2018-2020年广西中考数学试题分类(9)——四边形

合集下载

圆的基本性质(解析版)2018年数学全国中考真题-2

圆的基本性质(解析版)2018年数学全国中考真题-2

2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。

2020年中考数学必考34个考点专题19:平行四边形(含答案解析)

2020年中考数学必考34个考点专题19:平行四边形(含答案解析)

专题19 平行四边形专题知识回顾1.平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”。

2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。

3.平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)两组对角分别相等的四边形是平行四边形。

4.平行四边形的面积:S平行四边形=底边长×高=ah专题典型题考法及解析【例题1】(2019▪广西池河)如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A.∠B=∠F B.∠B=∠BCF C.AC=CF D.AD=CF【答案】B.【解析】利用三角形中位线定理得到DE AC,结合平行四边形的判定定理进行选择.∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE A C.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.【例题2】(2018湖北黄石)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.【答案】看解析。

2020年中考数学一轮复习基础考点题型练 《四边形》专题测试-提高 (含答案)

2020年中考数学一轮复习基础考点题型练 《四边形》专题测试-提高 (含答案)

专题:《四边形》(专题测试-提高)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(每题4分,共48分)1.若n边形的内角和等于外角和的3倍,则边数n为()A.n=6 B.n=7 C.n=8 D.n=92.如图,点P是四边形ABCD内的一点,AP平分∠DAB,BP平分∠ABC,设∠C+∠D 的大小为x,∠P的大小为y,则x,y的关系是()A.y=2x﹣180°B.y=x C.y=x D.y=180°﹣x 3.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B.C.D.44.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=1,则AB的长是()A.1 B.2 C.D.25.用边长为1的正方形做了一套七巧板,拼成如图所示的一座桥,则桥中阴影部分的面积为原正方形面积的()A.B.C.D.不能确定6.如图,在四边形ABCD中,E、F分别是边AD、BC的中点,连AC、BE、DF、CE,AC分别交BE、DF于G、E,判断下列结论:(1)BF=DE;(2)AG=GH=HC;(3)EG=BG;(4)S=6S△AGE,其中正确的结论有()△BCEA.1 B.2 C.3 D.47.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则下列说法正确的是()A.若四边形EFGH是平行四边形,则AC与BD相等B.若四边形EFGH是正方形,则AC与BD互相垂直且相等C.若AC=BD,则四边形EFGH是矩形D.若AC⊥BD,则四边形EFGH是菱形8.我们知道,勾股定理反映了直角三角形三条边的关系:a2+b2=c2,而a2,b2,c2又可以看成是以a,b,c为边长的正方形的面积.如图,在Rt△ABC中,∠ACB=90°,BC=a,AC=b,O为AB的中点分别以AC,BC为边向△ABC外作正方形ACFG,BCED,连结OF,EF,OE,则△OEF的面积为()A.B.C.D.9.如图,四边形ABCD是平行四边形,点E在BC的延长线上,且CE=BC,AE=AB,AE、DC相交于点O,连接DE.若∠AOD=120°,AC=4,则CD的大小为()A.8 B.4C.8D.610.如图,正方形ABCD的边长为2,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.B.2C.2D.11.下列图形中有大小不同的平行四边形,第一幅图中有1个平行四边形,第二幅图中有3个平行四边形,第三幅图中有5个平行四边形,则第6幅和第7幅图中合计有()个平行四边形.A.22 B.24 C.26 D.2812.如图,在平行四边形ABCD中,AD=2AB,CE⊥AB于点E,点F、G分别是AD、BC的中点,连接CF、EF、FG,下列结论:①CE⊥FG;②四边形ABGF是菱形;③EF=CF;④∠EFC=2∠CFD.其中正确的个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题)二.填空题(每题4分,共20分)13.如果梯形两底分别为4和6,高为2,那么两腰延长线的交点到这个梯形的较大底边的距离是.14.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是度.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.16.小明用四根长度相同的木条制作了能够活动的菱形学具,他先把活动学具制作成图1所示菱形,并测得∠B=60°,接着活动学具制作成图2所示正方形,并测得正方形的对角线AC=acm,则图1中对角线AC的长为cm.17.一组正方形按如图所示放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C…在x轴上.已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,3则正方形A2019B2019C2019D2019的边长是.三.解答题(每题8分,共32分)18.如图,△ABC中,∠C=90°,AC=20,BC=10,动点D从A出发,以每秒10个单位长度的速度向终点C运动.过点D作DF⊥AC交AB于点F,过点D做AB的平行线,与过点F且与AB垂直的直线交于点E,设点D的运动时间为t(秒)(>0)(1)用含t的代数式表示线段DE的长;(2)求当点E落在BC边上时t的值;(3)设△DEF与△ABC重合部分图形的面积为S(平方单位),求S与t的函数关系式;(4)连结EC,若将△DEC沿它自身的某边翻折,翻折前后的两个三角形能形成菱形直接写出此时t的值.19.已知:如图,▱ABCD的对角线AC、BD相交于点O,∠BDC=45°,过点B作BH⊥DC交DC的延长线于点H,在DC上取DE=CH,延长BH至F,使FH=CH,连接DF、EF.(1)若AB=2,AD=,求BH的值;(2)求证:AC=EF.20.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(与点O 不重合),作AF⊥BE,垂足为G,交BC于F,交BO于H,连接OG,CG.(1)求证:AH=BE;(2)试探究:∠AGO的度数是否为定值?请说明理由;的值.(3)若OG⊥CG,BG=2,求S21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在D的右侧作正方形ADEF,解答下列问题:(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF,BD之间的位置关系为,数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动(如图4)当∠ACB=时,CF⊥BC(点C,F重合除外)?(3)若AC=4,BC=3.在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.参考答案一.选择题1.解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.2.解:∵四边形ABCD,∠C+∠D的大小为x,∴∠DAB+∠ABC=360°﹣x,∵AP平分∠DAB,BP平分∠ABC,∴∠PAB+∠PBA=,∵∠P的大小为y,∴∠P=180°﹣(∠PAB+∠PBA),即y=180°﹣(360°﹣x)=x,故选:B.3.解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴OD==,∴CE=,故选:C.4.解:在矩形ABCD中,OA=OB=OD,∵∠AOD=60°,∴△AOD是等边三角形,∴OD=AD=1,∴BD=1+1=2,由勾股定理得,AB===.故选:C.5.解:读图可得,阴影部分的面积为原正方形的面积的一半,则阴影部分的面积为1×1÷2=;是原正方形的面积的一半;故选A.6.解:(1)∵▱ABCD,∴AD=BC,AD∥BC.∵E、F分别是边AD、BC的中点,∴BF∥DE,BF=DE.∴BEDF为平行四边形,BE=DF.故正确;(2)根据平行线等分线段定理可得AG=GH=HC.故正确;(3)∵AD∥BC,AE=AD=BC,∴△AGE∽△CGB,AE:BC=EG:BG=1:2,∴EG=BG.故正确.(4)∵BG=2EG,∴△ABG的面积=△AGE面积×2,∴S△ABE=3S△AGE.又∵S△BCE=2S△ABE.∴S△BCE=6S△AGE.故正确.故选:D.7.解:∵E、F分别是边AB、BC的中点,∴EF∥AC,EF=AC,同理可知,HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形,AC与BD不一定相等,A说法错误;四边形EFGH是正方形时,AC与BD互相垂直且相等,B说法正确;若AC=BD,则四边形EFGH是菱形,C说法错误;若AC⊥BD,则四边形EFGH是矩形,D说法错误;故选:B.8.解:如图,过点O作OH⊥AC于点H,∵∠ACB=90°∴OH∥BC设OF与AC交于点G,∴=∵O为AB的中点,∴H为AC的中点,∴OH BC=a,AH=AC=b,设CG=x,则GH=b﹣x,∴=解得x=∴S△OEF=(EC+CG)•(FC+OH)=(a+)•(b+a)=(a2+2ab+b2)=(a+b)2故选:D.9.