硅灰Microstructural investigation of a silica fume–cement–lime mortar

合集下载

添加纳米二氧化硅、硅灰和超级增塑剂的水泥料浆的流动性能

添加纳米二氧化硅、硅灰和超级增塑剂的水泥料浆的流动性能

J 十 Z 】
一 ’
() 3
关 键 词 :水泥料浆 ;纳米二氧化硅 ;硅灰 ;流变性 ;流动性试验
中 图分 类 号 :T 12 Q7. 7
文 献 标识 码 :A
文章 编 号 :17— 72 (0 1 40 30 63 79 2 1)0 —0 — 4 4 使 得 硅 酸 盐 水 泥 混 合 物 的显 微 结 构 更 加 紧 实 和致 密 。从 而 提 高 了抗 水 的渗 透 性 、混 凝 土 耐磨 性 和 抗 压强 度 。但 没 有 文章 报道 过 N S在 初期 流动参 数
盐 水 泥 料 浆 流 变 性 能 的 影 响 ,水 胶 比 ( B) 为 04 W/ .。使 Байду номын сангаас 同 心 圆 筒 形 流 变 仪 ,施 以 最 大 为 10 的 剪 切 速 率 。 0s s P减 小 滞 后 面 积 ,而 S F和 N S增 加 滞 后 面 积 。添 加 N S的 样 品 在 下 降 曲 线 中 表现 为 高 斜 率 ,而 添 加 S F和 高 剂 量
而 L r r 明 了在 使 用 HB模 型 时可 以将 参 数 减 ar d证 a
至 2个 (0 丁 和 ’ 的 可 能 性 ,他 提 出 可 以通 过 )
HB等 式 确 定 下,而 塑 性 黏 度 ’可 以通 过 等 式 0
( )来 预测 : 3


细 、高 比表 面 积 和 高 活 性 的优 点 。 曾有 人 研 究 了 N S对水 泥 浆 料 、砂 浆 和 混 凝 土性 能 的影 响 .还包 括 N S促 进 水 泥 水 化 过 程 和 缩 短 凝 固时 间 的研 究 。 因此 ,N S不 仅 是 填充 物 ,也 是火 山灰 质 材料 ,增 加 了 C S H 的形 成 量 。而且 ,降 低 了混 合 时 水 的 —— 需 求 量 。同时 能够 减 少 分凝 现象 的发 生 。 由于 N S 填 充 气 孔 以 及 熟 石 灰 C ( H) 残 留 数 量 的减 少 , aO :

硅灰在混凝土中应用:历史、现状和展望

硅灰在混凝土中应用:历史、现状和展望

Microsilica in concrete: History, Status, and Outlook硅灰在混凝土中应用:历史、现状和展望Per Fidjestol, MSc FACI(Technical Manager, Elkem AS Materials)What is microsilica? 什么是硅灰?By-product of the ferrosilicon and silicon metal industry 硅铁或工业硅工业的副产品Very high specific surface area 非常高的比表面积(>15000 m2/kg)Very high content of amorphous silicon dioxide 非常高的无定形二氧化硅含量 (SiO2)Very efficient filler 高效率填充料Very reactive pozzolan 高活性火山灰质材料History of microsilica 硅灰历史First mention in patent from 1947 (USA) 1947年第一次在美国专利中提到First test in concrete (Norway) 1950 1950年第一次在挪威进行混凝土试验First ready mix in 1971 1971年第一次在商品混凝土应用Allowed in concrete in Norway early 70’s 七十年代初期在挪威允许应用于混凝土Around 1980 55 000 tpy in Norway 1980年挪威产量约55000吨/年Standards from 1987 on (Canada, ASTM, +++) 自1987年有产品标准(加拿大、ASTM,等等)What’s in a Name? 有怎样的名称?Silica Fume 硅灰Microsilica 微硅粉Condensed Silica Fume 冷凝硅灰Standardization 标准化International 国际标准–ASTM C1240 (美国)–CEN EN 13263 (欧洲)National 国家标准–China GB/T18736-2002 (中国)–Canada CAN/CSA A23.5 - 98 (加拿大)–Japan JIS A 6207 :2000 (日本)–Brazil NBR 13956:1997 (巴西)–Korea KS F 2567 (韩国)–Australia ….. (澳大利亚)–Etc. 等等Production 生产 Microsilica – the production 硅灰——生产Microsilica - Physical Properties 硅灰——物理性质Particle Size 颗粒尺寸Most particles are sub-micron. Average particle diameter is 0.15 microns, about 100x smaller than cement grains.大多数颗粒为亚微米,平均粒径0.15微米,约比水泥颗粒小一百倍。

一种宝玉石的仿制品--硅灰石微晶玻璃

一种宝玉石的仿制品--硅灰石微晶玻璃
microcrystalwollastioniteglass
薄 片 在 偏 光 显 微 镜 下 鉴 定 ,微 晶 呈 细 长 柱 状 , 无 色 透 明 ,中 正 突 起 ,干 涉 色 为 一 级 灰 黄 色 ,柱 面 平 行 消 光,正 延 长,二 轴 晶 负 光 性,应 为 硅 灰 石; 基 质 在 正 交 光 下 全 消 光 ,为 玻 璃 质 。
根 据 样 品 中 显 示 的 炭 质 残 留 物、气 泡、烧 结 坑、均 质 性 和 针 状 硅 灰 石 集 合 体 等 特 征,可 以 确 认为硅灰石微晶玻璃。
宝 石 显 微 镜 下 观 察,在 不 含 微 晶 的 透 明 玻 璃 体 内,可 见 圆 形 气 泡 分 布,但 在 含 微 晶 的 部 位 未 发 现 有 气 泡;微 晶 体 呈 细 小 长 针 状,约 占 总 量 的 50% ,呈 放 射 状 或 交 织 状 分 布 (图 版 Ⅱ -4);在 靠 近 表 皮 部 位 微 晶 结 晶 较 粗 而 稀 少 ,玻 璃 也 相 对 透 明 。 内 部 微 晶 密 集 细 小 ,玻 璃 也 变 得 浑 浊 。
第 3卷 第 2期 2001年 6月
宝石和宝石学杂志 JournalofGemsandGemmology
Vol.3 No.2 June 2001
一种宝玉石的仿制品-- 硅灰石微晶玻璃
胡楚雁1
陈南春2
(1.中国地质大学,湖北 武汉,430074;2.桂林工学院,广西 桂林,541004)①
摘 要:硅灰石微晶玻璃为含有较多针状硅灰石微晶的绿色人造玻璃,市场上用来冒 充 绿 色 碧 玺、祖 母 绿 和
· 24·
宝石和宝石学杂志
2001年
硅 灰 石 微 晶 玻 璃 应 经 过 专 门 的 特 殊 熔 炼 而 成。微 晶硅灰石是由富 CaO和 SiO2的玻璃体,在一定的 温 度 下 过 饱 和 结 晶 析 出 形 成 的。从 其 表 面 出 现 的 烧 结 坑、炭 质 残 渣 以 及 硅 灰 石 微 晶 由 里 向 外 晶 体 变 大 等 特 征 来 看,该 微 晶 玻 璃 是 先 经 过 熔 炼 制 成 玻 璃 ,再 经 过 加 热 处 理 ,使 其 产 生 析 晶 作 用 ,让 硅 灰石重结晶形成的。

