概率统计随机过程习题
《概率论与随机过程》习题答案
《概率论与随机过程》第一章习题答案1. 写出下列随机试验的样本空间。
(1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。
解:⎭⎬⎫⎩⎨⎧⨯=n n nn S 100,,1,0 ,其中n 为小班人数。
(2) 同时掷三颗骰子,记录三颗骰子点数之和。
解:{}18,,4,3 =S 。
(3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。
解:{}10,,4,3 =S 。
(4) 生产产品直到得到10件正品,记录生产产品的总件数。
解:{} ,11,10=S 。
(5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。
解:{}ED EC EB EA DE DC DB DA CE CD CB CA BE BD BC BA AE AD AC AB S ,,,,,,,,,,,,,,,,,,,=其中,AB 表示A 为正组长,B 为副组长,余类推。
(6) 甲乙二人下棋一局,观察棋赛的结果。
解:{}210,,e e e S =其中,0e 为和棋,1e 为甲胜,2e 为乙胜。
(7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。
解:{}rwb wb rb rw b w r S ,,,,,,=其中,,,,b w r 分别表示红色、白色、蓝色。
(8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
解:{}1111,1110,1101,0111,1011,1010,1100,0110,0101,0100,100,00=S 其中,0为次品,1为正品。
(9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。
解:{}Ca Bb Ac Cc Ba Ab Cb Bc Aa Cb Ba Ac Ca Bc Ab Cc Bb Aa S ,,;,,;,,;,,;,,;,,=其中,Aa 表示球a 放在盒子A 中,余者类推。
东南大学概率统计与随机过程期末练习(附答案)
东南大学概率统计与随机过程期末练习(附答案)期末练习解答(某)某12et2/2dt表示标准正态分布的分布函数,(1.645)0.05;(0)0.5;(1)0.8413(1.3)0.9032;(1.96)0.975;(2)0.9772一、填充题1)已知P(B)=P(A)=0.2,A和B相互独立,则P(A-B)=0.16;P(AUB)=0.362)一盒中有2个白球,3个黑球,每次抽取一球,从中不放回地抽取两次,则第二次取到黑球的概率为0.6,取到两个球颜色相同的概率为2/53)设随机变量某服从正态分布N(1,4),P(某1)_0.5___。
4)设W(t)是参数为的Wiener 过程,则随机过程某(t)21tW(t),t0的一维概率密度函数f(某;t)_____12e某p{某2/2}________。
5)随机变量某,Y独立同分布,都服从正态分布N(1,4),则P(某-Y>22)=0.1587__。
6)随机变量某,Y的联合分布律为:P(某=0,Y=0)=0.2;P(某=0,Y=1)=0.3;P(某=1,Y=0)=0.3;P(某=1,Y=1)=0.2.则某+Y分布律为p(某+Y=0)=0.2;P(某+Y=1)=0.6;P(某+Y=2)=0.2。
E[某Y]=0.27)随机变量某,Y的相关系数为0.5,则5-2某,和Y-1的相关系数为-0.58)设随机变量序列{某n,n=1,2,…}独立同分布,E某1=2,D某1=2,则1222p(某1某2...某n)6n9)设总体某服从正态分布N(1,2),某1,某2,...,某10是来此该总体的样本,某,S分别22表示样本均值和样本方差,则E某1,E(某S)210)随机变量某的分布律为P(某=-1)=P(某=1)=1/2,则其分布函数为F(某)=0,某=1;第1页共7页自觉遵守考场纪律如考试作弊此答卷无效11)随机变量某服从[0,1]上的均匀分布,则Y=-2某+1的密度函数为U[-1,1],f(y)=0.5;-11(某22某22某1某241某24)服从(3)分布,若c某22~t(2),则常数c13某413)设某假设检验问题的水平=0.1,根据样本得到的结论是拒绝原假设,则可能犯哪一类错误I(填I,II),犯错误的概率为0.1(填数值或不能确定)。
随机过程试题及答案
随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。
通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。
以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。
1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。