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC,∵CE=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AB=DC,AE=AB,∴AE=DC,∴四边形ACED是矩形;∴OA=AE,OC=CD,AE=CD,∴OA=OC,∵∠AOC=180°﹣∠AOD=180°﹣120°=60°,∴△AOC是等边三角形,∴OC=AC=4,∴CD=2OC=8;故选:A.10.解:设EF=x,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,∴BD=AB=2,EF=BF=x,∴BE=x,∵∠BAE=22.5°,∴∠DAE=90°﹣22.5°=67.5°,∴∠AED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠DAE,∴AD=ED,∴BD=BE+ED=x+2=2,解得:x=2﹣,即EF=2﹣;故选:B.11.解:根据图形分析可知:第1幅时,有2×1﹣1=1个平行四边形;第2幅时,有2×2﹣1=3个平行四边形;第3幅时,有2×3﹣1=5个平行四边形;第4幅时,有2×4﹣1=7个平行四边形;…;第n幅时,有2×n﹣1=2n﹣1个平行四边形;∴第6幅图时,有2×6﹣1=11个平行四边形,第7幅图,有2×7﹣1=13个平行四边形,∴第6幅和第7幅图中合计有11+13=24个平行四边形;故选:B.12.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵点F、G分别是AD、BC的中点,∴AF=AD,BG=BC,∴AF=BG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AB∥FG,∵CE⊥AB,∴CE⊥FG;故①正确;∵AD=2AB,AD=2AF,∴AB=AF,∴四边形ABGF是菱形,故②正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EF=FM,故③正确;∴∠FCD=∠M,∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故④正确,故选:D.二.填空题(共5小题)13.解:在梯形BCED中,作AG⊥BC于G,交DE于F,如图所示:∵DE∥BC,∴△ADE∽△ABC,∴===,解得:AF=4,∴AG=AF+GF=4+2=6.故答案为:6.14.解:在DO延长线上找一点M,如图所示.∵多边形的外角和为360°,∴∠BOM=360°﹣220°=140°.∵∠BOD+∠BOM=180°,∴∠BOD=180°﹣∠BOM=180°﹣140°=40°.故答案为:4015.解:连接BB′,∵BE=B′E=EC,∴∠BB′C=90°,∴∠B′CD<90°,(1)如图1,∠B′DC=90°,则四边形ABEB′和ECDB′是正方形,∴BC=2AB=4,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,则F,B′是对角线BD的三等分点,∵△BCB′∽△CDB′,∴==,∴=, ∴BC =CD =2,故答案为:4或2.16.解:如图1,2中,连接AC .在图2中,∵四边形ABCD 是正方形,∴AB =BC ,∠B =90°,∵AC =a ,∴AB =BC =a ,在图1中,∵∠B =60°,BA =BC ,∴△ABC 是等边三角形,∴AC =BC =a ,故答案为:a ,17.解:∵∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3,∴∠D 1C 1E 1=∠C 2B 2E 2=∠C 3B 3E 4=30°,1111则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n∁n D n的边长是:()n﹣1.则正方形A2019B2019C2019D2019的边长是:()2018.故答案为:()2018.三.解答题(共4小题)18.解:(1)∵DF⊥AC,∴∠ADF=∠C=90°,∴tan∠A====,∵AD=t,∴DF=t,∵EF⊥AB,∴∠EFD+∠AFD=90°,又∵∠AFD+∠A=90°,∴∠EFD=∠A,在Rt△ABC中,AB==10,sin∠A====,∴sin∠EFD==,∴DE=DF=t;(2)当点E落在BC边上时,如图1,∵DE∥AB,∴∠EDC=∠A,∴EC=DE=t,∵DE∥BF,BE∥DF,∴四边形DEBF为平行四边形,∴BE=DF=t,∵BE+CE=BC=10,∴t+t=10,解得,t=;(3)当0<t≤时,△DEF在△ABC内部,∴△DEF的面积即为△DEF与△ABC重合部分图形的面积,∴S=S△DEF=DE•EF=×t×t=t2;当<t≤20时,如图2所示,过点E作EH⊥AD交AD的延长线于点H,则EH=DE=t,∴DH=2EH=t,∵DC=AC﹣AD=20﹣t,∴CH=DH﹣DC=t﹣20,∵MN∥ED,∴△EMN∽△EFD,∴==,∵=t2,∴=t2﹣60t+500,∴S四边形MNDF=S△DEF﹣S△EMN=t2﹣(t2﹣60t+500)=﹣t2+60t﹣500,综上所述,S=;(3)当△DEC是等腰三角形时,沿着它的底边翻折,翻折前后的两个三角形形成的四边形的四边相等,即为菱形,①如图3﹣1,当ED=DC时,沿DC翻折,得到菱形EDPC,连接EP交DC于O,则EO=DE=t,∴DO=2EO=t,DC=2DC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;②如图3﹣2,当DE=DC时,沿EC翻折,得到菱形EDCP,则DC=DE=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=;③如图3﹣3,当CD=CE时,沿延DE翻折,得到菱形EPDC,连接PC,交DE于O,∵DE=t,∴DO=DE=t,∴OC=DO=t,DC=OC=t,∵DC=AC﹣AD,∴t=20﹣t,∴t=,综上所述,t的值为或或.19.(1)解:过点A作AN⊥BD于N,如图1所示:∵四边形ABCD为平行四边形,∴AB∥CD,∴∠ABD=∠BDC=45°,∵AN⊥BD,∴△ABN是等腰直角三角形,∵AB=2,∴AN=BN=AB=,DN===2,∴BD=BN+DN=+2=3,∵BH⊥DC,∴△BDH是等腰直角三角形,∴BH=DH=BD=×3=3;(2)证明:取DH的中点M,连接OM,如图2所示:∵四边形ABCD是平行四边形,∴OB=OD,∴OM是△BDH的中位线,∴OM∥BH,OM=BH=DH=DM,设DE=a,CE=b,则CH=FH=a,CD=EH=CE+CH=a+b,BH=DH=DE+CE+CH =2a+b,∴OM=DM=(2a+b),∴CM=CD﹣DM=a+b﹣(2a+b)=b,在Rt△OMC中,由勾股定理得:OC2=OM2+CM2=(2a+b)2+b2=AC2,∴AC2=(2a+b)2+b2=4a2+4ab+2b2=2(2a2+2ab+b2),在Rt△EHF中,由勾股定理得:EF2=EH2+FH2=(a+b)2+a2=2a2+2ab+b2,∴AC2=2EF2,∴AC=EF.20.(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOB=∠BOE=90°,∵AF⊥BE,∴∠GAE+∠AEG=∠OBE+∠AEG=90°.∴∠GAE=∠OBE,在△AOH和△BOE中,,∴△AOH≌△BOE(ASA),∴AH=BE.(2)解:∠AGO的度数为定值,理由如下:∵∠AOH=∠BGH=90°,∠AHO=∠BHG,∴△AOH∽△BGH,∴=,∴=,∵∠OHG=∠AHB,∴△OHG∽△AHB,∴∠AGO=∠ABO=45°,即∠AGO的度数为定值.(3)解:∵∠ABC=90°,AF⊥BE,∴∠BA G=∠FBG,∠AGB=∠BGF=90°,∴△ABG∽△BFG,∴=,∴AG•GF=BG2=20,∵△AHB∽△OHG,∴∠BAH=∠GOH=∠GBF.∵∠AOB=∠BGF=90°,∴∠AOG=∠GFC,∵∠AGO=45°,CG⊥GO,∴∠AGO=∠FGC=45°.∴△AGO∽△CGF,∴=,∴GO•CG=AG•GF=20.∴S△OGC=CG•GO=10.21.解:(1)CF⊥BD,CF=BD,理由如下:∵四边形ADEF是正方形,∴∠DAF=90°,AD=AF,∵AB=AC,∠BAC=90°,∴∠BAD+∠DAC=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴CF=BD,∴∠B=∠ACF,∴∠B+∠BCA=90°,∴∠BCA+∠ACF=90°,即CF⊥BD;故答案为:CF⊥BD,CF=BD;②当点D在BC的延长线上时,①的结论仍成立.如图2,由正方形ADEF得:AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC.∴∠DAB=∠FAC.又∵AB=AC,∴△DAB≌△FAC(SAS).∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠A CF=45°.∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BD;(2)当∠BCA=45°时,CF⊥BD;理由如下:如图3,过点A作AC的垂线与CB所在直线交于G,∵∠ACB=45°,∴△AGC等腰直角三角形,∴AG=AC,∠AGC=∠ACG=45°,∵AG=AC,AD=AF,∵∠GAD=∠GAC﹣∠DAC=90°﹣∠DAC,∠FAC=∠FAD﹣∠DAC=90°﹣∠DAC,∴∠GAD=∠FAC,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠GCF=∠GCA+∠ACF=90°,∴CF⊥BC;故答案为:45°;(3)过点A作AQ⊥BC交CB的延长线于点Q,如图4所示:∵DE与CF交于点P时,此时点D位于线段CQ上,∵∠BCA=45°,AC=4,∴△ACQ是等腰直角三角形,∴AQ=CQ=4.设CD=x,则DQ=4﹣x,∵∠ADB+∠ADE+∠PDC=180°且∠ADE=90°,∴∠ADQ+∠PDC=90°,又∵在直角△PCD中,∠PDC+∠DPC=90°∴∠ADQ=∠DPC,∵∠AQD=∠DCP=90°∴△AQD∽△DCP,∴=,即=.解得:CP=﹣x2+x=﹣(x﹣1)2+1.∵0<x≤3,∴当x=1时,CP有最大值1,即线段CP长的最大值为1.。