不同几何尺寸纤维对水泥浆体性能的影响

不同几何尺寸纤维对水泥浆体性能的影响
减小,纤维对水泥净浆的抗弯强度的提高不断增加。 从表3中还可以看出。不同几何尺寸纤维净浆的弯 曲韧度按碳纤维、微细钢纤维、普通钢纤维净浆的次 序递增。因此,随着纤维直径的减小,纤维对净浆的 增韧作用效果呈逐渐降低趋势。 表3不同几何尺寸纤维净浆的抗弯初裂强度与抗弯强度
累积能量和累积事件数的测试结果。从表4可以看 出,声发射累积能量和累积事件数按碳纤维净浆、微 细钢纤维净浆、普通钢纤维净浆的次序递减。
抗压强度。 图l和图2分别为不同几何尺寸纤维净浆抗折
强度增强因子与抗压强度增强冈子与纤维掺量的关 系。图1.2也清楚地表明,在相同体积掺量的情况 下.抗折强度与抗压强度增强因子均按碳纤维、微细 钢纤维、普通钢纤维的次序递减;不同掺量的同种纤 维。其抗折强度与抗压强度增强因子则随纤维掺量 的递增而提高。因此,在水泥浆体中,纤维的几何尺 寸对基体的性能的改善起着十分重要的作用。随着 纤维几何尺寸的减小。纤维对净浆基体的增强作用 不断增加。有关文献也清楚地表明,微细纤维增强水 泥基材料比基体有更高地抗拉强度131,微细纤维能提 高水泥基体性能㈣。此外,还可看出体积掺量较低的 纤维对净浆的增强速率高于掺量较大的增强速率。
挠度曲线存在明显差别:三种纤维水泥浆体抗弯峰 值荷载按碳纤维、微细钢纤维和普通钢纤维的次序 递减.而峰值挠度按碳纤维、微细钢纤维和普通钢纤 维的次序增加。因此,三种纤维对水泥浆体的增强与 增韧效果存在显著差别。
表3列出了不同几何尺寸纤维净浆的抗弯强度 (P)、抗弯初裂强度(Pc)、和抗弯初裂强度与抗弯强 度的比值(P伊)、弯曲韧度(兀)、峰值荷载挠度(D)。 从表3中可以看出.不同几何尺寸纤维净浆的抗弯 强度与抗弯初裂强度按碳纤维、微细钢纤维、普通钢 纤维的次序递减。同时,抗弯初裂强度与抗弯强度的 比值也呈现相同的变化趋势。因此,随着纤维直径的

硅灰和石英粉对活性粉末混凝土抗压强度贡献的分析_何峰

硅灰和石英粉对活性粉末混凝土抗压强度贡献的分析_何峰
( 或 石英粉)
P 硅灰
( 或石 英粉)
P 水化
R 水化
R 硅灰
R 石英粉
R复合
A 硅灰
A 石英 粉
配比 1 标 配比 2 准 养 配比 3 护 配比 4
配比 5
01 810
01 810 11 181 01 944 11 124 11 825
0 01 371 01 134 01 314 11 015
01 25
01 37
11 10
80
20
911 8
1261 9
1401 0
注: 水胶比为 01 35, 高效减水剂掺量为胶凝材料总量的 2% , 钢纤维掺量为 0。除了配比 5 试验数据取自文献[ 3] 外, 表 1 和表 2 数据均 取自文
献[ 2] 。
( P水化, % ) 、复合效应强度贡 献率( P复, % ) 和活性 指 数( A) 等指标。这套指标需要以无活性掺料的水泥混
注: 表 3 中 R比 硅灰( 或石英粉 ) 和 P硅灰 (或 石英粉) 表示当某配比中仅掺硅灰或石英粉时硅 灰或石英粉的增 强效应比强度 和强度贡献率, 当某配比 双掺 硅灰和石英粉时则指两种掺合料的增强效应比强度及强度贡献率。
# 40 #
表 4 石英粉视为微集料时 硅灰和石英粉对强度贡献的分析
0 311 4 141 2 271 9 551 6
100
8110
681 6 6418
851 8 6418
721 1 6418
441 4 5010
0 291 7
0 141 1 271 2
0 0 101 7 61 4 181 2
0 0 0 41 6 171 1
11 570