(2) 求X(t)的平稳分布。
2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。
令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。
设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。
根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。
(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。
(2) 计算X(t)的平均到达速率。
4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。
所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。
概率统计和随机过程_南京邮电大学中国大学mooc课后章节答案期末考试题库2023年
概率统计和随机过程_南京邮电大学中国大学mooc课后章节答案期末考试题库2023年1.设随机事件满足, 则有 ( ).答案:2.设A, B为两事件,且设A, B为两事件,且P(A)=0.7, P(A-B)=0.5, 则= ( ).答案:0.83.假设一套书共有五册,按任意顺序放在书架上,则第一册及第五册分别在两端的概率是 ( ).答案:1/104.某种动物出生之后活到20岁的概率为0.7,活到25岁的概率为0.56,则现年为20岁的这种动物活到25岁的概率是 ( ).答案:0.85.某制帽厂生产的帽子合格率为0.8,一盒中装有4顶. 一个采购员从每盒中任取两顶帽子进行检查,若两顶帽子都合格,就买下这盒帽子,则每盒帽子被买下的概率( ).答案:0.646.在数字通讯中,信号是由数字0和1的长序列组成的,由于有随机干扰,发送的信号0或1有可能错误接收为1或0. 现假定发送信号为0和1的概率均为1/2,又已知发送0时,接收为0和1的概率分别为0.8和0.2;发送信号为1时,接收为1和0的概率分别为0.9和0.1. 则当收到信号是0时,发送的信号是0的概率是 ( ).答案:8/97.答案:8.设是来自总体服从参数为3的泊松分布的样本, 为样本均值, 则( ).答案:1/39.答案:t(4)10.答案:0.111.答案:0.7512.设某电话总机在(0, t] 内接到的呼叫次数X(t)是具有强度(单位:每分钟)为3的泊松过程, 则在2分钟内接到的平均呼叫次数为 ( ).答案:613.设{X(t), t≥0}是强度为2的泊松过程, 则P(X(t)=1)=( ).答案:14.设随机过程X(t)=X, 且X~U(2,4).则X(t)的协方差函数 ( ).答案:1/315.设随机过程X(t)=A+ Bt , A与B相互独立, 均服从N(0,2).则X(t)的自相关函数= ( ).答案:2(1+ st)16.设{W(t), t≥0}是参数为2的维纳过程, 则W(t)的协方差函数=( ).答案:217.答案:1/218.答案:0.87519.答案:2 20.答案:0.624721.答案:2答案:5/16 23.答案:24.答案:B(5,0.8)答案:26.答案:27.答案:28.答案:0.629.答案:4/330.答案:31.答案:32.答案:7 33.答案:0 34.答案:7答案:36.答案:0.3 37.答案:0.538.答案:39.答案:40.答案:41.答案:42.答案:43.设马氏链的状态空间为,初始分布为, 一步转移概率矩阵,则( ).答案:1/444.a.设马氏链的状态空间为,初始分布为一步转移概率矩阵, 则概率= ( ).答案:1/6445.下列矩阵为齐次马氏链的一步转移概率矩阵,则其中具有遍历性的马氏链为( ).答案:46.一家汽车保险公司将其客户分为三种类型: 差的(记为1状态)、满意的(记为2状态)和优质的(记为3状态).没有客户在一年之内从差客户变成优质客户,也没有优质客户在一年之内变为差客户,且一步转移概率矩阵为. 则从长远来看,每种类型的客户所占的比例依次为 ( ).答案:1/11,4/11, 6/1147.已知平稳过程的功率谱密度, 则平稳过程的自相关函数( ), 平均功率( ).答案:48.设与为相互独立的随机变量,且则随机过程的均值函数= ( ); 且时间均值函数= ( ).答案:49.设随机过程与相互独立, 且则随机过程的自相关函数=( );功率谱密度( ).答案:,50.设随机过程为相互独立且具有相同分布的随机变量,的分布律为, 则随机过程(填是/不是)平稳过程;均值(填具有/不具有)各态历经性.答案:是, 具有。
概率统计随机过程-期末试卷-参考答案
7. 1
8. 1 1
4. ,
2
数理统计
57 33 e 30 154 e 15 9. , 8 24
2 2 2
又由
15 S 2
2
4
即
152
2 15 S 2 (15) 知 D 2 2 15
D S 2 2 15
2
得 D S