2020年广西桂林中考数学试题及参考答案(word解析版)

2020年广西桂林中考数学试题及参考答案(word解析版)

2020年桂林市初中学业水平考试试卷数学(全卷满分120分,考试用时120分钟)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2 B.1 C.﹣1 D.02.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40° B.50° C.60° D.70°3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高4.下面四个几何体中,左视图为圆的是()A. B. C. D.5.若=0,则x的值是()A.﹣1 B.0 C.1 D.26.因式分解a2﹣4的结果是()A.(a+2)(a﹣2) B.(a﹣2)2 C.(a+2)2 D.a(a﹣2)7.下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6 D.(2x)2=2x28.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.29.不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60° B.65° C.70° D.75°11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110 C.x(x+1)=110 D.x(x﹣1)=11012.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π二、填空题(本大题共6小题,每小题3分,共18分)13.2020的相反数是.14.计算:ab•(a+1)=.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.20.(6分)解二元一次方程组:.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗为什么(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.答案与解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2 B.1 C.﹣1 D.0【知识考点】有理数大小比较.【思路分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解题过程】解:根据有理数比较大小的方法,可得﹣1<0<1<2,∴在2,1,﹣1,0这四个数中,最小的数是﹣1.故选:C.【总结归纳】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40° B.50° C.60° D.70°【知识考点】平行线的性质.【思路分析】根据平行线的性质和∠1的度数,可以得到∠2的度数,本题得以解决.【解题过程】解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.【总结归纳】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命 B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率 D.调查全班同学的身高【知识考点】全面调查与抽样调查.【思路分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解题过程】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查漓江流域水质情况,应当采用抽样调查的方式,故本选项不合题意;C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.故选:D.【总结归纳】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下面四个几何体中,左视图为圆的是()A. B. C. D.【知识考点】简单几何体的三视图.【思路分析】根据四个几何体的左视图进行判断即可.【解题过程】解:下面四个几何体中,A的左视图为矩形;B的左视图为三角形;C的左视图为矩形;D的左视图为圆.故选:D.【总结归纳】本题考查了简单几何体的三视图,解决本题的关键是掌握几何体的三视图.5.若=0,则x的值是()A.﹣1 B.0 C.1 D.2【知识考点】算术平方根.【思路分析】利用算术平方根性质确定出x的值即可.【解题过程】解:∵=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.【总结归纳】此题考查了算术平方根,熟练掌握算术平方根的性质是解本题的关键.6.因式分解a2﹣4的结果是()A.(a+2)(a﹣2) B.(a﹣2)2 C.(a+2)2 D.a(a﹣2)【知识考点】因式分解﹣运用公式法.【思路分析】利用平方差公式进行分解即可.【解题过程】解:原式=(a+2)(a﹣2),故选:A.【总结归纳】此题主要考查了公式法分解因式,关键是掌握平方差公式a2﹣b2=(a+b)(a﹣b).7.下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6 D.(2x)2=2x2【知识考点】合并同类项;幂的乘方与积的乘方.【思路分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解题过程】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.【总结归纳】本题主要考查了同底数幂的乘法,合并同类项以及幂的乘方与积的乘方,熟记相关运算法则是解答本题的关键.8.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2 B.﹣1 C.1 D.2【知识考点】一次函数图象上点的坐标特征.【思路分析】由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k值.【解题过程】解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.【总结归纳】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.9.不等式组的整数解共有()A.1个 B.2个 C.3个 D.4个【知识考点】一元一次不等式组的整数解.【思路分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解题过程】解:解不等式x﹣1>0,得:x>1,解不等式5﹣x≥1,得:x≤4,则不等式组的解集为1<x≤4,所以不等式组的整数解有2、3、4这3个,故选:C.【总结归纳】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60° B.65° C.70° D.75°【知识考点】切线的性质.【思路分析】由“AC与⊙O相切于点A“得出AC⊥OA,根据等边对等角得出∠OAB=∠OBA.求出∠OAC及∠OAB即可解决问题.【解题过程】解:∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB==25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.【总结归纳】本题考查切线的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是()A.x(x+1)=110 B.x(x﹣1)=110 C.x(x+1)=110 D.x(x﹣1)=110【知识考点】由实际问题抽象出一元二次方程.【思路分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行两场比赛,共要比赛110场,可列出方程.【解题过程】解:设有x个队参赛,则x(x﹣1)=110.故选:D.【总结归纳】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.12.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.π B.π C.2π D.2π【知识考点】勾股定理;垂径定理;圆心角、弧、弦的关系;轨迹;旋转的性质.【思路分析】根据已知的半径为5,所对的弦AB长为8,点P是的中点,利用垂径定理可得AC=4,PO⊥AB,再根据勾股定理可得AP的长,利用弧长公式即可求出点P的运动路径长.【解题过程】解:如图,设的圆心为O,连接OP,OA,AP',AP,AB'∵圆O半径为5,所对的弦AB长为8,点P是的中点,根据垂径定理,得AC=AB=4,PO⊥AB,OC==3,∴PC=OP﹣OC=5﹣3=2,∴AP==2,∵将绕点A逆时针旋转90°后得到,∴∠PAP′=∠BAB′=90°,∴L PP′==π.则在该旋转过程中,点P的运动路径长是π.故选:B.【总结归纳】本题考查了轨迹、垂径定理、勾股定理、圆心角、弧、弦的关系、弧长计算、旋转的性质,解决本题的关键是综合运用以上知识.二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.2020的相反数是.【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解题过程】解:2020的相反数是:﹣2020.故答案为:﹣2020.【总结归纳】本题考查相反数.熟练掌握相反数的求法是解题的关键.14.计算:ab•(a+1)=.【知识考点】单项式乘多项式.【思路分析】根据整式的运算法则即可求出答案.【解题过程】解:原式=a2b+ab,故答案为:a2b+ab.【总结归纳】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cosA的值是.【知识考点】勾股定理;锐角三角函数的定义.【思路分析】根据余弦的定义解答即可.【解题过程】解:在Rt△ABC中,cosA==,故答案为:.【总结归纳】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.【知识考点】几何体的展开图;概率公式.【思路分析】根据概率公式解答就可求出任选该正方体的一面出现“我”字的概率.【解题过程】解:∵共有六个字,“我”字有2个,∴P(“我”)==.故答案为:.【总结归纳】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x <0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.【知识考点】正比例函数的性质;反比例函数的图象;反比例函数的性质;反比例函数图象上点的坐标特征;轴对称的性质.【思路分析】观察反比例函数y=(x<0)的图象可得,图象过第二象限,然后根据反比例函数的图象和性质即可进行判断.【解题过程】解:观察反比例函数y=(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.【总结归纳】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质、轴对称的性质,解决本题的关键是掌握反比例函数的性质.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.【知识考点】等腰直角三角形;相似三角形的判定与性质.【思路分析】在AB上取一点T,使得AT=1,连接PT,PA,CT.证明△PAT∽△BAP,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT即可解决问题.【解题过程】解:在AB上取一点T,使得AT=1,连接PT,PA,CT.∵PA=2.AT=1,AB=4,∴PA2=AT•AB,∴=,∵∠PAT=∠PAB,∴△PAT∽△BAP,∴==,∴PT=PB,∴PB+CP=CP+PT,∵PC+PT≥TC,在Rt△ACT中,∵∠CAT=90°,AT=1,AC=4,∴CT==,∴PB+PC≥,∴PB+PC的最小值为.故答案为.【总结归纳】本题考查等腰直角三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.【知识考点】实数的运算;零指数幂;特殊角的三角函数值.【思路分析】原式利用零指数幂、乘方运算法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解题过程】解:原式=1+4+﹣=5.【总结归纳】此题考查了实数的运算,零指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)解二元一次方程组:.【知识考点】解二元一次方程组.【思路分析】方程组利用加减消元法求出解即可.【解题过程】解:①+②得:6x=6,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.【总结归纳】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.【知识考点】作图﹣平移变换;作图﹣旋转变换.【思路分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.【解题过程】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.故答案为:﹣2,0.【总结归纳】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗为什么(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.【知识考点】用样本估计总体;条形统计图;中位数.【思路分析】(1)由材料1中的统计图中的信息即可得到结论;(2)由材料1中的统计图的信息即可得到结论;(3)根据统计图中的信息即可得到结论;(4)根据题意列式计算即可.【解题过程】解:(1)由材料1中的统计图可得:2018年,全国快递业务量是亿件,比2017年增长了%;(2)由材料1中的统计图可得:2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)不赞同,理由:由图1中的信息可得,2016﹣2019年全国快递业务量增长速度逐年放缓,但是快递业务量却逐年增加;(4)×(1+50%)=(亿件),答:2020年的快递业务量为亿件.故答案为:,,.【总结归纳】本题考查了条形统计图,中位数的定义,正确的理解题意是解题的关键.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.【知识考点】全等三角形的判定与性质;等边三角形的判定与性质;菱形的性质.【思路分析】(1)由SAS证明△ABE≌△ADF即可;(2)证△ABD是等边三角形,得出BE⊥AD,求出AD即可.【解题过程】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.【总结归纳】本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.【解题过程】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.答:每副围棋18元,则每副象棋10元;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意,得18m+10(40﹣m)≤600.解得m≤25.故m最大值是25.答:该校最多可再购买25副围棋.【总结归纳】本题考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB=30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.【知识考点】圆的综合题.【思路分析】(1)利用直角三角形斜边的中线等于斜边的一半,判断出OA=OB=OC=OD,即可得出结论;(2)利用等弧所对的圆周角相等,即可得出结论;(3)先判断出△DEF∽△BDF,得出DF2=BF•EF,再利用勾股定理得出OD2+OF2=DF2,即可得出结论.【解题过程】证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.【总结归纳】此题是圆的综合题,主要考查了四点共圆的判断方法,相似三角形的判定和性质,直角三角形斜边的中线等于斜边的一半的性质,等腰三角形的判定和性质,勾股定理,三角形内角和定理,判断出∠BDF=∠AED是解本题的关键.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.【知识考点】二次函数综合题.【思路分析】(1)将点C坐标代入抛物线解析式中,即可得出结论;(2)分三种情况:直接利用等腰三角形的性质,即可得出结论;(3)先判断出△PQE≌△P'Q'E(AAS),得出PQ=P'Q',EQ=EQ',进而得出P'Q'=n,EQ'=QE =m+2,确定出点P'(n﹣2,2+m),将点P'的坐标代入直线AD的解析式中,和点P代入抛物线解析式中,联立方程组,求解即可得出结论.【解题过程】解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),∴2=a(0+6)(0﹣2),∴a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴抛物线的对称轴为直线x=﹣2;针对于抛物线的解析式为y=﹣(x+6)(x﹣2),令y=0,则﹣(x+6)(x﹣2)=0,∴x=2或x=﹣6,∴A(﹣6,0);(2)如图1,由(1)知,抛物线的对称轴为x=﹣2,∴E(﹣2,0),∵C(0,2),∴OC=OE=2,∴CE=OC=2,∠CED=45°,∵△CME是等腰三角形,∴①当ME=MC时,∴∠ECM=∠CED=45°,∴∠CME=90°,∴M(﹣2,2),②当CE=CM时,∴MM1=CM=2,∴EM1=4,∴M1(﹣2,4),③当EM=CE时,∴EM2=EM3=2,∴M2(﹣2,﹣2),M3(﹣2,2),即满足条件的点M的坐标为(﹣2,2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);(3)如图2,由(1)知,抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴D(﹣2,),令y=0,则(x+6)(x﹣2)=0,∴x=﹣6或x=2,∴点A(﹣6,0),∴直线AD的解析式为y=x+4,过点P作PQ⊥x轴于Q,过点P'作P'Q'⊥DE于Q',∴∠EQ'P'=∠EQP=90°,由(2)知,∠CED=∠CEB=45°,由折叠知,EP'=EP,∠CEP'=∠CEP,∴△PQE≌△P'Q'E(AAS),∴PQ=P'Q',EQ=EQ',设点P(m,n),∴OQ=m,PQ=n,∴P'Q'=n,EQ'=QE=m+2,∴点P'(n﹣2,2+m),∵点P'在直线AD上,∴2+m=(n﹣2)+4①,∵点P在抛物线上,∴n=﹣(m+6)(m﹣2)②,联立①②解得,m=或m=,即点P的横坐标为或.【总结归纳】此题是二次函数综合题,主要考查了待定系数法,等腰三角形的性质,全等三角形的判定和性质,用分类讨论的思想解决问题是解本题的关键.。