硅灰、粉煤灰对水泥石膏微观结构的影响的AFM-SEM研究-毕业论文外文翻译

硅灰、粉煤灰对水泥石膏微观结构的影响的AFM-SEM研究-毕业论文外文翻译

外文资料An AFM-SEM investigation of the effect of silica fume and fly ash on cement paste microstructureAtomic force microscopy (AFM) was used to observe particle shape and surface texture details of normal portland cement and supplementary cementing materials (silica fume,low-calcium fly ash,and high-calcium fly ash).The latter maerials mixed with cement were examined after prolonged hydration.Significant innovative information on particle shape and hydrated paste microstucture was obtained.Conventional microscopy techniques,such as scanning electron microscopy(SEM),cannot provide such detailed images and surface texture characteristics of the fine materials (especially silica fume )and of the product microstructure.AFM showed ,for the first time ,that silica fume particles are primarily composed of two complimentary parts(hemispheres or semicylinders).Nano-size particles were found in all materials.A relatively smooth product surface was observed in the hydrated cement paste.The hydrated surface of the addition-cement pastes presented small spheroid bulges,giving an additional roughness as was measured by AFM.A sufficient correlation of this microscopical quantitative information with macroscopical engineering and durability properties of cement products is also presented.1.IntroductionFor technical and economic reasons,new materials with pozzolanic and cementitious properties have been mixed with cement during the last years.Among these materials are industrial by-products such as fly ash from coal-burning electric power plants,slags from metallurgical furnaces,silica fume (or microsilica) from electric arc furnaces producing silicon and ferrosilicon alloys,and some naturally active materials such as volcanic tuffs.Their activity is mainly due to te reaction of their active constituents with Ca(OH)2 produced from cement hydration(pozzolanic activity)and the formation of hydrated products with binding properties.The exact stucture and chemical formula of these products are still unknown.The detailed knowledge of cement paste microstructure is of great importance for the understanding and predictionof cement applications’performance.Visual examination,optical microscopy,and scanning electron microscopy(SEM) have been extensively used in microstucture research of hardened cement paste andconcrete,providing additional understanding of macroscopical properties.Electron microprobe analysis studies of hardened cement pastes have contributed to the compositional characterization of hydration products and spatial information.Transmission energy microscopy(TEM) enables the identification and analysis of features on a significantly submicrometre scale.However,these techniques most commonly investiate specimens under high vacuum,and thus alteration of damage on microstructure morpology may occur.Furthermore,some of these materials,such as silica fume,with a grain size distribution in the 0.02 to 0.3um range,are too small to be observed in detail by SEM.Techniques with stronger magnification capabilities would be very useful in these cases,as well in the better conception of the pure cement paste microstructure.By atomic force microscopy (AFM),a sharp tip is scanning over a sample surface and three dimensional images haveing resolution at nanometer level are obtained at atmospheric conditions (room temperature,humidity,and ambient pressure).AFM has been used to produce atomic resolution images of both conductors and nonconductors.In the present decade,AFM has also been used in the study of cement surface microstucture,especially because surfaces can be imaged under aqueous solutions at normal conditions.AFM has been applied to investigate the surface of alite alone and of alite covered with an organic admixture and has shown that the surface roughness of the alite decreased markedly after reaction with the organic admixture.AFM was also used to investigate the early period of portland cement hydration ,and a membrane/osmosis model was proposed.A combination of nuclear magnetic resonance(NMR)and AFM showed that the hydration rate is highly correlated with the roughness of the gel surface.For fly ash particles,AFM showed two types of spheres ,dark,large ones (approximately 100um)with numerous craters on their surface and clear,small ones (approximately 10 um)with smooth surface.In the present work ,AFM was used to observe particle shape and surface texture details of cement silica fume,fly ashes ,and hydrated mixtures.Distinct micrographs of 1um×1um were taken ,providing information on the particle shape of the additions and microstructure of the hydrated mixtures.The same materials were examined under SEM to obtain a general overview,and the comparative use of these two methods(SEM-AFM) is discussed.Finally,the correlation between the microstructure and the macroscopical engineering and durability properties of cement products is discussed.2.Experimental procedure2.1.Materials and sample preparationThree typical cementitious and/or pozzolanic additions were examined;a silica fume ,a low-calcium fly ash,and a high-calcium fly ash.The silica fume (SF)originated from Norway(Elkem Materials A/S,Kristiansand )and is a typical highly pozzolanic material.The low-Ca fly ash (FL) was produced is Denmark (distributed by Danaske I/S,Aalborg)and is categorized as normal pozzolanic material.The high –Ca fly ash (FH)was produced in Greece(Public Power Corporation,Ptolemais)and is a cementitious mineral admixture.Thus,the choice of these materials covers almost all the range of cementitious-pozzolanic by-products used in concrete.SF and FL were used as they were delivered from the producers,whereas FH was pulverized prior to use,to meet the FL mean particle size.A normal portland cement (350m2/g Blaine’s fineness) was used. The main physical properties and chemical analyses of the materials ,determined by X-ray sedimentation technique,showed that the mean particle diameter of fly ashes was 13um,similar to the cement particles.SF particles,as reported in the literature,are about 100 times smaller in size(0.1um average diameter).Four paste specimens were cast in small plastic containers.The pastes were made of normal portland cement(control),cement plus 10% silica fume,cement plus 20% low-calcium fly ash ,and cement plus 20% high-calcium fly ash.A water-to-cement ratio(W/C)of 0.5 was retained for all pastes.First,the cement amount (10g)was added and then the corresponding amount of the additive.These materials were mixed by hand for two min;then the corresponding amount(5g) of the water was added and the fresh paste was further mixed for 2 min.One day after the casting,1ml of water was added to all specimens.The containers were hermetically sealed and placed at 20℃constant temperature.Microscopy analyses were performed after six months.2.2.Atomic force microscopyMaterial particles and paste samples were examined by atomic force microscope(RasterscopeTM 4000,Danish Micro Engieering A/S)running in noncontact mode (0.1nN force).The particles in the cement ,silica fume,and fly ashes were dispersed by ultrasonic treatment;the silica fume in distilled water and the other components in acetone in order to avoid hydartion.The specimens were prepared by leaving one drop of the suspension to dry at room conditions on a block of highly oriented pyrolytic graphite(HOPG).The samples from te pastes were removed by hammer stroke from the paste specimens,oven-dried at 105℃for 24h.Small pieces of material were then gludeonto AFM sample holders and slightly polished in dry condition.All specimens were examined at room conditions (~20℃,1atm and 40-60% relative humidity).2.3.Scanning electron microscopyAll of the above particles and pastes were also examined by means of scanning electron microscope(LEO 435 VP).Surface micrographs of 8,000 magnification size were obtained and can be used as a general overview of the materials.3.Results and discussion3.1.Cement ,silica fume ,and fly ash particlesTypical SEM micrographs in Figs 2-5.As observed by SEM(Fig.1a),cement particles have and irregular polygonal shape.Particle sizes range from 15 to less than 0.5um.From AFM (Fig.2),some particles of size 1 to 0.5um n diameter are rounded,with a globular surface,whereas others are polygonal.However ,some irregular particles of size less than 0.1um in diameter were observed(Fig.2,right).Silica fume particles are too small in size to be imaged in detail by SEM(Fig.1b).From AFM(Fig.3),the silica fume investigated has particle diameters of about 0.1um,in agreement with previous reported dimensions.Two particle shapes are present,one spheroid and one cylindrical.It is very characteristic of the material that all particles are composed of two complimentary parts(hemispheres or semi-cylinders).This feature can be explained from the production of silica fume,where the reduction of quartz to silicon at about 2000℃produces a gaseous SiO,which is transported to lower temperatrues,where it is oxidized and condensed. This particular shape can help in SF identification in cement paste during the hydration process.In general,fly ashes consist of glassy spheres of various sizes.Due to the lower proportion of surface deposits consisting of alkali sulphate crystals,FL tends to show a cleaner appearance in SEM (Fig.1c).For the FH,many of the particles are plerospheres containing numerous smaller particles,but after grinding,smaller size particles are produced having an irregular shape like the cement particles (Fig.1d).Using AFM technique,it is observed (Fig.4)that the FL consists primarily of large spheroid particles (approximately 3um)with a smooth surface,like found previously,and of smaller(in one dimension).These nano-size particles may be correlated with the early pozzolanic activity of the fly ashes.3.2.Paste microstructureSEM micrographs for all mature pastes are summarized in Fig.6.In the control sample,very large Ca(OH)2(CH)crystals and a porous composite mass of calcium silicate hydrate(CSH)and monosulphate are observed (Fig.6a).In the SF-cement paste ,the CH has been completely converted ,and a very dense structure of CSH and monosulphate hasbeen formed (Fig.6b).Because of the significant pozzolanic reaction during the period ofsix months,the fly ash particles are difficult to identify ,as they are covered by the reaction products (Fig.6c and d).Few entire round particles are still distinguished .Similarly ,for the fly ash-cement mixtures,a very dense structure has been formed comparing to the control.AFM micrographs for the corresponding pastes are shown in figs 7-10For the control paste,the roughness is 760,for the SF paste 960,for FL paste 940,and for the FH paste 450(mean values of ten random measurements ).The control paste has rather large grains with a rough surface,sometimes with angular faces(calcium hydroxide crystals ),and with pores in between,and sometimes a rather smooth surface intersected by slit-shape pores (Fig.7).The SF paste has large smooth particles and filled pore spaces in which partly-reacted silica fume particles can be identified (Fig.8).The fly ash pastes similarly have smooth particles and filled pore spaces in which partly-reacted silica fume particles can be identified (Fig.8).The fly ash pastes similarly have smooth articles and filled pore spaces in between (Figs9,10).Despite having a rough surface compared to the cement paste,the silica fume paste and the FL paste,theFH paste resembles the pure cement paste in having pores along particle boundaries,see for example,Fig.10(right).4.ConclusionsSEM gives a sufficient general overview of particle shape in the case of relatively coarse materials(cement and fly ashes ),which is necessary for evaluation of the heterogeneity of the larger particles.AFM gives significant information on the shape of the fine part of these materials and especially on silica fume particle shape and surface texture.Silica fume particles were found to be mostly spheroid but cylindrical as well in shape,with 0.1um average diameter,and consisting primarily of two complimentary hemispheres or semi-cylinders.For the pastes,SEM provided a general overview of the surface texture.By AFM,a detailed image of the product and pore microstructrue was obtained.The pure cement paste has a variable surface intersected by pores,the surface sometimes being smooth and sometimes with angular particles having a rough surface.The internal surface of theaddition-cement pastes presents small spheoid bulges giving an additional roughness.These bulges are particles of the additions that have reacted with calcium hydroxide.The texture of the pore walls is also clear ,and the deposit of the addition-cement products in the pore space is obvious.The pore and grain refinement supported by AFM are responsible for the strength and durability enhancement.All of these observations can be very useful both in practice for high durability and performance cement applications,and in the fundamental modeling of the additions activity in cement and concrete.硅灰、粉煤灰对水泥石膏微观结构的影响的AFM-SEM研究原子显微镜用来观察普通硅酸盐水泥形状和表面纹理细节和胶凝材料的补充物质(硅粉,低钙粉煤灰,高钙粉煤灰)。

硅灰的特性与其在水泥基材料中的特殊功效

硅灰的特性与其在水泥基材料中的特殊功效
o 水泥+粉煤灰+硅灰
o 水泥+磨细矿渣+硅灰 o 水泥+粉煤灰+磨细矿渣+硅灰
15
硅灰最有价值的应用场合
• 超高性能混凝土(UHPC):必要组分
• 高强混凝土/砂浆:C80以上应该使用,降低强度波
动和足够保证率
• 高耐久、自密实混凝土/砂浆:三组分或四组分胶
凝材料(水泥+粉煤灰+硅灰, 水泥+矿粉+硅灰 或 水泥+粉煤灰+矿粉+硅灰)可达到最优性能,减小质 量波动
9
膨胀
混凝土早期的动态变化过程
Elastic modulus
弹性摸量
混凝土凝 结硬化过 程(早期) 各种影响 裂缝参数 的变化过 程
收缩
Auto
Tensil e
genous s hrinkage
时 间
S tr s es
Tem pe
rature
拉应力超过抗
拉强度,导致 开裂!
strength
Time
+ 亚微米颗粒
绝大部分小于1µm
有粘连与团聚
• 高化学活性——玻璃态、无定形SiO2
2
Effects on Rheology 对流变性影响
0
屈 服 值 (帕)
引气
硅灰
稠 粘 稀
0