2 15
4
五、解:
数理统计
1 2 3 (1) 先求二步转移概率矩阵 1 1/ 2 1/ 4 1/ 4 2 P (2) [ P (1)] 2 1/ 4 1/ 2 1/ 4 3 1/ 4 1/ 4 1/ 2 3 P{ X 2 2} P X 0 iP X 2 2 | X 0 i
数理统计
《概率统计与随机过程》期末试卷二 参考答案 一、填空题
1. F (1, n)
2. P X 1 x1 ,..., X n xn p i 1 (1 p) 其中xi 0或1;
1 n 3. X , Xi X n i 1
xi
n
n
xi
i 1
n
,
E ( S 2 ) p(1 - p)
六、解:
a2 (3) 因 RX ( t , t ) cos 0 , 2 i 故 S X R e d X
2 a i cos( ) e d 0 2 2 a cos(0 )e i d 2 a2 0 0 2
p1 (0) P12 (2) p2 (0) P22 (2) p3 (0) P32 (2) 1 1 1 1 1 ( ) 3 4 2 4 3 (2) P{ X 2 2, X 3 2 | X 0 1}
(完整word版)随机过程试题带答案
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1λ的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 Γ 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 (n)n P P = 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p ∈=⋅∑ 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
1.为it(e-1)e λ。
2. 1(sin(t+1)-sin t)2ωω。
3. 1λ4. Γ 5. 212t,t,;e,e 33⎧⎫⎨⎬⎩⎭。
6.(n)nP P =。
《概率论与随机过程》第3章习题答案
《概率论与随机过程》第三章习题答案3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。
解:由题意可得:()[]()()002121020022222002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()12021202120202120202221202022021012022022202010022222200201021212122112210212212121221212222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。
∴()t X 是平稳过程另解:()[][]0022000000[cos()][cos()][];(,)cos()cos(())cos()cos(())t E A t E A E t E A R t t E A t t E A E t t E X ωΦωΦτωΦωτΦωΦωτΦ⎡⎤=+=+=⨯=⎣⎦⎡⎤⎡⎤+=+++=+++⎣⎦⎣⎦[][][])cos()cos())cos((τωτωτωω0200022222A E t E A E =+Φ++= ∴()t X 是平稳过程3.3 设S(t) 是一个周期为T 的函数,随机变量Φ在(0,T )上均匀分布,称X(t)=S (t+Φ),为随相周期过程,试讨论其平稳性及各态遍历性。
(完整版)随机过程习题答案
解 转移概率如图
一步概率转移矩阵为
10000 111
00 333 P 01110
333
00111 333
00001
二步转移概率矩阵为
10 0 00 1 00 0 0
11 1 00 11 1 0 0
3 33
333
P (2)
111
111
0
00
0
33 3
333
00 1 11 0 01 11
333
333
00 0 01 0 00 01
(3) mX (t ) 1 cos( t) 1 2t 1 cos( t ) t
2
2
2
1 mX (1)
2
2 X
(t )
E[ X 2 (t)] [ EX (t )] 2
1 cos2 ( t )
1 ( 2t) 2
1 [ cos( t )
t]2
2
2
2
1 cos2 ( t) 2t 2 1 cos2 ( t) t 2 t cos( t)
。
解 (1) t
1
时,
X ( 1) 的分布列为
2
2
1
0
1
X( )
2
P
1
1
2
2
一维分布函数
0, x 0
1
1
F ( , x) ,
2
2
1,
0 x1 x1
t 1 时, X (1) 的分布列为
-1
2
X (1)
P
1
1
2
2
一维分布函数
0, x 1
1
F (1, x)
,
2
随机过程试题及解答
2016随机过程(A )解答1、(15分)设随机过程V t U t X +⋅=)(,),0(∞∈t ,U ,V 是相互独立服从正态分布(2,9)N 的随机变量。