2018-2020年广西中考数学试题分类(3)——分式、二次根式

2018-2020年广西中考数学试题分类(3)——分式、二次根式

2018-2020年广西中考数学试题分类(3)——分式、二次根式一.分式有意义的条件(共2小题)1.(2019•贺州)要使分式1x+1有意义,则x 的取值范围是 . 2.(2018•贵港)若分式2x+1的值不存在,则x 的值为 .二.分式的值为零的条件(共1小题)3.(2019•贵港)若分式x 2−1x+1的值等于0,则x 的值为( ) A .±1 B .0C .﹣1D .1 三.分式的乘除法(共1小题)4.(2018•梧州)下列各式计算正确的是( )A .a +2a =3aB .x 4•x 3=x 12C .(1x )﹣1=−1xD .(x 2)3=x 5四.分式的加减法(共1小题)5.(2019•梧州)化简:2a 2−8a+2−a = .五.分式的化简求值(共7小题)6.(2020•河池)先化简,再计算:a 2−a a −2a+1+1a−1,其中a =2. 7.(2020•广西)先化简,再求值:x+1x ÷(x −1x),其中x =3. 8.(2019•百色)求式子3m−3÷4m −9的值,其中m =﹣2019.9.(2019•梧州)先化简,再求值:(a 3)2a 4−2a 4⋅a a 3,其中a =﹣2. 10.(2019•桂林)先化简,再求值:(1y −1x )÷x 2−2xy+y 22xy −1y−x ,其中x =2+√2,y =2. 11.(2018•梧州)解不等式组{3x −6≤x 4x+510<x+12,并求出它的整数解,再化简代数式x+3x −2x+1•(x x+3−x−3x −9),从上述整数解中选择一个合适的数,求此代数式的值. 12.(2018•玉林)先化简,再求值:(a −2ab−b 2a )÷a 2−b 2a,其中a =1+√2,b =1−√2. 六.二次根式有意义的条件(共5小题)13.(2020•河池)若y =√2x 有意义,则x 的取值范围是( )A .x >0B .x ≥0C .x >2D .x ≥214.(2019•百色)若式子√x −108在实数范围内有意义,则x 的取值范围是 .15.(2019•广西)若二次根式√x+4有意义,则x的取值范围是.16.(2018•贺州)要使二次根式√x−3有意义,则x的取值范围是.17.(2018•南宁)要使二次根式√x−5在实数范围内有意义,则实数x的取值范围是.七.最简二次根式(共1小题)18.(2019•河池)下列式子中,为最简二次根式的是()A.√12B.√2C.√4D.√12八.二次根式的乘除法(共1小题)19.(2018•河池)计算:√92×√2=.九.二次根式的加减法(共3小题)20.(2020•广西)计算:√12−√3=.21.计算:√9−25÷23+|﹣1|×5﹣(π﹣3.14)0 22.(2018•柳州)计算:2√4+3.一十.二次根式的混合运算(共1小题)23.(2020•河池)计算:(﹣3)0+√8+(﹣3)2﹣4×√22.2018-2020年广西中考数学试题分类(3)——分式、二次根式参考答案与试题解析一.分式有意义的条件(共2小题)1.【解答】解:∵分式1x+1有意义,∴x +1≠0,即x ≠﹣1故答案为:x ≠﹣1.2.【解答】解:若分式2x+1的值不存在, 则x +1=0,解得:x =﹣1,故答案为:﹣1.二.分式的值为零的条件(共1小题)3.【解答】解:x 2−1x+1=(x+1)(x−1)x+1=x ﹣1=0,∴x =1;经检验:x =1是原分式方程的解,故选:D .三.分式的乘除法(共1小题)4.【解答】解:A 、a +2a =3a ,正确;B 、x 4•x 3=x 7,错误;C 、(1x )−1=x ,错误;D 、(x 2)3=x 6,错误;故选:A .四.分式的加减法(共1小题)5.【解答】解:原式=2(a 2−4)a+2−a =2(a+2)(a−2)a+2−a =2a ﹣4﹣a=a ﹣4.故答案为:a ﹣4.五.分式的化简求值(共7小题)6.【解答】解:原式=a(a−1)(a−1)2+1a−1 =a a−1+1a−1=a+1a−1,当a =2时,原式=2+12−1=3.7.【解答】解:原式=x+1x ÷(x 2x −1x) =x+1x ÷x 2−1x=x+1x •x(x+1)(x−1)=1x−1,当x =3时,原式=13−1=12.8.【解答】解:原式=3m−3•(m+3)(m−3)4 =34(m +3),当m =﹣2019时,原式=34×(﹣2019+3)=34×(﹣2016) =﹣1512.9.【解答】解:原式=a 64−2a 53 =a 2﹣2a 2=﹣a 2,当a =﹣2时,原式=﹣4.10.【解答】解:原式=x−y xy •2xy (x−y)+1x−y=2x−y +1x−y=3x−y ,当x =2+√2,y =2时,原式2+√2−2=3√22. 11.【解答】解:解不等式3x ﹣6≤x ,得:x ≤3, 解不等式4x+510<x+12,得:x >0,则不等式组的解集为0<x ≤3,所以不等式组的整数解为1、2、3,原式=x+3(x−1)2•[x 2−3x (x+3)(x−3)−x−3(x+3)(x−3)] =x+3(x−1)2•(x−1)(x−3)(x+3)(x−3) =1x−1, ∵x ≠±3、1,∴x =2,则原式=1.12.【解答】解:原式=a 2−2ab+b 2a •a (a+b)(a−b)=(a−b)2a •a (a+b)(a−b) =a−b a+b, 当a =1+√2,b =1−√2时,原式=√2)−(1−√2)(1+2)+(1−2)=√2. 六.二次根式有意义的条件(共5小题)13.【解答】解:由题意得,2x ≥0,解得x ≥0.故选:B .14.【解答】解:由√x −108在实数范围内有意义,得x ﹣108≥0. 解得x ≥108,故答案是:x ≥108.15.【解答】解:x +4≥0,∴x ≥﹣4; 故答案为x ≥﹣4;16.【解答】解:二次根式√x −3有意义,故x ﹣3≥0, 则x 的取值范围是:x ≥3.故答案为:x≥3.17.【解答】解:由题意得,x﹣5≥0,解得x≥5.故答案为:x≥5.七.最简二次根式(共1小题)18.【解答】解:A、原式=√22,不符合题意;B、是最简二次根式,符合题意;C、原式=2,不符合题意;D、原式=2√3,不符合题意;故选:B.八.二次根式的乘除法(共1小题)19.【解答】解:原式=√92×2=√9=3.故答案为:3.九.二次根式的加减法(共3小题)20.【解答】解:√12−√3=2√3−√3=√3.故答案为:√3.21.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.22.【解答】解:2√4+3=4+3=7.一十.二次根式的混合运算(共1小题)23.【解答】解:原式=1+2√2+9﹣2√2=10.。

广西 2018-2020年中考数学试题分类(4)——方程与不等式(含解析)

广西 2018-2020年中考数学试题分类(4)——方程与不等式(含解析)