服 值 (帕)
硅灰掺量
20% 400kg/m3
胶凝材料用量
300kg/m3
15% 200kg/m3
10% 7 %
加水
暴露在风中,风速 2m/s


x10-6
干养护,相对湿度40%

硅灰石(Wollaston)是一种天然产出的链状偏硅酸钙矿物,

硅灰石(Wollaston)是一种天然产出的链状偏硅酸钙矿物,

附:参考文献[1]孙传敏,钟素华,刘沧龙改性硅灰石在新闻纸造纸业中的双重环境效应[期刊论文]-成都理工大学学报(自然科学版) 2003(06),[2]雷建民,刘文静,王建纤维状矿物在造纸生产中的应用试验[期刊论文]-纸和造纸 2006,(25):38—39[3]Helena Wisur,Lars-Arne Sjoberg Per Ahlgren .Selecting a potential swedish fiber crop:fibers and fines in different crops as an indication of their usefulness in pulp and paper production 1993(01)[4]Matin, R S E , Cowlinq ,R D. Re-use of mineral and fines from paper mill waste streams 1998[5]Phipps J S, Skuse D R, Payton D C. Material .recovery and re-use technologies for the paper industry1999(01)[6].施玉北,邱坚,郑志锋云南硅灰石矿物学特征及矿物类树脂填料在人造板工业中的应用[期刊论文]-林产工业2004(04)[7]孙传敏,钟素华,刘沧龙,李一永改性硅灰石在新闻纸造纸业中的双重环境效应[期刊论文]-成都理工大学学报(自然科学版) 2003(06)[8]杨鸿章,于晋良矿物纤维代替植物纤维的应用与展望[J].中华纸业,2004,25(12):56—58 [9]刘焱,于钢木浆填加硅灰石的效果研究 [期刊论文]-造纸科学与技术2009 ,28(3):45-47 [10]Demidenko,Podzorova, Rozanova,et a1.Wollastonite as a new type of raw materials.Glass and ceramics,2001,(9):15—17[11]雷芸,晏全香,刘淑鹏,袁继祖硅灰石矿物纤维造纸试验研究[J].非金属矿,2009,32(z1)[12]雷建民刘文静王建纤维状矿物在造纸中的应用[J].中国造纸,2006,(25):38—39[13]王建,周作良,雷建民.纤维状硅灰石的制备及在造纸中的应用[J]. 西南造纸, 2006, 35 ( 4) : 52 [14]孙传敏,钟素华,刘沧龙等.改性硅灰石在新闻纸造纸业中的双重环境效应[J].成都理工大学学报(自然科学版),2003,30(6):629—634[15]雷建民,刘文静.王建纤维状矿物在造纸生产中的应用试验[J].纸和造纸,2006,(25):38—39 [16]王建,周作良,雷建民纤维状矿物在造纸中的应用[J].中国造纸,2004,23(7):37—39。

硅灰低温制备多孔陶瓷的可行性研究

硅灰低温制备多孔陶瓷的可行性研究

“高能耗高排放”行 业。 从 去 年 开 始,部 分 省 市 逐 渐 将
压强度为(
1.
91±0.
09)MPa,中位孔径为 7.
4μm,比表
2
面积为 2.
9m /g,开 气 孔 率 可 达 75% ,有 利 于 水 通 量
增一项“碳排放”成 本。 据 估 算,大 型 陶 瓷 企 业 其 成 本
结剂,以淀 粉 和 煤 粉 为 造 孔 剂 制 备 了 多 孔 陶 瓷 材 料。
观结构进行表征。结果表明:添加锰粉有利于降低多孔陶瓷的烧结温度,其主要晶相为 石 英、方 铁 锰 矿 和 锰 铁 氧 化 物。 综
合物理性能、固废利用率和生产成本等因素综合考虑,添加 20% 锰粉、烧结温度范围为 600~700℃ 制备多孔陶瓷 为 宜,多
孔陶瓷体积密度范围 2.
2~2.
27g/cm3 ,显气孔率为 32.
1.
1 实验原料与成分
原料为硅灰(太原 钢 铁 集 团)和 猛 粉,其 化 学 组 成
见表 1。
使用阿基米德排水法测量多孔陶瓷的体积密度和
表 1 原料中的化学成分及含量(% )
Al2O3 S
iO2 Fe2O3 CaO MgO TiO2 K2O MnO2 烧失
猛粉 4.
52 18.
4113.
43 1.
a
l
y,appa
yandf
s
t
r
eng
t
hwe
r
eme
a
su
r
ed.
Mo
r
e
ove
r,
t
hepha
s
ec
ompo
s
i

硅灰石/磷灰石-锰锌铁氧体磁性生物活性玻璃的性能评价

硅灰石/磷灰石-锰锌铁氧体磁性生物活性玻璃的性能评价


e
t ic
g la
s s

c e r a m
ic
s
do pe d by

/w [h t t p :/
w w
cr e r c n t
h t t p :/ n /e
z
g lc k f
c o m

摘 要 : 采 用 经 煅 烧 合 成 的 锰 锌 铁 氧 体 粉 与 硅 灰 石 / 灰 石 生 物 活 性 玻 璃 陶 瓷 前 驱 体粉 复 合 煅 烧 制 备 了 锰 锌 铁 氧 体 磁 性 磷 观 察 了 锰 锌 铁 氧 体 中锰 和 锌 的 比 例 对 磁 性 生 物 活 性 玻 璃 晶 相 组 成 力 学 性 能 磁 学 性 能 以及 生 物 活 性 的 影 响 结 果 表 明 虽 锰 和 锌 的 比 例 不 同 但 是 样 品 的 主 晶 相 均 为 硅 灰 石 磷 灰 石 氟 磷 灰 石 和 分 子 式 为 M n o ,5 Z n m 。s F e l 5 0 4 的 锰 锌 铁 氧 体 掺 入 铁 氧 体 提 高 了 材 料 的 力 学 性 能 材 料 的 抗 弯 强 度 随 着 锌 含 量 的增 加 而 呈 现 先 上 升 后 下 降 的趋 坍 ; 不 同 比 例 的 锰 和 锌 影 响 了 复 合 材 料 的 磁 性 并 且 锌 的 含 量 在 定 的 时候 材 料 饱 和 磁 化 强 度 较 大 在 模 拟 体 液 中浸 泡 14 d 后 各 样 品 表 面 都 长 出 了球 状 的羟 基 磷 灰 石 颗 粒 沉 淀 掺 杂 不 同 锰 锌 比 例 的锰 锌 铁 氧 体 对 材 料 的 生 物 活 性 未 造 成 显
l f
rm a n c e
a n

ICP-AES法测定硅灰石中铝、铁、钾、镁、锰、钛

ICP-AES法测定硅灰石中铝、铁、钾、镁、锰、钛
第 1期 2018年 2月
矿 产 综 合 利 用
M ultipurpose Utilization of M ineral Resources
·79 ·
ICP—AES法测 定硅 灰 石 中铝 、铁 、钾 、镁 、锰 、钛
徐兆锋 ,闵国华 ,张庆建 ,岳春 雷 ,唐 梦奇
(1山东出入境检验检疫局 ,山东 青岛 266500; 2 防城港 出入境检验检 疫局 ,广西 防城港 538001)
·80·
矿 产 综 合 利 用
1 试 验 部 分
1.1 仪 器与试 剂 电 感 耦 合 等 离 子 体 发 射 光 谱 仪 (Prodigy,
Leeman,USA) 、烘 箱 (DS64,Yamato,Japan) 、 电 热 板 (EG20A Plus,Lab Tech,China)、研 磨机 (PM400, L,Germany) 。ICP—AES工 作条件 见表 1。
关键 词 :ICP—AES法 :硅 灰石 :杂质元素 doi:10.3969/j.issn.1000—6532.2018.01.017
中图分类号 :TD989:0657.31 文献标志 码 :A 文章编 号 :1000—6532(2018)01—0079—04
硅 灰 石 是 一 种 钙 的 偏 硅 酸 盐 矿 物 (CaSiO 或 CaOSiO2) ,理 论 化 学 成 分 CaO 48.25% ,SiO2 51.75% ,其 中 的 Ca常被 Fe、Mg、Mn、Ti等 离子 交 换 …,具有 吸油 性低 、电导 率低 、绝 缘性 好等 优 点 , 硅 灰 石 广 泛 应 用 于 陶 瓷 、涂 料 、塑 料 、 橡 胶 、 冶 金 保 护 渣 、 化 工 、造 纸 、 电焊 条 以及 作 为 石 棉 代 用 品 、磨料 黏结 剂 、玻璃 和水 泥配 料等 】。