1) 求)(t X 的一维概率密度函数;2) 求)(t X 的均值函数、相关函数和协方差函数。
3) 求)(t X 的二维概率密度函数; 解:由于U ,V 是相互独立服从正态分布(2,9)N 的随机变量,所以V t U t X +⋅=)(也服从正态分布,且: {}{}{}{}()()22m t E X t E U t V t E U E V t ==⋅+=⋅+=+{}{}{}{}22()()99D t D X t D U t V t D U D V t ==⋅+=+=+故: (1) )(t X的一维概率密度函数为:()222218(1)(),x t t t f x ex ---+=-∞≤≤∞(2) )(t X 的均值函数为:()22m t t =+;相关函数为:{}{}(,)()()()()R s t E X s X t E U s V U t V =⋅=⋅+⋅⋅+{}{}{}22()13()413st E U s t E U V E V st s t =⋅++⋅⋅+=⋅++⋅+协方差函数为:(,)(,)()()99B s t R s t m s m t st =-⋅=+(3)相关系数:(,)s t ρρ====)(t X 的二维概率密度函数为:2212222(22)(22)12(1)9(1)4(1),12(,)x s x t s t s t f x x eρ⎧⎫⎡⎤-----⎪⎪+⎢⎥⎨⎬-++⎢⎥⎪⎪⎣⎦⎩⎭=2、(12分)某商店8时开始营业,在8时顾客平均到达率为每小时4人,在12时顾客的平均到达率线性增长到最高峰每小时80人,从12时到15时顾客平均到达率维持不变为每小时80人。
问在10:00—14:00之间无顾客到达商店的概率是多少?在10:00-14:00之间到达商店顾客数的数学期望和方差是多少? 解:到达商店顾客数服从非齐次泊松过程。
(完整版)随机过程习题和答案
一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。
解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。
解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。
解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。
2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。
试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。
设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。
以小时为单位。
则((1))30E N =。
40300(30)((1)40)!k k P N e k -=≤=∑。
3.2在某公共汽车起点站有两路公共汽车。
乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。
随机过程习题解析
习题一1.某战士有两支枪,射击某目标时命中率分别为0.9及0.5,若随机地用一支枪,射击一发子弹后发现命中目标,问此枪是哪一支的概率分别为多大?2.设随机变量X 的概率密度为・Af (x )= x 21【0⑵分布函数F (x ); (3)随机变量Y = lnX 的分布函数及概率分布。
3.设随机变量(X, Y )的概率密度为JIf (x , y) = Asi n (x + y ), 0_x ,y 2求:⑴ 常数A ; (2)数学期望EX , EY ; (3) 数。
4. 设随机变量X 服从指数分布kx_ ke x _ 0 0x c 0求特征函数 (x),并求数学期望和方差。
求:(1)常数A; 方差DX , DY ; (4)协方差及相关系5.设随机变量X与Y相互独立,且分别服从参数为■ 1和• 2的泊松分布,试用特征函数求Z = X + Y随机变量的概率分布。
6.—名矿工陷进一个三扇门的矿井中。
第一扇门通到一个隧道,走两小时后他可到达安全区。
第二扇门通到又一隧道,走三个小时会使他回到这矿井中。
第三扇门通到另一隧道,走五个小时后,仍会使他回到这矿井中。
假定矿井中漆黑一团,这矿工总是等可能地在三扇门中选择一扇,让我们计算矿工到达安全区的时间X的矩母函数。
7 .设(X , Y)的分布密度为4xy,0 £X c1.(1) °(x, y)=」0,其他&y,0 £X c1.(2)枣(x,y)=*0,其他问X , Y是否相互独立?8.设(X, Y)的联合分布密度为问:(1)1, ■-取何值时X , Y不相关;(2) :• , 1取何值时相互独立。
习题二1.设有两个随机变量X、Y相互独立,它们的概率度分别为f X(x)和f Y(y),定义如下随机过程:Z(t) =X Yt,t R试求Z(t)的均值函数m(t)和相关函数R(t1,t2)。