广西省2018-2020年中考数学试题分类(4)——方程与不等式一.选择题(共21小题)1.(2019•贺州)已知方程组{2x +x =3x −2x =5,则2x +6y 的值是( )A .﹣2B .2C .﹣4D .4 2.(2018•桂林)若|3x ﹣2y ﹣1|+√x +x −2=0,则x ,y 的值为( )A .{x =1x =4B .{x =2x =0C .{x =0x =2D .{x =1x =13.(2020•桂林)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( ) A .12x (x +1)=110B .12x (x ﹣1)=110C .x (x +1)=110D .x (x ﹣1)=110 4.(2020•河池)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6 B .7 C .8 D .95.(2020•广西)一元二次方程x 2﹣2x +1=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 6.(2019•玉林)若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)的值是( ) A .4 B .2 C .1 D .﹣2 7.(2019•广西)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .(30﹣x )(20﹣x )=34×20×30B .(30﹣2x )(20﹣x )=14×20×30C .30x +2×20x =14×20×30D .(30﹣2x )(20﹣x )=34×20×308.(2019•贵港)若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且1x+1x=−23,则m 等于( )A .﹣2B .﹣3C .2D .39.(2018•贵港)已知α,β是一元二次方程x 2+x ﹣2=0的两个实数根,则α+β﹣αβ的值是( ) A .3 B .1 C .﹣1 D .﹣3 10.(2018•桂林)已知关于x 的一元二次方程2x 2﹣kx +3=0有两个相等的实根,则k 的值为( ) A .±2√6 B .±√6 C .2或3 D .√2或√3 11.(2018•南宁)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x ,则可列方程为( ) A .80(1+x )2=100 B .100(1﹣x )2=80 C .80(1+2x )=100 D .80(1+x 2)=100 12.(2020•广西)甲、乙两地相距600km ,提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( ) A .600x−13=6001.2x B .600x =6001.2x −13C .600x−20=6001.2xD .600x=6001.2x−2013.(2019•百色)方程1x +1=1的解是( )A .无解B .x =﹣1C .x =0D .x =1 14.(2020•桂林)不等式组{x −1>05−x ≥1的整数解共有( )A .1个B .2个C .3个D .4个 15.(2020•河池)不等式组{x +1>22x −4≤x 的解集在数轴上表示正确的是( )A .B .C .D .16.(2019•百色)不等式组{12−2x <203x −6≤0的解集是( )A .﹣4<x ≤6B .x ≤﹣4或x >2C .﹣4<x ≤2D .2≤x <4 17.(2019•梧州)不等式组{2x +6>02−x ≥0的解集在数轴上表示为( )A .B .C .D . 18.(2019•桂林)如果a >b ,c <0,那么下列不等式成立的是( ) A .a +c >b B .a +c >b ﹣c C .ac ﹣1>bc ﹣1 D .a (c ﹣1)<b (c ﹣1)19.(2019•河池)不等式组{2x −3≤12x >x +1的解集是( )A .x ≥2B .x <1C .1≤x <2D .1<x ≤2 20.(2018•河池)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是( )A .x >﹣1B .x ≤3C .﹣1≤x <3D .﹣1<x ≤3 21.(2018•南宁)若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2B .x4>x4C .6m <6nD .﹣8m >﹣8n二.填空题(共7小题) 22.(2018•柳州)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x 场,负y 场,则可列出方程组为 . 23.(2019•桂林)一元二次方程(x ﹣3)(x ﹣2)=0的根是 . 24.(2018•柳州)一元二次方程x 2﹣9=0的解是 . 25.(2020•河池)方程12x +1=1x −2的解是x = .26.(2019•河池)分式方程1x −2=1的解为 .27.(2020•广西)如图,在数轴上表示的x 的取值范围是 .28.(2019•玉林)设0<x x <1,则m =x 2−4x 2x 2+2xx,则m 的取值范围是 .三.解答题(共22小题)29.(2020•桂林)解二元一次方程组:{2x +x =1,①4x −x =5.x.30.(2020•玉林)解方程组:{x −3x =−22x +x =3.31.(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米? 32.(2019•河池)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售? 33.(2018•贵港)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算? 34.(2020•玉林)已知关于x 的一元二次方程x 2+2x ﹣k =0有两个不相等的实数根. (1)求k 的取值范围; (2)若方程的两个不相等的实数根是a ,b ,求x x +1−1x +1的值.35.(2019•玉林)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率; (2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点? 36.(2019•贺州)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元? 37.(2019•贵港)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率; (2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几? 38.(2018•玉林)已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程. 39.(2018•梧州)解方程:2x 2﹣4x ﹣30=0. 40.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋? 41.(2019•梧州)解方程:x 2+2x −2+1=6x −2.42.(2019•玉林)解方程:xx −1−3(x −1)(x +2)=1.43.(2019•柳州)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同. (1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本? 44.(2018•百色)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问: (1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远? 45.(2018•贺州)解分式方程:4x 2−1+1=x −1x +1.46.(2018•玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元? 47.(2019•桂林)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可以购买多少个A 类足球?48.(2019•贺州)解不等式组:{5x −6>4,①x −8<4x +1.x49.(2019•广西)解不等式组:{3x −5<x +13x −46≤2x −13,并利用数轴确定不等式组的解集.50.(2019•贵港)(1)计算:√4−(√3−3)0+(12)﹣2﹣4sin30°;(2)解不等式组:{6x −2>2(x −4)23−3−x 2≤−x 3,并在数轴上表示该不等式组的解集.广西省2018-2020年中考数学试题分类(4)——方程与不等式一.选择题(共21小题)1.(2019•贺州)已知方程组{2x +x =3x −2x =5,则2x +6y 的值是( )A .﹣2B .2C .﹣4D .4 【答案】C【解答】解:两式相减,得x +3y =﹣2, ∴2(x +3y )=﹣4, 即2x +6y =﹣4, 故选:C . 2.(2018•桂林)若|3x ﹣2y ﹣1|+√x +x −2=0,则x ,y 的值为( )A .{x =1x =4B .{x =2x =0C .{x =0x =2D .{x =1x =1【答案】D【解答】解:由题意可知:{3x −2x −1=0x +x −2=0解得:{x =1x =1故选:D . 3.(2020•桂林)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x 支,根据题意,下面列出的方程正确的是( ) A .12x (x +1)=110B .12x (x ﹣1)=110C .x (x +1)=110D .x (x ﹣1)=110 【答案】D【解答】解:设有x 个队参赛,则 x (x ﹣1)=110. 故选:D . 4.(2020•河池)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( ) A .6 B .7 C .8 D .9 【答案】D【解答】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36,化简,得x 2﹣x ﹣72=0, 解得x 1=9,x 2=﹣8(舍去), ∴参加此次比赛的球队数是9队. 故选:D . 5.(2020•广西)一元二次方程x 2﹣2x +1=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定 【答案】B【解答】解:∵a =1,b =﹣2,c =1, ∴△=(﹣2)2﹣4×1×1=4﹣4=0, ∴有两个相等的实数根, 故选:B . 6.(2019•玉林)若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)的值是( ) A .4 B .2 C .1 D .﹣2 【答案】A【解答】解:根据题意得x 1+x 2=1,x 1x 2=﹣2,所以(1+x 1)+x 2(1﹣x 1)=1+x 1+x 2﹣x 1x 2=1+1﹣(﹣2)=4.故选:A.7.(2019•广西)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=34×20×30B.(30﹣2x)(20﹣x)=14×20×30C.30x+2×20x=14×20×30D.(30﹣2x)(20﹣x)=34×20×30【答案】D【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=34×20×30,故选:D.8.(2019•贵港)若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且1x +1x=−23,则m等于()A.﹣2B.﹣3C.2D.3【答案】B【解答】解:α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,∴α+β=2,αβ=m,∵1x +1x=x+xxx=2x=−23,∴m=﹣3;故选:B.9.(2018•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3B.1C.﹣1D.﹣3【答案】B【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1+2=1,故选:B.10.(2018•桂林)已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.±2√6B.±√6C.2或3D.√2或√3【答案】A【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2√6,故选:A.11.(2018•南宁)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100B.100(1﹣x)2=80C.80(1+2x)=100D.80(1+x2)=100【答案】A【解答】解:由题意知,蔬菜产量的年平均增长率为x ,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x )吨 ,2018年蔬菜产量为80(1+x )(1+x )吨,预计2018年蔬菜产量达到100吨, 即:80(1+x )(1+x )=100或80(1+x )2=100. 故选:A . 12.(2020•广西)甲、乙两地相距600km ,提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min ,则可列方程为( ) A .600x−13=6001.2x B .600x =6001.2x −13C .600x−20=6001.2xD .600x=6001.2x−20【答案】A【解答】解:因为提速前动车的速度为vkm /h ,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm /h , 根据题意可得:600x−13=6001.2x.故选:A .13.(2019•百色)方程1x +1=1的解是( )A .无解B .x =﹣1C .x =0D .x =1【答案】C 【解答】解:1x +1=1,∴移项可得1x +1−1=−xx +1=0, ∴x =0,经检验x =0是方程的根, ∴方程的根是x =0; 故选:C . 14.(2020•桂林)不等式组{x −1>05−x ≥1的整数解共有( )A .1个B .2个C .3个D .4个 【答案】C【解答】解:解不等式x ﹣1>0,得:x >1, 解不等式5﹣x ≥1,得:x ≤4, 则不等式组的解集为1<x ≤4,所以不等式组的整数解有2、3、4这3个, 故选:C . 15.(2020•河池)不等式组{x +1>22x −4≤x 的解集在数轴上表示正确的是( )A .B .C .D .【答案】D【解答】解:{x +1>2①2x −4≤xx,由①得:x >1, 由①得:x ≤4,不等式组的解集为:1<x ≤4, 故选:D . 16.(2019•百色)不等式组{12−2x <203x −6≤0的解集是( )A .﹣4<x ≤6B .x ≤﹣4或x >2C .﹣4<x ≤2D .2≤x <4 【答案】C【解答】解:解不等式12﹣2x <20,得:x >﹣4, 解不等式3x ﹣6≤0,得:x ≤2, 则不等式组的解集为﹣4<x ≤2. 故选:C . 17.(2019•梧州)不等式组{2x +6>02−x ≥0的解集在数轴上表示为( )A .B .C .D .【答案】C【解答】解:{2x +6>0①2−x ≥0x,由①得:x >﹣3; 由①得:x ≤2,∴不等式组的解集为﹣3<x ≤2, 表示在数轴上,如图所示:故选:C . 18.(2019•桂林)如果a >b ,c <0,那么下列不等式成立的是( ) A .a +c >b B .a +c >b ﹣c C .ac ﹣1>bc ﹣1 D .a (c ﹣1)<b (c ﹣1) 【答案】D【解答】解:∵c <0, ∴c ﹣1<﹣1, ∵a >b ,∴a (c ﹣1)<b (c ﹣1), 故选:D .19.