石膏、硅灰对硅酸盐胶凝材料早期抗压强度的影响

石膏、硅灰对硅酸盐胶凝材料早期抗压强度的影响

第36卷第1期 石圭叙盆通报Vol.36 No.1 2017 年 1 月___________________BULLETIN OF THE CHINESE CERAMIC SOCIETY_______________January,2017石膏、硅灰对硅酸盐胶凝材料早期抗压强度的影响丁向群,刘丹阳,徐晓婉(沈阳建筑大学材料科学与工程学院,沈阳110168)摘要:为了研究石膏、硅灰对硅酸盐胶凝材料早期强度的影响,分别测试了石膏、硅灰不同掺量下的胶凝材料的4h、l d、28d的抗压强度。

利用X射线衍射仪和扫描电子显微镜分析了水化产物的微观结构特征。

研究表明,在一定的试验范围内,胶凝材料的抗压强度随石膏的增加而变大,掺量为0.75%时最佳,4 h和1d的抗压强度分别达 到5. 8 MPa和63.4 MPa;硅灰掺量从0%增长到15%,胶凝材料的各龄期抗压强度均随掺量的增加而呈增长趋势;硬化浆体的微观结构特征表明,一定的试验范围内,石膏使体系中的AFt数量增加,硅灰使体系中的C-S-H凝胶增 多,且硅灰未水化的细小颗粒体有效填充硬化浆体的孔隙。

关键词:硅酸盐胶凝材料;石膏;硅灰;超早期强度中图分类号:TQ172 文献标识码:A 文章编号:1001-1625(2017)01-0033-05Influence of Gypsum and Silica Fume on Early CompressiveStrength of Portland Cementing MaterialDING Xiang-qun, LIU Dan-yang,XU Xiao-wan(School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168 , China)Abstract : In order to study the influence of gypsum and silica fume on the early compressive strength of Portland cementing material, we test the compressive strength of cement with different content of gypsum and silica fume at 4 h, 1d and 28 d respectively. The microstructure characteristics of hydration products were analyzed by X-ray diffraction and scanning electron microscope. In a certain range, research shows that the compressive strength of cementing material increases with the content of gypsum increases, the compressive strength reaches peak when the content is 0. 75% , and compressive strength reached 5. 8 MPa and 63.4MPa at 4 h and 1d. Silica fume increased from 0%to 15% , the compressive strength of cementing material increased by the content went up. The microstructure characteristics of the hardened cement paste shows that in, a certain range of gypsum to brought the amount of AFt in the system increased, the silica made the C-S-H get increased in the system,and unhydrated silica filled the pore of system.Key words:Portland cementing material;gypsum;silica fume;super early compressive strength1引言硅酸盐胶凝材料因其来源广泛,生产成本较低并具有良好的胶凝性,在基础设施建设中占有重要地位。

高性能隔热材料的分析

高性能隔热材料的分析

河北理工大学硕士学位论文3.2隔热材料组成的确定3.2.1硅灰硅灰是硅铁合金厂的废渣,颗粒细小,主要成分为无定形的二氧化硅。

其粒度分布见粒度分析表4。

表4硅灰的粒度分布Table4Paniclesizedist^butionofsilicon6如1e由表4可知,硅灰颗粒非常细小,大部分硅灰粒子粒径小于100m,其中有50%的硅灰颗粒尺寸在70nm~100m之间。

硅灰与凝胶粒子的形貌比较见扫描照片图12(a)硅酸凝胶(b)硅灰图12硅酸凝腔、硅灰粒子的扫描电镜图像Fig.12SEMimageforsilicategelands{licafume图12是在放大倍数为10.0下得到的硅灰和凝胶扫描照片,由图片中的标尺可知硅酸凝胶的尺寸分布在50IⅡn~10011m之间,硅灰的尺寸分布也大约50IlIIl~100眦,二者的粒径大小相当,则硅灰和硅酸凝胶复合时的理论微观结构图见图13—243隔热材料的研制过程漂珠粒子、硅灰粒子与凝胶粒子的形貌比较见图15。

(a)硅灰(b)漂珠(c)凝胶图15硅灰、漂珠、硅酸凝胶粒子的扫描电镜图像SEMimageforpearl、silicafume鲫dsilicategelF{g.15图15中硅灰和凝胶扫描照片的放大倍数为10.oK,而漂珠的扫描照片是在放大倍数为200的条件下得到的。

由图中的标尺可知漂珠粒子的尺寸在100um左右,这与粒度分析结果一致,漂珠粒度远远大于硅灰和凝胶颗粒,同时从图中还可看到漂珠中空的内部结构。

断壁上见有大量纳米级(几十到几百纳米)气泡,内外壁都有破泡。

三种物质复合时的理论微观图如图16所示。

图16硅灰、硅酸凝胶和漂珠复合的微观结构Fig.16Micmstmctureofcompositewithsilicafume、silicategelandpearls硅灰和硅酸凝胶共同组成网络结构,填充在漂珠颗粒问的孔隙中。

漂珠的中空结构在材料中形成了较大的封闭孔。

硅灰石对LAS系微晶釉料性能的影响

硅灰石对LAS系微晶釉料性能的影响

张东等:纳米钛酸锶钡对牛血清白蛋白的吸附行为· 1093 ·第38卷第6期硅灰石对LAS系微晶釉料性能的影响张晓丽1,2,李勇2,3(1. 山东理工大学材料学院,山东淄博 255049;2. 山东工业陶瓷研究设计院,山东淄博 255031;3. 武汉理工大学,武汉 430070)摘要:采用溶胶–凝胶法制备不同硅灰石含量的锂铝硅(Li2O–Al2O3–SiO2,lithium aluminosilicate,LAS)系微晶釉料,并测试分析所得样品的显微结构、体积密度、抗弯强度和热膨胀系数。

研究表明:适量的硅灰石可以降低LAS微晶釉料的烧结温度,扩大熔化温度范围,降低釉料黏度,进而促进釉料中晶体的发育;并且随着硅灰石的加入,在硅灰石质量分数为5%左右时,LAS系微晶釉料的抗弯强度出现极大值。

硅灰石的加入可以影响β-锂霞石向β-锂辉石的转变,使微晶釉料的热膨胀系数随之变化,但这种转变量并不是线性变化,而是有一极小值;因此可以找到一个合适的硅灰石掺量,制备既具有合适的热膨胀系数,又具有理想的其他物理性能的陶瓷材料。

关键词:硅灰石;锂铝硅系微晶釉料;烧结温度;抗弯强度;热膨胀系数中图分类号:TQ174.1 文献标志码:A 文章编号:0454–5648(2010)03–1093–05EFFECTS OF WOLLASTONITE ON PROPERTIES OF LITHIUM ALUMINOSILICATECRYSTALLITE GLAZEZHANG Xiaoli1,2,LI Yong2,3(1. School of Materials Science and Engineering, Shandong University of Technology, Zibo 255049, Shandong; 2. Shandong Research &Design Institute of Industrial Ceramics, Zibo 255031, Shandong; 3. Wuhan University of Technology, Wuhan 430070, China)Abstract: Lithium aluminosilicate (LAS) crystallite glaze with different wollastonite contents were prepared by the sol–gel process. The microstructure, bulk density, bending strength, and thermal expansion of samples were tested and analyzed. The results show that LAS crystallite glaze with an appropriate amount (in mass, the same below) of wollastonite has a lower sintering-temperature and larger crystal temperature range than LAS crystallite glaze without wollastonite. Since viscosity of crystallite glaze is reduced by adding the wollastonite, the crystallization of the crystallite glaze can be boosted. The bending strength of the LAS crystallite glaze reaches the maximum with 5% wolllastonite. The analysis results also indicate that the wollastonite can affect the transformation be-tween β-spodumene and β-eucryptite, resulting in the increase of thermal expansion of the crystallite glaze. However, this change is not linear and has a minimum, and thus an appropriate doping amount of wolllastonite is found to obtain an ideal material with ap-propriate thermal expansion and other properties.Key words: wollastonite; lithium aluminosilicate crystallite glaze; sintering-temperature; bending strength; coefficient of thermal expansion自20世纪50年代,由Stookey首次发现微晶玻璃以来,[1]微晶玻璃一直备受青睐,各种不同体系微晶玻璃迅速发展起来。