一12.从t=0开始每隔一秒丢掷一次硬币(均匀的),对每一个丢掷的时刻t,规定随机变量2S_ cos^t,当时刻t掷出正面x(t)= 丿、、2t, 当时刻t掷出反面1 1试求:(1)F ( 2 ;X1),F (t1;X1)(2)F (~2,1;X,X2)。
随机过程习题及答案
第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1. 随机过程的概念 随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤ x 1 ],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤ x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤ x 1和ξ(t 2) ≤ x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ (t )的二维分布函数。
如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ (t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ (t )的n 维分布函数。
如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ (t )的n 维概率密度函数。
随机过程考试试题及答案详解
随机过程考试试题及答案详解1、(15分)设随机过程C t R t X +⋅=)(,),0(∞∈t ,C 为常数,R 服从]1,0[区间上的均匀分布。
(1)求)(t X 的一维概率密度和一维分布函数; (2)求)(t X 的均值函数、相关函数和协方差函数。
【理论基础】 (1(2F ((3(F (4,(1)(t X 为],[t C C +上的均匀分布,因此其一维概率密度⎪⎩⎪⎨⎧+≤≤=其他,0,1)(tC x C t x f ,一维分布函数⎪⎩⎪⎨⎧+>+≤≤-<=t C x t C X C tCx C x x F ,1,,0)(;(2)根据相关定义,均值函数C tt EX t m X +==2)()(; 相关函数2)(231)]()([),(C t s Cst t X s X E t s R X +++==; 协方差函数12)]}()()][()({[),(stt m t X s m s X E t s B X X X =--=(当t s =时为方差函数) 【注】)()()(22X E X E X D -=;)()(),(),(t m s m t s R t s B X X X X -=求概率密度的通解公式|)(|/)(|)(|)()(''y x y f x y y f x f t ==2、(15分)设{}∞<<∞-t t W ),(是参数为2σ的维纳过程,)4,1(~N R 是正态分布随机变量;且对任意的∞<<∞-t ,)(t W 与R 均独立。
令R t W t X +=)()(,求随机过程{}∞<<∞-t t X ),(的均值函数、相关函数和协方差函数。
【解答】此题解法同1题。
依题意,|)|,0(~)(2t N t W σ,)4,1(~N R ,因此R t W t X +=)()(服从于正态分布。
故:均值函数1)()(==t EX t m X ;相关函数5)]()([),(==t X s X E t s R X ;协方差函数4)]}()()][()({[),(=--=t m t X s m s X E t s B X X X (当t s =时为方差函数) 3、(10分)设到达某商场的顾客人数是一个泊松过程,平均每小时有180人,即180=λ;且每个顾客的消费额是服从参数为s 的指数分布。
概率统计与随机过程习题册解答
解:以A表示事件“白漆10桶,黑漆3桶,红漆2桶”
P( A)
C1100C43C32 C1175
1 4 3 17 8
3 34
a
9பைடு நூலகம்
8
4.已知在10只晶体管中有2只是次品,在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率。
(1)两只都是正品 解:以A表示事件“两只都是正品
P( A) 8 7 ”28
1
S {v | v 0}
Aa {v | 60 v 80}
1
2.设A、B、C 为三个事件试用A、B、C 表示下列事件
(1)A与B 不发生,而C 发生
ABC
(2)A,B,C 都不发生
ABC
(3)A、B、C 至少有一个发生
A B C
(4)A、B、C中恰有一个发生 ABC ABC ABC
(5)A、B、C 中恰有两个发生 ABC ABC ABC
解:以A表示事件“系统的可靠性 ”
P( A) [1 (1 p)2]2 p2(2 p)2
(2,1)和(4,4)
P( A) 2 1 36 18
a
11
10
练习三
1. (1)已知 P( A) 0.3, P(B) 0.4, P( AB) 0.5,求 P(B | A B)
。解 :
P(B | A B)
P(B ( A B)) P(A B)