(2019•河池)不等式组{2x −3≤12x >x +1的解集是( )A .x ≥2B .x <1C .1≤x <2D .1<x ≤2 【答案】D【解答】解:{2x −3≤1①2x >x +1x,解①得:x ≤2, 解①得:x >1.则不等式组的解集是:1<x ≤2. 故选:D . 20.(2018•河池)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是( )A .x >﹣1B .x ≤3C .﹣1≤x <3D .﹣1<x ≤3【答案】D【解答】解:由数轴知,此不等式组的解集为﹣1<x ≤3, 故选:D . 21.(2018•南宁)若m >n ,则下列不等式正确的是( ) A .m ﹣2<n ﹣2B .x4>x4C .6m <6nD .﹣8m >﹣8n【答案】B【解答】解:A 、将m >n 两边都减2得:m ﹣2>n ﹣2,此选项错误; B 、将m >n 两边都除以4得:x4>x4,此选项正确;C 、将m >n 两边都乘以6得:6m >6n ,此选项错误;D 、将m >n 两边都乘以﹣8,得:﹣8m <﹣8n ,此选项错误; 故选:B .二.填空题(共7小题) 22.(2018•柳州)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x 场,负y 场,则可列出方程组为 {x +x =82x +x =14.【答案】见试题解答内容【解答】解:设艾美所在的球队胜x 场,负y 场, ∵共踢了8场, ∴x +y =8;∵每队胜一场得2分,负一场得1分. ∴2x +y =14,故列的方程组为{x +x =82x +x =14,故答案为{x +x =82x +x =14.23.(2019•桂林)一元二次方程(x ﹣3)(x ﹣2)=0的根是 x 1=3,x 2=2 . 【答案】见试题解答内容【解答】解:x ﹣3=0或x ﹣2=0, 所以x 1=3,x 2=2. 故答案为x 1=3,x 2=2. 24.(2018•柳州)一元二次方程x 2﹣9=0的解是 x 1=3,x 2=﹣3 . 【答案】见试题解答内容 【解答】解:∵x 2﹣9=0, ∴x 2=9,解得:x 1=3,x 2=﹣3. 故答案为:x 1=3,x 2=﹣3. 25.(2020•河池)方程12x +1=1x −2的解是x = ﹣3 .【答案】﹣3.【解答】解:方程的两边同乘(2x +1)(x ﹣2),得:x ﹣2=2x +1, 解这个方程,得:x =﹣3,经检验,x =﹣3是原方程的解, ∴原方程的解是x =﹣3. 故答案为:﹣3. 26.(2019•河池)分式方程1x −2=1的解为 x =3 .【答案】见试题解答内容【解答】解:去分母得:x ﹣2=1, 解得:x =3,经检验x =3是分式方程的解. 故答案为:x =3. 27.(2020•广西)如图,在数轴上表示的x 的取值范围是 x <1 .【答案】见试题解答内容【解答】解:在数轴上表示的x 的取值范围是x <1, 故答案为:x <1.28.(2019•玉林)设0<x x <1,则m =x 2−4x 2x 2+2xx,则m 的取值范围是 ﹣1<m <1 .【答案】见试题解答内容【解答】解:m =x 2−4x 2x 2+2xx=(x +2x )(x −2x )x (x +2x )=x −2x x =1−2xx ,∵0<xx <1,∴﹣2<−2xx <0,∴﹣1<1−2xx <1,即﹣1<m <1.故答案为:﹣1<m <1 三.解答题(共22小题)29.(2020•桂林)解二元一次方程组:{2x +x =1,①4x −x =5.x.【答案】{x =1x =−1.【解答】解:①+①得:6x =6, 解得:x =1,把x =1代入①得:y =﹣1,则方程组的解为{x =1x =−1.30.(2020•玉林)解方程组:{x −3x =−22x +x =3.【答案】见试题解答内容【解答】解:{x −3x =−2①2x +x =3x,①+①×3得:7x =7, 解得:x =1,把x =1代入①得:y =1,则方程组的解为{x =1x =1.31.(2019•百色)一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米? 【答案】见试题解答内容 【解答】解:(1)设该轮船在静水中的速度是x 千米/小时,水流速度是y 千米/小时,依题意,得:{6(x +x )=90(6+4)(x −x )=90,解得:{x =12x =3.答:该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时.(2)设甲、丙两地相距a 千米,则乙、丙两地相距(90﹣a )千米, 依题意,得:x 12+3=90−x 12−3,解得:a =2254. 答:甲、丙两地相距2254千米.32.(2019•河池)在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售? 【答案】见试题解答内容【解答】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:{30x +60x =72010x +50x =360,解得:{x =16x =4,答:跳绳的单价为16元/条,毽子的单件为4元/个; (2)设该店的商品按原价的a 折销售,可得:(100×16+100×4)×x10=1800,解得:a =9,答:该店的商品按原价的9折销售. 33.(2018•贵港)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用才合算? 【答案】见试题解答内容 【解答】解:(1)设这批学生有x 人,原计划租用45座客车y 辆,根据题意得:{x =45x +15x =60(x −1),解得:{x =240x =5.答:这批学生有240人,原计划租用45座客车5辆. (2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆. 220×6=1320(元),300×4=1200(元), ∵1320>1200,∴若租用同一种客车,租4辆60座客车划算. 34.(2020•玉林)已知关于x 的一元二次方程x 2+2x ﹣k =0有两个不相等的实数根. (1)求k 的取值范围; (2)若方程的两个不相等的实数根是a ,b ,求x x +1−1x +1的值.【答案】(1)k 的取值范围为k >﹣1; (2)1. 【解答】解:(1)∵方程有两个不相等的实数根, ∴△=b 2﹣4ac =4+4k >0, 解得k >﹣1.∴k 的取值范围为k >﹣1;(2)由根与系数关系得a +b =﹣2,a •b =﹣k ,x x +1−1x +1=xx −1xx +x +x +1=−x −1−x −2+1=1.35.(2019•玉林)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg 与3.6万kg ,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率; (2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg .如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?【答案】见试题解答内容 【解答】解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x , 根据题意得,2.5(1+x )2=3.6,解得:x =0.2,x =﹣2.2(不合题意舍去),答:该养殖场蛋鸡产蛋量的月平均增长率为20%; (2)3.6×(1+20%)=4.32万(kg ), 4.32÷0.32=13.5(个),六月份至少需要14个销售点,3.6÷0.32=12.25(个), 五月份有12个销售点, ∴14﹣12=2(个),故至少再增加2个销售点. 36.(2019•贺州)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元? 【答案】见试题解答内容 【解答】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x , 依题意,得:2500(1+x )2=3600, 解得:x 1=0.2=20%,x 2=﹣2.2(舍去).答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)3600×(1+20%)=4320(元), 4320>4200.答:2019年该贫困户的家庭年人均纯收入能达到4200元. 37.(2019•贵港)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率; (2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几? 【答案】见试题解答内容 【解答】解:(1)设这两年藏书的年均增长率是x ,5(1+x )2=7.2,解得,x 1=0.2,x 2=﹣2.2(舍去), 答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有(7.2﹣5)×20%=0.44(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5×5.6%+0.447.2×100%=10%,答:到2018年底中外古典名著的册数占藏书总量的10%. 38.(2018•玉林)已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根. (1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程. 【答案】见试题解答内容 【解答】解:(1)根据题意得△=(﹣2)2﹣4(﹣k ﹣2)>0, 解得k >﹣3;(2)取k =﹣2,则方程变形为x 2﹣2x =0,解得x 1=0,x 2=2. 39.(2018•梧州)解方程:2x 2﹣4x ﹣30=0. 【答案】见试题解答内容【解答】解:∵2x 2﹣4x ﹣30=0, ∴x 2﹣2x ﹣15=0, ∴(x ﹣5)(x +3)=0, ∴x 1=5,x 2=﹣3. 40.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元. (1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋? 【答案】(1)每副围棋18元,则每副象棋10元; (2)该校最多可再购买25副围棋. 【解答】解:(1)设每副围棋x 元,则每副象棋(x ﹣8)元, 根据题意,得420x −8=756x.解得x =18.经检验x =18是所列方程的根. 所以x ﹣8=10.答:每副围棋18元,则每副象棋10元;(2)设购买围棋m 副,则购买象棋(40﹣m )副, 根据题意,得18m +10(40﹣m )≤600. 解得m ≤25.故m 最大值是25.答:该校最多可再购买25副围棋. 41.(2019•梧州)解方程:x 2+2x −2+1=6x −2. 【答案】见试题解答内容【解答】解:方程两边同乘以(x ﹣2)得:x 2+2+x ﹣2=6, 则x 2+x ﹣6=0, (x ﹣2)(x +3)=0, 解得:x 1=2,x 2=﹣3,检验:当x =2时,x ﹣2=0,故x =2不是方程的根, x =﹣3是分式方程的解. 42.(2019•玉林)解方程:x x −1−3(x −1)(x +2)=1.【答案】见试题解答内容 【解答】解:xx −1−3(x −1)(x +2)=1方程两边同时乘以(x ﹣1)(x +2)得:x 2+2x ﹣3=(x ﹣1)(x +2), 解得:x =1,经检验x =1是方程的增根, ∴原方程无解; 43.(2019•柳州)小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同. (1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本? 【答案】见试题解答内容【解答】解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元, 依题意,得:8x +0.3=5x,解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意, ∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元. (2)设大本作业本购买m 本,则小本作业本购买2m 本, 依题意,得:0.8m +0.5×2m ≤15,解得:m ≤253. ∵m 为正整数, ∴m 的最大值为8.答:大本作业本最多能购买8本. 44.(2018•百色)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问: (1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远? 【答案】见试题解答内容 【解答】解:(1)设大巴的平均速度为x 公里/小时,则小车的平均速度为1.5x 公里/小时, 根据题意,得:90x =901.5x+12+14,解得:x =40,经检验:x =40是原方程的解,答:大巴的平均速度为40公里/小时,则小车的平均速度为60公里/小时;(2)设苏老师赶上大巴的地点到基地的路程有y 公里, 根据题意,得:12+90−x 60=90−x 40,解得:y =30,答:苏老师追上大巴的地点到基地的路程有30公里. 45.(2018•贺州)解分式方程:4x 2−1+1=x −1x +1.【答案】见试题解答内容【解答】解:去分母得:4+x 2﹣1=x 2﹣2x +1, 解得:x =﹣1,经检验x =﹣1是增根,分式方程无解. 46.(2018•玉林)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元? 【答案】见试题解答内容 【解答】解:(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x +100)元, 根据题意得:30000x +100=27000x,解得:x =900,经检验,x =900是原分式方程的解. 答:二月份每辆车售价是900元.(2)设每辆山地自行车的进价为y 元,根据题意得:900×(1﹣10%)﹣y =35%y ,解得:y =600.答:每辆山地自行车的进价是600元. 47.(2019•桂林)为响应国家“足球进校园”的号召,某校购买了50个A 类足球和25个B 类足球共花费7500元,已知购买一个B 类足球比购买一个A 类足球多花30元. (1)求购买一个A 类足球和一个B 类足球各需多少元?(2)通过全校师生的共同努力,今年该校被评为“足球特色学校”,学校计划用不超过4800元的经费再次购买A 类足球和B 类足球共50个,若单价不变,则本次至少可以购买多少个A 类足球? 【答案】见试题解答内容 【解答】解:(1)设购买一个A 类足球需要x 元,购买一个B 类足球需要y 元,依题意,得:{50x +25x =7500x −x =30,解得:{x =90x =120.答:购买一个A 类足球需要90元,购买一个B 类足球需要120元. (2)设购买m 个A 类足球,则购买(50﹣m )个B 类足球, 依题意,得:90m +120(50﹣m )≤4800, 解得:m ≥40.答:本次至少可以购买40个A 类足球.48.(2019•贺州)解不等式组:{5x −6>4,①x −8<4x +1.x【答案】见试题解答内容 【解答】解:解①得x >2, 解①得x >﹣3,所以不等式组的解集为x >2.49.(2019•广西)解不等式组:{3x −5<x +13x −46≤2x −13,并利用数轴确定不等式组的解集.【答案】见试题解答内容【解答】解:{3x −5<x +1①3x −46≤2x −13x解①得x <3,解①得x ≥﹣2, 用数轴表示为:所以不等式组的解集为﹣2≤x <3.50.(2019•贵港)(1)计算:√4−(√3−3)0+(12)﹣2﹣4sin30°;(2)解不等式组:{6x −2>2(x −4)23−3−x 2≤−x 3,并在数轴上表示该不等式组的解集.【答案】见试题解答内容 【解答】解:(1)原式=2﹣1+4﹣4×12=2﹣1+4﹣2=3;(2)解不等式6x ﹣2>2(x ﹣4),得:x >−32, 解不等式23−3−x 2≤−x3,得:x ≤1,则不等式组的解集为−32<x≤1,将不等式组的解集表示在数轴上如下:。