硅灰增密解密方法的研究

硅灰增密解密方法的研究
University,Chongqin9400045,China;3.Qinghai/nstimteofSaltLakes,ChineseAeadernyofSciences,Xinin9810008,China)
Abstract:The techniques of condensed-decomposed silica fume arc researched.As the result of studying:machinery compression method is simple and convenient.the volume density ofsilica fHnle increases dramatically with compression.but there is a slight growth when compression reaches p4;The compressive strangth ofdifferent days were optimum,when the machinery compression reaches p2;the water infusion method is not only simple butalso serviceability.it call disperse condensed silica fRme. Key words:condensed silica fume:decomposed silica fume;concrete;compressive strength
·52·
万方数据
积密度最大增至700kg/m,,降低的运输、储存费用幅度不大,在 增密过程中还得引入一种增密添加荆,无形中增加了成本:虽 然目前一些地区,已经应用到了增密的硅灰,但是由于以上两 种情况,当前硅灰运输还是以原状灰纤维袋包装运输为主。

硅灰火山灰效应

硅灰火山灰效应

硅灰火山灰效应简介硅灰火山灰效应(Tephra)是指由火山喷发而产生的各种火山碎屑物组成的物质在喷发瞬间离开火山口并通过空气中传播的现象。

硅灰火山灰效应通常被认为是火山喷发的最具代表性的特征之一,它对地表与大气层产生重大影响。

形成原因硅灰火山灰效应的形成是由于火山岩浆中含有大量的气体,当岩浆从火山口喷发时,火山气体与岩浆同时释放,形成了强大的喷发动力。

在空气中,岩浆迅速冷却并固化,形成各种碎屑颗粒。

这些碎屑颗粒由于重力作用而落到地面上,形成了火山的喷发物。

硅灰火山灰的成分硅灰火山灰的主要成分是二氧化硅(SiO2),因此也被称为硅酸盐火山灰。

除了二氧化硅外,硅灰火山灰还含有其他的氧化物,如铝、铁、镁等。

这些成分的含量与岩浆的成分密切相关,因此硅灰火山灰的成分也会因火山的不同而有所差异。

## 火山灰对大气层的影响硅灰火山灰在喷发时会被大气所吸附,随着气流扩散而传播到更远的地区。

火山灰中的颗粒物会对大气层产生以下影响:1. 光学效应由于硅灰火山灰颗粒的微小大小,火山灰可以散射太阳光,使大气层中的光线变得模糊。

这种效应会导致地面的光照变暗,同时也会影响航空器的导航和飞行。

2. 气候效应火山灰颗粒的散射、吸收和反射特性都会对地球的辐射平衡产生影响。

火山灰可以阻挡太阳光的照射,导致地面温度下降。

此外,火山灰中的硫酸盐颗粒还可以在大气中与水蒸气结合形成云雾,进一步增加了地球的反射率,从而降低了地球的气温。

3. 健康影响硅灰火山灰中的颗粒物在空气中悬浮并由于重力作用逐渐下沉。

这些颗粒物的大小适中,可以进入人体呼吸道,并对人体健康产生负面影响。

长时间暴露在火山灰环境中可能导致呼吸系统疾病和眼部刺激。

硅灰火山灰喷发历史事件1. 火山喷发的发展过程硅灰火山灰的喷发过程可以分为预警期、爆发期和喷发期三个阶段。

预警期在火山岩浆迅速上升到地表之前,地震活动、火山气体排放和地表变形通常是火山喷发即将发生的信号。

科学家们可以通过监测这些变化来预测火山灰喷发的可能性。

硅灰对塑性混凝土工作性能和强度的影响_杨林

硅灰对塑性混凝土工作性能和强度的影响_杨林
硅灰是一种高活性的火山灰质掺合料,具有极小颗粒粒径 和极大比表面积[2]。硅灰掺入混凝土拌合物后,由于颗粒填充效 应和表面吸水效应,可改善混凝土拌合物黏聚性和保水性,减少 离析和泌水[3]。此外,硅灰具有显著的火山灰效应,在混凝土中 掺入适量硅灰,可大幅度提高混凝土的密实性、强度、抗渗性能 及耐化学侵蚀性能,亦能抑制或减少碱-骨料反应[4]。
0 引言
与普通混凝土防渗材料相比,塑性混凝土具有弹性模量低、 极限变形大、弹强比小等优良特性,广泛应用于围堰工程、大坝 工程、基础工程等领域。塑性混凝土防渗墙设计原则是:较低的 弹性模量,以满足与坝基协调变形要求;足够的强度,以满足承 受荷载要求;良好的抗渗性能[1]。当前,随着防渗墙设计标准及 可靠度提高,工程界对塑性混凝土提出了更高要求,通过技术 手段提高塑性混凝土整体性能已提上日程。
当前,有关硅灰对塑性混凝土工作性能和强度影响的研究 还鲜有报道。通过研究硅灰对塑性混凝土工作性能和强度影 响,得出硅灰对塑性混凝土的影响规律与机理,具有一定的理 论意义和工程意义。 收稿日期:2012-06-12 基金项目:国家自然科学基金项目(50979100/E090803)
1 试验方案
1.1 试验材料与配合比
编号 BM
硅灰掺量 /% 0
抗压强度 /MPa 4.3
表 2 硅灰掺量对塑性混凝土强度的影响
强度与强度比
抗压强度比 1.00
劈拉强度 /MPa 0.51
劈拉强度比 1.00
抗折强度 /MPa 0.78
抗折强度比 1.00
SF1
10
5.1
1.19
0.62
1.22
0.81
1.02
SF2
20
5.3
1.23

微纳米多尺度改性混凝土力学性能研究

微纳米多尺度改性混凝土力学性能研究

微纳米多尺度改性混凝土力学性能研究摘要:本实验采用微米尺度的矿粉、粉煤灰、硅灰与纳米尺度的纳米二氧化硅协同改善水泥混凝土的力学性能。

通过坍落度分析了微纳粉体对混凝土工作性能的影响,进而影响强度。

通过孔隙率和电子显微镜照片分析了微纳粉体对混凝土孔结构和微观形貌的影响,从微观角度解释了改性混凝土力学性能提高的机理。

关键词:微纳粉体;混凝土;抗压强度;孔隙率引言水泥混凝土是当今全球范围内用量最大、用途最广的人造复合材料之一,已被广泛应用于建筑、桥梁、道路、堤坝、市政工程、海工工程、核电工程以及国防工程等诸多领域[1, 2]。

混凝土能够得到认可和普及主要得益于其优良的性能和低廉的成本。

从古代的白灰、黏土拌和秸秆到现在的水泥、砂石配合钢筋,其原材料主要以廉价易得的无机材料为主。

而且,随着技术的进步和时代的发展,混凝土强度从最初的十几兆帕提高到了几百兆帕。

不仅能够承受几百米高的摩天大楼,还能支撑大跨度的桥梁和恶劣环境的大坝等。

这主要归功于混凝土微观结构的改善。

影响微观结构发展的因素很多,在水灰比不变的情况下,我们可以通过改善胶凝材料体系来实现微观结构密实化。

随着水泥混凝土技术的发展,矿粉、粉煤灰、硅灰等具有火山灰活性的辅助胶凝材料被普遍应用于混凝土中。

矿粉是炼铁产业的副产物,属于冶炼业的工业垃圾。

但其中包含的钙、硅、铝等氧化物具有反应活性,应用到混凝土中能明显改善其工作性和后期强度,对混凝土的长期耐久性能也有积极的作用,这主要归功于矿粉的微集料作用和对微结构的改善[3-6]。