P( AB) P( A) P(B) P( AB)
0.002
0.3223
a
13
12
3.已知男子有5%是色盲患者,女子有0.25 %是色盲患 者。今从男女人数相等的人群中随机地挑选一人,则
(1)此人是色盲患者的概率
解:以A表示事件“色盲患者”,以B表示事件“所
随机过程试题及答案
随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。
答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。
答案:相关性3. 随机游走过程是一类具有________性质的随机过程。
答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。
答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。
答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。
数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。
2. 描述布朗运动的三个基本性质。
答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。
3. 什么是平稳随机过程?请给出其数学定义。
随机过程课后试题答案
随机过程课后试题答案一、选择题1. 随机过程的基本定义中,样本空间通常表示为:A. 一个集合B. 一个函数集合C. 一个概率空间D. 一个参数集合答案:A2. 若随机过程的样本轨迹几乎是连续的,则该过程是:A. 离散时间随机过程B. 连续时间随机过程C. 泊松过程D. 马尔可夫过程答案:B3. 马尔可夫性质的含义是未来的状态只依赖于当前状态,而与过去的状态无关。
这一性质不适用于:A. 泊松过程B. 布朗运动C. 马尔可夫链D. 所有随机过程答案:D4. 在随机过程中,如果两个随机变量的联合分布可以表示为它们各自的边缘分布的乘积,则这两个随机变量是:A. 独立的B. 相关的C. 正相关的D. 负相关的答案:A5. 随机游走的期望步长是:A. 1B. 2C. 依赖于起始点D. 依赖于步长分布答案:D二、填空题1. 一个随机过程的样本函数是定义在参数集合上的_________函数。
答案:实值或随机2. 在随机过程中,如果给定当前状态,下一状态的条件概率分布仅依赖于当前状态而不依赖于之前的状态,那么该过程是一个_________过程。
答案:马尔可夫3. 随机过程的均值函数(或称数学期望函数)是描述过程长期行为的重要工具,它是一个关于_________的函数。
答案:时间4. 布朗运动是一种连续时间随机过程,其样本轨迹具有_________性质。
答案:无处处可微5. 泊松过程是一种描述事件在时间上随机发生的随机过程,其特点是事件在任意两个不重叠时间区间内发生是_________的。
答案:相互独立三、计算题1. 假设有一个离散时间马尔可夫链,其状态转移矩阵为:\[P = \begin{bmatrix}0.7 & 0.3 \\0.4 & 0.6\end{bmatrix}\]求该马尔可夫链在第二时刻的状态概率分布,给定初始状态概率分布为:\\[\pi_0 = \begin{bmatrix}0.5 \\0.5\end{bmatrix}\]解:首先计算\( P^2 \),即状态转移矩阵的二次幂,然后利用\( \pi_0 \)和\( P^2 \)来计算第二时刻的状态概率分布。
随机过程课后习题
习题一1.设随机变量X 服从几何分布,即:(),0,1,2,...k P X k pq k ===。
求X 的特征函数、EX 及DX 。
其中01,1p q p <<=-是已知参数。
2.(1)求参数为(p,b )的Γ分布的特征函数,其概率密度函数为(2)求其期望和方差;(3)证明对具有相同的参数b 的Γ分布,关于参数p 具有可加性。
3.设X 是一随机变量,F (x )是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)Z=ln F()X ,并求()k E Z (k 为自然数)。
4.设12,,...,n X X X 相互独立,具有相同的几何分布,试求 的分布。
5.试证函数 为一特征函数,并求它所对应的随机变量的分布。
6.试证函数 为一特征函数,并求它所对应的随机变量的分布。
7.设12,,...,n X X X 相互独立同服从正态分布2(,)N a σ,试求n 维随机向量12,,...,n X X X 的分布,并求出其均值向量和协方差矩阵,再求 的概率密度函数。
8.设X 、Y 相互独立,且(1)分别具有参数为(m, p)及(n, p)的二项分布;(2)分别服从参数为12(,),(,)p b p b 的Γ分布。
求X+Y 的分布。
9.已知随机向量(X, Y )的概率密度函数为试求其特征函数。
10.已知四维随机向量X ,X ,X ,X 1234()服从正态分布,均值向量为0,协方差矩阵为B σ⨯kl 44=(),求(X ,X ,X ,X E 1234)。