2020年广西桂林中考数学试题(解析版)

2020年广西桂林中考数学试题(解析版)

2020年广西桂林中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)有理数2,1,﹣1,0中,最小的数是()A.2B.1C.﹣1D.02.(3分)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.60°D.70°3.(3分)下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率D.调查全班同学的身高4.(3分)下面四个几何体中,左视图为圆的是()A.B.C.D.5.(3分)若=0,则x的值是()A.﹣1B.0C.1D.26.(3分)因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)7.(3分)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2 8.(3分)直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.1D.29.(3分)不等式组的整数解共有()A.1个B.2个C.3个D.4个10.(3分)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°11.(3分)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=11012.(3分)如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.πB.πC.2πD.2π二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.(3分)2020的相反数是.14.(3分)计算:ab•(a+1)=.15.(3分)如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cos A的值是.16.(3分)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.17.(3分)反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.18.(3分)如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.20.(6分)解二元一次方程组:.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB =30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B (点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.2020年广西桂林中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)有理数2,1,﹣1,0中,最小的数是()A.2B.1C.﹣1D.0【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣1<0<1<2,∴在2,1,﹣1,0这四个数中,最小的数是﹣1.故选:C.2.(3分)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.60°D.70°【分析】根据平行线的性质和∠1的度数,可以得到∠2的度数,本题得以解决.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.3.(3分)下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率D.调查全班同学的身高【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查漓江流域水质情况,应当采用抽样调查的方式,故本选项不合题意;C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意.D、调查全班同学的身高,应当采用全面调查,故本选项符合题意.故选:D.4.(3分)下面四个几何体中,左视图为圆的是()A.B.C.D.【分析】根据四个几何体的左视图进行判断即可.【解答】解:下面四个几何体中,A的左视图为矩形;B的左视图为三角形;C的左视图为矩形;D的左视图为圆.故选:D.5.(3分)若=0,则x的值是()A.﹣1B.0C.1D.2【分析】利用算术平方根性质确定出x的值即可.【解答】解:∵=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.6.(3分)因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)【分析】利用平方差公式进行分解即可.【解答】解:原式=(a+2)(a﹣2),故选:A.7.(3分)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方运算法则以及积的乘方运算法则逐一判断即可.【解答】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.8.(3分)直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.1D.2【分析】由直线y=kx+2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k的一元一次方程,解之即可得出k值.【解答】解:∵直线y=kx+2过点(﹣1,4),∴4=﹣k+2,∴k=﹣2.故选:A.9.(3分)不等式组的整数解共有()A.1个B.2个C.3个D.4个【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【解答】解:解不等式x﹣1>0,得:x>1,解不等式5﹣x≥1,得:x≤4,则不等式组的解集为1<x≤4,所以不等式组的整数解有2、3、4这3个,故选:C.10.(3分)如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC的度数是()A.60°B.65°C.70°D.75°【分析】利用切线的性质及等腰三角形的性质求出∠OAC及∠OAB即可解决问题.【解答】解:∵AC与⊙O相切于点A,∴AC⊥OA,∴∠OAC=90°,∵OA=OB,∴∠OAB=∠OBA.∵∠O=130°,∴∠OAB==25°,∴∠BAC=∠OAC﹣∠OAB=90°﹣25°=65°.故选:B.11.(3分)参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=110【分析】设有x个队参赛,根据参加一次足球联赛的每两队之间都进行两场比赛,共要比赛110场,可列出方程.【解答】解:设有x个队参赛,则x(x﹣1)=110.故选:D.12.(3分)如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.πB.πC.2πD.2π【分析】根据已知的半径为5,所对的弦AB长为8,点P是的中点,利用垂径定理可得AC=4,PO⊥AB,再根据勾股定理可得AP的长,利用弧长公式即可求出点P的运动路径长.【解答】解:如图,设的圆心为O,∵圆O半径为5,所对的弦AB长为8,点P是的中点,根据垂径定理,得AC=AB=4,PO⊥AB,OC==3,∴PC=OP﹣OC=5﹣3=2,∴AP==2,∵将绕点A逆时针旋转90°后得到,∴∠P AP′=∠BAB′=90°,∴L PP′==π.则在该旋转过程中,点P的运动路径长是π.故选:B.二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.(3分)2020的相反数是﹣2020.【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故答案为:﹣2020.14.(3分)计算:ab•(a+1)=a2b+ab.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=a2b+ab,故答案为:a2b+ab.15.(3分)如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cos A的值是.【分析】根据余弦的定义解答即可.【解答】解:在Rt△ABC中,cos A==,故答案为:.16.(3分)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.【分析】根据概率公式解答就可求出任选该正方体的一面出现“我”字的概率.【解答】解:∵共有六个字,“我”字有2个,∴P(“我”)==.故答案为:.17.(3分)反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有3个.【分析】观察反比例函数y=(x<0)的图象可得,图象过第二象限,然后根据反比例函数的图象和性质即可进行判断.【解答】解:观察反比例函数y=(x<0)的图象可知:图象过第二象限,∴k<0,所以①错误;因为当x<0时,y随x的增大而增大;所以②正确;因为该函数图象关于直线y=﹣x对称;所以③正确;因为点(﹣2,3)在该反比例函数图象上,所以k=﹣6,则点(﹣1,6)也在该函数的图象上.所以④正确.所以其中正确结论的个数为3个.故答案为3.18.(3分)如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF的上任意一点,连接BP,CP,则BP+CP的最小值是.【分析】在AB上取一点T,使得AT=1,连接PT,P A,CT.证明△P AT∽△BAP,推出==,推出PT=PB,推出PB+CP=CP+PT,根据PC+PT≥TC,求出CT 即可解决问题.【解答】解:在AB上取一点T,使得AT=1,连接PT,P A,CT.∵P A=2.AT=1,AB=4,∴P A2=AT•AB,∴=,∵∠P AT=∠P AB,∴△P AT∽△BAP,∴==,∴PT=PB,∴PB+CP=CP+PT,∵PC+PT≥TC,在Rt△ACT中,∵∠CAT=90°,AT=1,AC=4,∴CT==,∴PB+PC≥,∴PB+PC的最小值为.故答案为.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.【分析】原式利用零指数幂、乘方运算法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=1+4+﹣=5.20.(6分)解二元一次方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:①+②得:6x=6,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.【分析】(1)依据平移的方向和距离,即可得到平移后的△A1B1C1;(2)依据△ABC绕原点O旋转180°,即可画出旋转后的△A2B2C2;(3)依据对称点连线的中点的位置,即可得到对称中心的坐标.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)由图可得,△A1B1C1与△A2B2C2关于点(﹣2,0)中心对称.故答案为:﹣2,0.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是507.1亿件,比2017年增长了26.6%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是28%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.【分析】(1)由材料1中的统计图中的信息即可得到结论;(2)由材料1中的统计图的信息即可得到结论;(3)根据统计图中的信息即可得到结论;(4)根据题意列式计算即可.【解答】解:(1)由材料1中的统计图可得:2018年,全国快递业务量是507.1亿件,比2017年增长了26.6%;(2)由材料1中的统计图可得:2015﹣2019年,全国快递业务量增长速度的中位数是28%;(3)不赞同,理由:由图1中的信息可得,2016﹣2019年全国快递业务量增长速度逐年放缓,但是快递业务量却逐年增加;(4)635.2×(1+50%)=952.8,答:2020年的快递业务量为952.8亿件.故答案为:507.1,26.6,28.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.【分析】(1)由SAS证明△ABE≌△ADF即可;(2)证△ABD是等边三角形,得出BE⊥AD,求出AD即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【分析】(1)设每副围棋x元,则每副象棋(x﹣8)元,根据420元购买象棋数量=756元购买围棋数量列出方程并解答;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意列出不等式并解答.【解答】解:(1)设每副围棋x元,则每副象棋(x﹣8)元,根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.答:每副围棋18元,则每副象棋10元;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意,得18m+10(40﹣m)≤600.解得m≤25.故m最大值是25.答:该校最多可再购买25副围棋.25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB =30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.【分析】(1)利用直角三角形斜边的中线等于斜边的一半,判断出OA=OB=OC=OD,即可得出结论;(2)利用等弧所对的圆周角相等,即可得出结论;(3)先判断出△DEF∽△BDF,得出DF2=BF•EF,再利用勾股定理得出OD2+OF2=DF2,即可得出结论.【解答】证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB 的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)由(1)知,A,B,C,D四个点在以点O为圆心的同一个圆上,且AD=BD,∴∠ACD=∠BCD,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B (点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.【分析】(1)将点C坐标代入抛物线解析式中,即可得出结论;(2)分三种情况:直接利用等腰三角形的性质,即可得出结论;(3)先判断出△PQE≌△P'Q'E(AAS),得出PQ=P'Q',EQ=EQ',进而得出P'Q'=n,EQ'=QE=m+2,确定出点P'(n﹣2,2+m),将点P'的坐标代入直线AD的解析式中,和点P代入抛物线解析式中,联立方程组,求解即可得出结论.【解答】解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),∴2=a(0+6)(0﹣2),∴a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴抛物线的对称轴为直线x=﹣2;(2)如图1,由(1)知,抛物线的对称轴为x=﹣2,∴E(﹣2,0),∵C(0,2),∴OC=OE=2,∴CE=OC=2,∠CED=45°,∵△CME是等腰三角形,∴①当ME=MC时,∴∠ECM=∠CED=45°,∴∠CME=90°,∴M(﹣2,2),②当CE=CM时,∴MM1=CM=2,∴EM1=4,∴M1(﹣2,4),③当EM=CE时,∴EM2=EM3=2,∴M2(﹣2,﹣2),M3(﹣2,2),即满足条件的点M的坐标为(﹣2,﹣2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);(3)如图2,由(1)知,抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴D(﹣2,),令y=0,则(x+6)(x﹣2)=0,∴x=﹣6或x=2,∴点A(﹣6,0),∴直线AD的解析式为y=x+4,过点P作PQ⊥x轴于Q,过点P'作P'Q'⊥DE于Q',∴∠EQ'P'=∠EQP=90°,由(2)知,∠CED=∠CEB=45°,由折叠知,EP'=EP,∠CEP'=∠CEP,∴△PQE≌△P'Q'E(AAS),∴PQ=P'Q',EQ=EQ',设点P(m,n),∴OQ=m,PQ=n,∴P'Q'=n,EQ'=QE=m+2,∴点P'(n﹣2,2+m),∵点P'在直线AD上,∴2+m=(n﹣2)+4①,∵点P在抛物线上,∴n=﹣(m+6)(m﹣2)②,联立①②解得,m=或m=,即点P的横坐标为或.。

全国2018年中考数学真题分类汇编 第21讲 特殊的平行四边形 第3课时 正方形(无答案)

全国2018年中考数学真题分类汇编 第21讲 特殊的平行四边形 第3课时 正方形(无答案)

第3课时正方形知识点1 正方形的定义及性质(2018泸州)如图4,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A. B. C. D.(2018桂林)如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A.3B.C.D.(2018上海)(2018兰州)(2018黑龙江龙东).(2018深圳)如图6,四边形ABCD是正方形,AB=4,和都是直角,且点E、A、B三点在同一直线上,则图中阴影部分的面积是。

(2018恩施)如图所示,在正方形中,为边中点,连接并延长交边的延长线于点,对角线交于点,已知,则线段的长度为()A. B. C. D.(2018宜昌)如图,正方形的边长为1,点分别是对角线上的两点, , ,,,垂足分别为,则图中阴影部分的面积等于( B )A.1 B. C. D.(2018海南)(2018咸宁)(2018白银)(2018武汉)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是___________(2018青岛)已知正方形的边长为5,点分别在上,,与相交于点,点为的中点,连接,则的长为.(2018江西)(2018甘肃)(2018自贡)如图,在边长为正方形中,把边绕点逆时针旋转60°,得到线段,连接并延长交于,连接,则⊿的面积为()A. B.C. D.(2018台州).如图,在正方形中,,点,分别在,上,,,相交于点.若图中阴影部分的面积与正方形的面积之比为,则的周长为.(2018南充)(2018潍坊)(2018吉林)(2018潍坊)(2018枣庄)(2018枣庄)(2018临沂)(2018南充)(2018南通)正方形的边长,为的中点,为的中点,分别与相交于点,则的长为()A. B. C. D.(2018聊城)(2018株洲)(本题满分8分)如图,在Rt△ABM和Rt△ADN的斜边分别为正方形的边AB和AD,其中AM=AN。

