξ还是θ的一致估计.32. 设n ξξ,,1 是独立同分布随机变量, 都服从()()10,,2,1,0,1;<<=-=θθθθ x x f x, 则∑==ni i n T 1ξ是θ的充分统计量.证: 由于n ξξ,,1 的联合密度为()()ix n n x x f ∑-=θθ1,,1 ,2,1,0=i x取(),121ix n k ϑϑ-= 12=k , 则由因子分解定理知, n T 是ϑ的充分统计量.33. 设n ξξ,,1 是独立同分布随机变量,都服从具参数为λ的普哇松分布,则∑==ni in T 1ξ是关于λ的充分统计量.证: 由于n ξξ,,1 的联合密度是()λλn i xn e x x x f i-∑∏=!1 2,1,0=i x取.21λλn x e k i-=, ()12!-=i x k π, 则由因子分解定理知 : n T 是充分统计量.第三章:假设检验1设2521,,,ξξξ 取自正态母体)9,(μN 其中μ为未知参数,ξ为子样均值,对检验问题0100:,:μμμμ≠=H H 取检验的拒绝域:{}c x x x C ≥-=0251:)(μ ,试决定常数c 使检验的显著性水平为0.05.解:因为),,(9N ~μξ所以),(259N ~μξ 在0H 成立下,,05.03512C 3553P C P 000=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎭⎫⎝⎛≥-=≥-C μξμξ)( 96.135,975.035==⎪⎭⎫⎝⎛ΦC C , 所以 C=1.176. 2.设子样),,(1n ξξ 取自正态母体220),,(σσμN 已知,对检验假设 0100:,:μμμμ>=H H 的问题,取临界域{}01:)(c x x x C n ≥= .(i )求此检验犯第一类错误的概率α,犯第二类错误的概率β,并讨论它们之间的关系.(ii )设9,05.0,04.0,5.0200====n ασμ,求65.0=μ时不犯第二类错误的概率.解: (i).在0H 成立下, ),(nN ~200σμξ()⎪⎪⎭⎫⎝⎛-≥-=≥=n C n P C P 0000000σμσμξξα,0010100C n u C u nααμσμσ---∴=∴=+其中1u α-是N (0,1)分布的α分位点。

在H 1成立下,),(nN ~20σμξ,()⎪⎪⎭⎫⎝⎛-<-=<=n C n P C P 00011σμσμξξβ =010001000u C n n n u n αασμμμμμσσσ--⎛⎫+- ⎪⎛⎫⎛⎫--Φ=Φ=Φ- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭当α增加时,1u α-减少,从而β减少;反之当α减少时,将导致β增加。

(ii )不犯第二类错误的概率为1-β。

相关文档
最新文档