粉煤灰是火力发电产生的工业垃圾,对环境容易造成污染。

但它的主要成分包含活性二氧化硅和氧化钙,具有反应活性。

而且其球形颗粒形状具有“滚珠效应”,能很好的改善新拌混凝土的工作性与和易性[7]。

将粉煤灰应用于混凝土,不仅减低了生成成本,还减少了环境污染[8, 9]。

但粉煤灰的惰性会影响混凝土的早期强度,因此需要其他材料的辅助改善。

硅灰能较好的弥补矿粉、粉煤灰早期强度低的缺点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Microstructural investigation of a silica fume–cement–lime mortarP.J.P.Gleizea,*,A.M €uller b ,H.R.Roman aa Civil Engineering Department,Federal University of Santa Catarina,Caixa Postal 476,88040-900Florian o polis,SC,BrazilbMaterials Engineering Department,Federal University of Santa Catarina,Caixa Postal 476,88040-900Florian opolis,SC,Brazil Received 27November 2000;accepted 9October 2001AbstractSeveral additions,minerals and organic,are used in mortars,such as pozzolanic materials,cementicious materials and polymers.Literature about the use of additions in masonry mortars (cement/lime/sand mixes)is scarce;usually,studies are about concrete mortars.The purpose of this work is to study the microstructural effects of the substitution of 10%of Portland cement by silica fume in a 1:1:6(cement/lime/sand mix proportion by volume)masonry mortar.Scanning electron microscopy with energy dispersive X-rays analysis (SEM/EDX)shows that,with silica fume,the C–S–H formed is type III at early ages and that type III and type I coexist at later ages.Silica fume lowers the total porosity and increases compressive strength only at later age and,as expected,the pore structure of mortar with silica fume is found to be finer than of non-silica fume mortar.Ó2003Published by Elsevier Science Ltd.Keywords:Cement–lime mortar;Microstructure;Silica fume1.IntroductionMasonry mortar can be defined as a mixture of Port-land cement,hydrated lime and mineral aggregates (sand)with water,which presents hardening capacity and adherence.Masonry mortar functions are:(i)bond units of masonry;(ii)distribute loads;(iii)absorb deforma-tions;(iv)seal joints.Masonry mortars can be employed for joining bricks/blocks,rendering and grouting.Hydrated calcium silicate,commonly designated C–S–H,is the main compound produced by hydration of Portland cement.In ordinary Portland cement (without additives)the C/S ratio is about 1.5[1,2].According to the literature [2–4],in Portland cement mortars,C–S–H gel can exhibit three morphologies:fibrous-acicular form (type I),reticuled or honeycomb form (type II)and denser-almost spheres form (type III).Lime improves plasticity and,consequently,workability,of masonry mortars.It hardens mainly by carbonation.The microstructure of Portland cement based mate-rials is complex due to:(i)the presence of several hy-drated phases,with composition and microstructurecharacteristics varying locally;(ii)the presence of an aqueous phase of variable composition in a pore net with sizes varying over a large range;(iii)the change of the microstructure with the passing of time and with the environmental conditions (relative humidity,tempera-ture)and;(iv)that the physical and mechanical behav-ior of the material is often controlled by zones with special microstructures,that occur in specific places in the system,instead of the prevalent general microstruc-ture (example:aggregate–cement paste interfacial zone)[3].Microstructure has an interdependence with physical and mechanical properties of these materials,such as workability,water retention,compressive and tensile strength,Young’s modulus and Poisson’s ratio.Pozzolanic materials and fillers can substitute Port-land cement in mortars.These materials change the microstructure of mortars and,consequently,modify some of its properties.Literature about the use of ad-ditions in masonry mortars (cement/lime/sand mixes)is scarce;studies are usually about concrete mortars.Silica fume,which is a very fine pozzolanic material,is commonly used in Portland cement mortars and concretes in order to improve mechanical strength and reduce porosity [4].The effects of Portland cement partial substitution by silica fume in lime–cement mor-tars microstructure are not fully established.*Corresponding author.Tel.:+55-48-331-5176;fax:+55-48-331-5191.E-mail address:ecvlphg@ecv.ufsc.br (P.J.P.Gleize).0958-9465/03/$-see front matter Ó2003Published by Elsevier Science Ltd.PII:S 0958-9465(02)00006-9Cement &Concrete Composites 25(2003)171–175The aim of this work is to investigate microstructural changes of10%substitution of Portland cement by silica fume in a1:1:6(cement/lime/sand mix volume propor-tion)masonry mortar through the use of scanning electron microscopy(SEM),mercury intrusion porosi-metry(MIP)and non-evaporable water content.2.Materials and methodsThe Portland cement used is type CPI-S-32according to Brazilian Standards(ASTM Type I).Table1gives its chemical characterization.Lime used is class CH-III according to Brazilian Standards(ABNT).Its chemical composition is given in Table2.Silica fume has a spe-cific surface area of approximately26m2=g and its main chemical component is SiO2(Table3).Sand was washed,and oven dried for24hð105°CÞ.Sand grading (Table4)fits in the intervalfixed by the BS1200(1976) [5];it has a specific gravity of2580kg=m3and an or-ganic matter content of less than300ppm.Proportion of components was1:1:6(cement or ce-ment+silica fume:lime:sand),by volume.Good work-ability(255Æ10mm measured by theflow table test[6]) was enhanced with a water/cement ratio of1.85for the reference mortar(without silica fume).Portland cement was partially substituted by10%silica fume,according to Table5.The use of a0.3%(wt%binder)superplast-icizer additive(melamim type)was necessary to main-tain constant the water/binder(cement+silica fume) ratio due to the highfiness of the silica fume.Volume proportion of components were converted in weight toavoid measurement imprecision on mixing process: 1:0.71:8.61(cement:lime:sand)for the reference mortar and1:0.08:0.79:9.57(cement:silica fume:lime:sand)for the mortar with10%silica fume.The mixer used was a10l vertical ax type.Mixing was done according to Brazilian Standard NBR13276 [6]recommendations.Sand and lime were blended for2 min.Water was then added and mixed for4min in low speed.The lime mortar was weighted and left in a cov-ered plastic recipient.After48h,the lime mortar was weighted again and the quantity corresponding to the water lost by evaporation was added.The lime mortar was introduced in the mixer and the binder(cement or cement+silica fume)was added and mixed for4min. For the cement–silica fume mortar,the superplasticizer was added1min later.Consistency was measured by the flow table test[6].The mortars were cast in forms and demolded48h later.Curing was made in laboratory ambient(to allow lime carbonation)until the test day (RH80%and23°C).Following the recommendations of Brazilian Stan-dards(ABNT),three cylindrical samplesð5Â10cm2Þwere prepared for compressive strength[7].The adopted rate of loading was1.5MPa/min due to the low strength of mortars.For SEM observations,and non-evaporable water content,samples were extracted from the core of com-pression test samples at the age of7and28d.For SEM observations,samples were covered with a thin gold layer and C/S ratio were measured by energy dispersive X-rays analysis(EDX)as the average of four measure-ments of the same zone.Non-evaporable water content was measured by the weight loss between105and 1000°C as described elsewhere[8].Table1Cement compositionCompound wt% Al2O3 4.31 SiO219.81 Fe2O3 2.60 CaO61.47 MgO 5.09 SO3 2.51 Ignition loss 3.26 Free CaO 1.78 Insoluble residue0.63Table2Lime compositionCompound wt% Ignition loss20.0 Fe2O3þAl2O30.99 CaO40.0 MgO28.0 SO30.04 CO2615.0 CaOþMgO P88.0 Table3Silica fume compositionCompound wt%SiO295.10Al2O30.09Fe2O30.10CaO0.24MgO0.43Na2O0.23K2O0.93 Table4Sand gradingSieve size(mm)%Retained 0.1597.80.380.40.649.61.220.72.4 6.14.80172P.J.P.Gleize et al./Cement&Concrete Composites25(2003)171–175For mercury intrusion microscopy(MIP),samples were extracted from the core of cylinders crushed at a relatively high rate of load application(approximately 