11.设X 1,X 2 和X 3相互独立,且都服从(0,1)N ,试求随机变量112Y X X =+和213Y X X =+组成的随机向量(Y 1, Y 2)的特征函数。
12.设X 1,X 2 和X 3相互独立,且都服从2(0,)N σ,试求:(1)随机向量(X 1, X 2, X 3)的特征函数;1,0()0,0()p p bxb x e x p x p x --⎧>⎪Γ⎨⎪≤⎩=0,0b p >>1nk k X =∑(1)()(1)jt jnt jt e e f t n e -=-21()1f t t=+11n i i XX n ==∑221[1()],1,1(,)40,xy x y x y p x y ⎧+--<<⎪=⎨⎪⎩其他(2)设112123123,,S X S X X S X X X ==+=++,求随机向量(S 1, S 2, S 3)的特征函数;(3)121Y X X =-和232Y X X =-组成的随机向量(Y 1, Y 2)的特征函数。
随机过程习题集
随机过程习题集引言随机过程是概率论和统计学中的重要内容之一,它研究的是随机事件按照时间的推移发展的规律。
随机过程的基本概念和性质对于深入理解随机现象具有重要的作用。
本文档是一套随机过程的习题集,旨在帮助读者深入理解随机过程的基本理论和应用。
习题1. 离散时间随机过程1.1 设X是一个随机变量,其概率质量函数(probability mass function)为:P(X=k)=C(10, k)/2^10, k=0,1,...,10求该随机变量的数学期望和方差。
解答:数学期望定义为:E(X) = Σ(k * P(X=k))= Σ(k * C(10, k)/2^10)= 10 * 1/2 = 5方差定义为:Var(X) = E((X - E(X))^2)= E(X^2) - (E(X))^2= Σ(k^2 * P(X=k)) - (E(X))^2= Σ(k^2 * C(10, k)/2^10) - 5^2= 1/2 - 25/4 = 1/4因此,该随机变量的数学期望为5,方差为1/4。
1.2 设X和Y是两个独立的随机变量,其概率质量函数分别为:P(X=k)=1/2^k, k=0,1,...P(Y=k)=1/2^k, k=0,1,...定义随机变量Z=X+Y,求Z的概率质量函数。
解答:随机变量Z的概率质量函数可以通过卷积运算得到:P(Z=z) = Σ(P(X=k) * P(Y=z-k), k=-∞ to +∞)= Σ(1/2^k * 1/2^(z-k), k=-∞ to +∞)= Σ(2^(-z), k=-∞ to +∞)= 2^(-z) * Σ(1, k=-∞ to +∞)= 2^(-z) * ∑(1/(2^k), k=0 to z)= 2^(-z) * (2 - 2^(-z))因此,随机变量Z的概率质量函数为:P(Z=z) = 2^(-z) * (2 - 2^(-z)), z=0,1,...2. 连续时间随机过程2.1 设随机过程X(t)是一个平稳过程,其自相关函数(autocorrelation function)为:R(t1, t2) = exp(-|t1-t2|)求该随机过程的均值函数(mean function)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一
1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二
1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t
2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程
()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三
1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有
[()()]()()aX t bY t aX t bY t '''+=+
3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且
[()()]()()()()f t X t f t X t f t X t '''=+
4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有
()()()b a
X t dt X b X a '=-⎰
5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有
[()()]()()b b b
a
a
a
X t Y t dt X t dt Y t dt αβαβ+=+⎰
⎰⎰
()()(),b c b
a
a
c
aX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤
6. 求随机微分方程
()()()[0,]
(0)0
X t aX t Y t t X '+=∈+∞⎧⎨
=⎩
的()X t 数学期望[()]E X t 。
式中,()a Y t >为平稳过程[()]0E Y t λ=>
习题四
1. 考虑一个具有随机相位的余弦波,它由如下定义的随机过程描述:
()cos()X t t λθ=+,其中λ是常数,θ服从(,)ππ-上的均匀分布,证明X (t )是宽
平稳过程。
2. 考虑一个具有随机振幅的正弦波,它由如下定义的随机过程描述
()2sin 2X t Axos t t πβπ=+
其中,A 、B 为两个随机变量,且满足()()0,()()1E A E B D A D B ====,
()0E AB =,度X (t )为宽平稳过程。
3. 设随机过程(),X t Y Y =是方差不为零的随机变量,试讨论其各态历经性。
4. 设X (t )是雷达的发射信号,遇到目标后返回接收机的微弱信号是
111,(),aX t a ττ<-是信号返回时间,由于接收到的信号总是伴有噪声,记噪声为
()N t ,于是接收机收到的全信号为1()()()Y t aX t N t τ=-+。
①若X (t )和Y (t )是联合平稳,求互相关函数()XY R τ。
②在①的条件下,假如N (t )的均值为零,且X (t )是相互独立,求()XY R τ(这是利用互相关函数从全信号中检测小信号的接收法)。
5. 设有随机过程()cos ()X t A t ωθ=+,其中A 是具有瑞利分布的随机变量,其概率密度为
2
22
0()200
a a e a t a a σσ
⎧->⎪=⎨⎪⎩
≤
θ是在(0, 2π)上具有均匀分布且与A 相互独立的随机变量,ω是一个常
数,问X(t)是否是宽平稳过程。
习题五
1. 已知平稳过程()
X t的谱密度为
2
42
()
32
X
G
ω
ω
ωω
=
++
,求()
X t的均方值2
[()]
E X t。
2. 已知平稳过程()
X t的自相关函数为
||
()4cos cos
X
R eτ
τπτπτ
-
=+
求()
X
Gω。
3. 如下图的系统中,若()
X t为平稳过程,证明()
Y t的功率谱是
()2()(1cos)
Y X
G G t
ωωω
=+
习题3 图
4. 已知平稳过程()
X t的谱密度为
8()20(1)10
()10
X
G
ω
δωω
ω
⎧
+-
⎪
=⎨
⎪⎩
≤
其它
求
()
X
R
τ。
5. 设()sin()
X t A tωϕ
=+和()sin()
Y t B tωϕα
+-为两个平稳过程,其中,A、B、αω
与为常数,(0,2)
ϕπ
是在上服从均匀分布的随机变量。
求
()()
XY XY
R R
ττ
和。
6. 已知平稳过程()()
XY
X t Rτ
和。
00
/
()
XY
a jb
G
ωωωω
ω
ωω
⎧+<
⎪
=⎨
⎪⎩≥
其中a, b,
ω实常数,求互相关函数()
XY
Rτ。
习题六
1. 若系统输入为白噪声,其自相关函数为
)
(
2
)
(0τ
δ
τ
N
R
X
=
式中
N是正实常数,求系统输出的均方值。
2. 理想白噪声过程)(t
X,其自相关函数)
(
2
)
(0τ
δ
τ
N
R
X
=,通过一个冲激中央委员应为)
(t
h的线性系统,求系统响应与互相关函数的关系。
3. 设白噪声)(t
X,有
2
)
(0
N
G
X
=
ω,通过传输函数为
ω
ω
ω
j
a
j
H
+
=
)
(的微分电路,α为实常数,求电路输出自相关函数。
4. 白噪声)(t
N通过传输函数为
ω
α
α
ω
j
H
+
=
)
(的RC积分电路,如下图所示,α为实常数,求电路输出的自相关函数。
习题4图
5. 某线性系统具有功率传输函数为
2
2
1
1
)
(
⎪
⎭
⎫
⎝
⎛
∆
+
=
ω
ω
ω
H,式中ω
∆是半功率带宽,求系统的噪声带宽。
习题七
1. 设岩性这个随机变量只能取砂岩(用
1
E代表)、灰岩(用
2
E代表)两种状态,对于
某地层剖面观测记录的一次实现为1112111E E E E E E E 111211122E E E E E E E E E ,试写出它的转移概率矩阵。
2. 设有四个状态},,,{4321a a a a 的马氏链,它的一步转移概率矩阵为
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=02
10
2
121021002102
1210210P 试画出其状态传递图。
3. 设有一马尔可夫链,其转移状态有两种:1E 、2E ,经计算得一阶转移概率矩阵为
⎪⎪⎭
⎫
⎝
⎛=41.059
.021.079.0)1(P 求证该链具有遍历性,并求出极限分布。
4. 设有四个状态}11,10,01,00{的马氏链,它的一步转移概率矩阵为
⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎡=535
20
0004341313200002121)
1(P 试画出它的状态传递图。