25MPa/min).Under short term loading the chance of micro crack propagation is minimum[9].Small frag-ments(2–3g)were immersed in acetone to arrest further hydration.This was followed by oven drying for24h at 105°C before MIP measurement.The pressure was applied from0to240MPa.A constant contact angle of130°and a constant surface tension of mercury of485 dyn/cm were assumed for the pore size calculation.3.Results and discussions3.1.SEM/EDX observationsIn mortar without silica fume(reference mortar),at7 and28days old(Fig.1),morphology of C–S–H gel appears as type III[3](denser-almost spheres);it is in-timately mixed with lime as EDX analysis(Table6) shows C/S ratios between 2.2and 2.5(C/S ratio is commonly1.5in Portland cement composites without lime[1]).Large plates of calcium hydroxide are present as showed in Fig.1(C/S ratioffi8:7).At7days old,observations of mortar with10%silica fume(Fig.2(a))shows that the paste is denser than that C–S–H appears as type III and C/S ratio decreases (nearly1.6)due to the presence of silica fume.No cal-cium hydroxide plates were observed.At28days old, the presence of two C–S–H morphologies was noted: type III(C/S ratio nearly2.0)as observed for7days old samples,and a new feature as C–S–H type I,withfi-brous-acicular morphology and a higher C/S ratio, nearly3.6(Fig.2(b))[3].Paste densification due to silica fume is not evident.Table6summarizes C/S ratios of C–S–H gel for masonry mortars with0and10%silica fume at7and28 days old.As observed in Portland cement mortars and con-cretes(without lime)[1],C–S–H becomes richer in silica with silica fume addition in masonry mortars(with lime).According to the literature[2–4],it can be found in Portland cement mortars(without lime)the coexistence of C–S–H type I(‘‘acicular’’),type II(‘‘honeycomb’’), type III(‘‘compact’’)and great hexagonal calcium hydroxide crystals.In masonry mortars(without Fig.1.SEM micrograph of reference mortar:(a)7days old;(b)28days old.Table6C/S ratios of C–S–H gel7days old28days old0%Silica fume type III C–S–H 2.2 2.510%Silica fume type III C–S–H 1.6 2.010%Silica fume type I C–S–H Not observed 3.6Table5Volume proportions between constituent materials of mortarsMortar Cement Lime Silica fume Sand Water/cement or water/(cement+silica fume) Reference 1.0 1.00.0 6.0 1.8510%Silica fume0.9 1.00.1 6.0 1.85P.J.P.Gleize et al./Cement&Concrete Composites25(2003)171–175173silica fume),only C–S–H type III was observed (Fig.1),as well as calcium hydroxide,but not well crystallized.In Portland cement mortars (without lime)with sil-ica fume at any age,literature relates that only C–S–H type III is formed and that hexagonal calcium hy-droxide crystals were never observed [2,3].Similarly,in masonry mortars with lime and silica fume,the pres-ence of hexagonal crystals of calcium hydroxide was never observed.At 7days old,only the presence of type III C–S–H was noted with a lower C/S ratio.However at 28days old,type I C–S–H was observed coexisting with type III.EDX measurements showed that C–S–H type I has a higher C/S ratio than C–S–H type III (Table 6).C–S–H type I grows in paste capillary voids and its formation is presumably caused by the pozzol-anic reaction between silica fume and hydrated lime at later age (Fig.2(b)).3.2.Porosity and pore structureAs can be seen (Table 7)silica fume lowers the total porosity only at 28days old and as it was expected,the pore structure of mortar with silica fume is found to be finer than of non-silica fume mortar (Figs.3and 4).But this refinement in pore size is more pronounced at 28than 7days due to silica fume pozzolanic reaction.pressive strength and non-evaporable water contentThere is a significant difference between the com-pressive strength of 28days old mortars with thein-Fig.2.SEM micrograph of 10%silica fume mortar:(a)7days old;(b)28days old.Table 7Total porosity of mortars Silica fume content (%)Age (day)Total porosity (%)0730.5710732.3102828.53102827.92174P.J.P.Gleize et al./Cement &Concrete Composites 25(2003)171–175crease of silica fume content(Table8).Densification of paste can be the explanation for this behavior.Densifi-cation is the result of the microfiller effect and high pozzolanic activity of silica fume in the mortar paste. However,it can be noted that this effect only occurs at a later age.Non-evaporable water content results pre-sented in Table9are coherent with the evolution of mortars compressive strengths.10%cement substitution by silica fume decreases non-evaporable water at early age but it increases at later age due to silica fume poz-zolanic effect.4.ConclusionsIn Portland cement mortars(without lime)with high w/c ratio,a coexistence of type I C–S–H(‘‘acicular’’), type II C–S–H(‘‘honeycomb’’),type III C–S–H (‘‘compact’’)and large hexagonal calcium hydroxide crystals occurs.In cement-lime mortar(without silica fume)with high w/c ratio,only type III C–S–H was observed,as well as calcium hydroxide,but not well crystallized.In Portland cement mortars with silica fume,literature relates only the presence of type III C–S–H at any age.SEM observations of Portland ce-ment–lime mortars with silica fume show that,after the formation of type III C–S–H at an early age,there is the formation of type I C–S–H at later ages with a higher C/S ratio than type III C–S–H.Type I C–S–H forma-tion is probably due to silica fume pozzolanic reaction with hydrated lime,and it grows in paste capillary voids. As a result,silica fume–cement–lime mortars compres-sive strength is smaller and porosity is higher than ref-erence mortars at early age(7days old)but becomes, respectively,higher and smaller at a later age(28days old).In Portland cement mortars,silica fume acts mainly at the interface paste–aggregate,where there is a higher concentration of calcium hydroxide and greater porosity than in paste.In Portland cement–lime mortars with silica fume,lime is better distributed in the paste and there is no evidence of concentration of silica fume at the interface paste–aggregate.In this case,silica fume pozzolanic reaction seems to occur mainly in larger capillary pores.References[1]Monteiro PJM.Controle da microestrutura para o desenvolvi-mento de concretos de alto desempenho.Boletim T e cnico da Escola Polit e cnica da USP,BT/PCC/86.S~a o Paulo,Brazil;1993.22pp.[2]Taylor HFW.Cement chemistry.2nd ed.London:Academic Press;1992.[3]Diamond S.The microstructures of cement paste in concrete.In:Proceedings of the VIII Congress on Cement Chemistry,Rio de Janeiro,Brazil.1986.p.122–47.[4]Malhotra VM,Mehta PK.In:Pozzolanic and cementitiousmaterials.Advances in concrete technology,vol. 1.Ottawa, Canada:Overseas Publishers Association;1996.[5]British Standard Institution.Sands for mortars for plain andreinforced brickwork,blockwork,blockwalling and masonry,BS 1200.London;1976.[6]Brazilian Standards–Associacß~a o Brasileira de Normas T e cnicas–ABNT.Argamassas para assentamento de paredes e revestimento de paredes e tetos–Determinacß~a o do teor de a gua para obtencß~a o do i ndice de consist^e ncia padr~a o.NBR13276.S~a o Paulo,Brazil;1995.[7]Brazilian Standards–Associacß~a o Brasileira de Normas T e cnicas–ABNT.Argamassas para assentamento de paredes e revestimento de paredes e tetos–Determinacß~a o da resist^e ncia a compress~a o.NBR13279.S~a o Paulo,Brazil;1995.[8]Gallias JL.Mouvements d’eau et hydratation du liant dans unecouche mince de mortier.Application aux enduits ext e rieurs,PhD thesis,UPS de Toulouse,France;1982.[9]Laskar MAI,Kumar R,Bhattacharjee B.Some aspects ofevaluation of concrete through mercury intrusion porosimetry.Cem Concr Res1997;27:93–105.Table8Mortar compressive strength,MPaAge0%Silica fume10%Silica fume7days old3:26Æ0:122:93Æ0:1328days old6:58Æ0:197:11Æ0:25Table9Non-evaporable water content in mortars(percent relative to drybinder content)Age0%Silica fume10%Silica fume3days old10:4Æ0:39.3Æ0.67days old11:6Æ0:710.6Æ0.828days old14:7Æ0:516.4Æ1.0P.J.P.Gleize et al./Cement&Concrete Composites25(2003)171–175175。

相关文档
最新文档