广西省2018-2020年中考数学试题实数分类汇编

广西省2018-2020年中考数学试题实数分类汇编

广西省2018-2020年中考数学试题实数分类汇编数学试题一.选择题(共30小题)1.(2020•桂林)有理数2,1,﹣1,0中,最小的数是()A.2B.1C.﹣1D.02.(2020•河池)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元3.(2020•广西)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106 4.(2020•玉林)2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是()A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣5 5.(2020•玉林)2的倒数是()A.12B.−12C.2D.﹣26.(2019•百色)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106 7.(2019•玉林)9的倒数是()A.19B.−19C.9D.﹣98.(2019•桂林)若海平面以上1045米,记作+1045米,则海平面以下155米,记作()A.﹣1200米B.﹣155米C.155米D.1200米9.(2019•桂林)将数47300000用科学记数法表示为()A.473×105B.47.3×106C.4.73×107D.4.73×105 10.(2019•玉林)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是()A.278×108B.27.8×109C.2.78×1010D.2.78×108 11.(2019•柳州)据CCTV新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()A.0.1044×106辆B.1.044×106辆C.1.044×105辆D.10.44×104辆12.(2019•河池)计算3﹣4,结果是()A.﹣1B.﹣7C.1D.713.(2019•贺州)某图书馆有图书约985000册,数据985000用科学记数法可表示为()A.985×103B.98.5×104C.9.85×105D.0.985×106 14.(2019•广西)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106 15.(2019•广西)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃16.(2019•贺州)﹣2的绝对值是()A.﹣2B.2C.12D.−1217.(2018•百色)15的绝对值是()A.5B.−15C.﹣5D.1518.(2018•百色)某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6B.6.18×10﹣7C.6.18×106D.6.18×10﹣6 19.(2018•梧州)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学记数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6 20.(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105 21.(2018•柳州)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109 22.(2018•柳州)计算:0+(﹣2)=()A.﹣2B.2C.0D.﹣20 23.(2020•桂林)若√x−1=0,则x的值是()A.﹣1B.0C.1D.224.(2020•广西)下列实数是无理数的是()A.√2B.1C.0D.﹣525.(2019•玉林)下列各数中,是有理数的是()3A.πB.1.2C.√2D.√326.(2019•柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6B.6C.5D.﹣527.(2019•桂林)9的平方根是()A.3B.±3C.﹣3D.9 28.(2018•贺州)在﹣1、1、√2、2这四个数中,最小的数是()A.﹣1B.1C.√2D.2 29.(2018•玉林)下列实数中,是无理数的是()A.1B.√2C.﹣3D.13 30.(2018•贺州)4的平方根是()A.2B.﹣2C.±2D.16二.填空题(共7小题)31.(2019•玉林)计算:(﹣6)﹣(+4)=.32.(2019•百色)﹣16的相反数是.33.(2019•贵港)有理数9的相反数是.34.(2019•贵港)将实数3.18×10﹣5用小数表示为.35.(2019•桂林)计算:|﹣2019|=.3=.36.(2019•梧州)计算:√837.(2018•陕西)比较大小:3√10(填“>”、“<”或“=”).三.解答题(共13小题)38.(2020•广西)计算:﹣(﹣1)+32÷(1﹣4)×2.39.(2020•桂林)计算:(π+√3)0+(﹣2)2+|−1|﹣sin30°.240.(2020•玉林)计算:√2•(π﹣3.14)0﹣|√2−1|+(√9)2.41.(2019•百色)计算:(﹣1)3+√9−(π﹣112)0﹣2√3tan60°42.(2019•柳州)计算:22+|﹣3|−√4+π0.+(π﹣cos60°)0.43.(2019•玉林)计算:|√3−1|﹣(﹣2)3−√12244.(2019•广西)计算:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2.45.(2019•贺州)计算:(﹣1)2019+(π﹣3.14)0−√16+2sin30°.46.(2019•河池)计算:30+√8−(1)﹣2+|﹣3|.247.(2018•河池)计算:(﹣2)2+|﹣2|−√4−2tan45°48.(2018•百色)计算:|2−√2|+2sin45°﹣(x)0.349.(2018•贺州)计算:(﹣1)2018+|−√3|﹣(√2−π)0﹣2sin60°.50.(2018•桂林)计算:√18+(﹣3)0﹣6cos45°+(1)﹣1.2广西省2018-2020年中考数学试题分类汇编实数答案详解一.选择题(共30小题)1.(2020•桂林)有理数2,1,﹣1,0中,最小的数是()A.2B.1C.﹣1D.0【答案】C【解答】解:根据有理数比较大小的方法,可得﹣1<0<1<2,∴在2,1,﹣1,0这四个数中,最小的数是﹣1.故选:C.2.(2020•河池)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元【答案】C【解答】解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.3.(2020•广西)2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000次,则数据889000用科学记数法表示为()A.88.9×103B.88.9×104C.8.89×105D.8.89×106【答案】C【解答】解:889000=8.89×105.故选:C.4.(2020•玉林)2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是()A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣5【答案】C【解答】解:0.00012=1.2×10﹣4.故选:C.5.(2020•玉林)2的倒数是()A.12B.−12C.2D.﹣2【答案】A【解答】解:2的倒数是12.故选:A.6.(2019•百色)一周时间有604800秒,604800用科学记数法表示为()A.6048×102 B.6.048×105C.6.048×106D.0.6048×106【答案】B【解答】解:数字604800用科学记数法表示为6.048×105.故选:B.7.(2019•玉林)9的倒数是()A.19B.−19C.9D.﹣9【答案】A【解答】解:9的倒数是:19.故选:A.8.(2019•桂林)若海平面以上1045米,记作+1045米,则海平面以下155米,记作()A.﹣1200米B.﹣155米C.155米D.1200米【答案】B【解答】解:若海平面以上1045米,记作+1045米,则海平面以下155米,记作﹣155米.故选:B.9.(2019•桂林)将数47300000用科学记数法表示为()A.473×105B.47.3×106C.4.73×107D.4.73×105【答案】C【解答】解:将47300000用科学记数法表示为4.73×107,故选:C.10.(2019•玉林)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是()A.278×108B.27.8×109C.2.78×1010D.2.78×108【答案】C【解答】解:278亿用科学记数法表示应为2.78×1010,故选:C.11.(2019•柳州)据CCTV新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为()A.0.1044×106辆B.1.044×106辆C.1.044×105辆D.10.44×104辆【答案】C【解答】解:104400用科学记数法表示应为1.044×105,故选:C.12.(2019•河池)计算3﹣4,结果是()A.﹣1B.﹣7C.1D.7【答案】A【解答】解:3﹣4=﹣1.故选:A.13.(2019•贺州)某图书馆有图书约985000册,数据985000用科学记数法可表示为()A.985×103B.98.5×104C.9.85×105D.0.985×106【答案】C【解答】解:985000=9.85×105,故选:C.14.(2019•广西)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【答案】B【解答】解:700000=7×105;故选:B.15.(2019•广西)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【答案】D【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.16.(2019•贺州)﹣2的绝对值是()A.﹣2B.2C.12D.−12【答案】B【解答】解:|﹣2|=2,故选:B.17.(2018•百色)15的绝对值是()A.5B.−15C.﹣5D.15【答案】D【解答】解:15的绝对值是15.故选:D.18.(2018•百色)某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6B.6.18×10﹣7C.6.18×106D.6.18×10﹣6【答案】D【解答】解:0.00000618米,用科学记数法把半径表示为6.18×10﹣6.故选:D.19.(2018•梧州)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学记数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【答案】A【解答】解:0.00015=1.5×10﹣4,故选:A.20.(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【答案】A【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.21.(2018•柳州)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【答案】C【解答】解:7000000000=7×109.故选:C.22.(2018•柳州)计算:0+(﹣2)=()A.﹣2B.2C.0D.﹣20【答案】A【解答】解:0+(﹣2)=﹣2.故选:A.23.(2020•桂林)若√x−1=0,则x的值是()A.﹣1B.0C.1D.2【答案】C【解答】解:∵√x−1=0,∴x﹣1=0,解得:x=1,则x的值是1.故选:C.24.(2020•广西)下列实数是无理数的是()A.√2B.1C.0D.﹣5【答案】A【解答】解:无理数是无限不循环小数,而1,0,﹣5是有理数,因此√故选:A.25.(2019•玉林)下列各数中,是有理数的是()3A.πB.1.2C.√2D.√3【答案】B【解答】解:四个选项中只有1.2是有理数.故选:B.26.(2019•柳州)定义:形如a+bi的数称为复数(其中a和b为实数,i为虚数单位,规定i2=﹣1),a称为复数的实部,b称为复数的虚部.复数可以进行四则运算,运算的结果还是一个复数.例如(1+3i)2=12+2×1×3i+(3i)2=1+6i+9i2=1+6i﹣9=﹣8+6i,因此,(1+3i)2的实部是﹣8,虚部是6.已知复数(3﹣mi)2的虚部是12,则实部是()A.﹣6B.6C.5D.﹣5【答案】C【解答】解:∵(3﹣mi)2=32﹣2×3×mi+(mi)2=9﹣6mi+m2i2=9+m2i2﹣6mi=9﹣m2﹣6mi,∴复数(3﹣mi)2的实部是9﹣m2,虚部是﹣6m,∴﹣6m=12,∴m=﹣2,∴9﹣m2=9﹣(﹣2)2=9﹣4=5.故选:C.27.(2019•桂林)9的平方根是()A.3B.±3C.﹣3D.9【答案】B【解答】解:∵(±3)2=9,∴9的平方根为:±3.故选:B.28.(2018•贺州)在﹣1、1、√2、2这四个数中,最小的数是()A.﹣1B.1C.√2D.2【答案】A【解答】解:在实数﹣1,1,√2,2中,最小的数是﹣1.故选:A.29.(2018•玉林)下列实数中,是无理数的是()A.1B.√2C.﹣3D.13【答案】B【解答】解:1,﹣3,1是有理数,3√2是无理数,故选:B.30.(2018•贺州)4的平方根是()A.2B.﹣2C.±2D.16【答案】C【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.二.填空题(共7小题)31.(2019•玉林)计算:(﹣6)﹣(+4)=﹣10.【答案】见试题解答内容【解答】解:(﹣6)﹣(+4)=(﹣6)+(﹣4)=﹣10.故答案为:﹣1032.(2019•百色)﹣16的相反数是16.【答案】见试题解答内容【解答】解:﹣16的相反数是16.故答案为:1633.(2019•贵港)有理数9的相反数是﹣9.【答案】见试题解答内容【解答】解:9的相反数是﹣9;故答案为﹣9;34.(2019•贵港)将实数3.18×10﹣5用小数表示为0.0000318.【答案】见试题解答内容【解答】解:3.18×10﹣5=0.0000318;故答案为0.0000318;35.(2019•桂林)计算:|﹣2019|=2019.【答案】见试题解答内容【解答】解:|﹣2019|=2019,故答案为:2019.3=2.36.(2019•梧州)计算:√8【答案】见试题解答内容【解答】解:∵23=83=2∴√8故答案为:2.37.(2018•陕西)比较大小:3<√10(填“>”、“<”或“=”).【答案】见试题解答内容【解答】解:32=9,(√10)2=10,∴3<√10.三.解答题(共13小题)38.(2020•广西)计算:﹣(﹣1)+32÷(1﹣4)×2.【答案】见试题解答内容【解答】解:原式=1+9÷(﹣3)×2=1﹣3×2=1﹣6=﹣5.|﹣sin30°.39.(2020•桂林)计算:(π+√3)0+(﹣2)2+|−12【答案】5.【解答】解:原式=1+4+12−12=5.40.(2020•玉林)计算:√2•(π﹣3.14)0﹣|√2−1|+(√9)2.【答案】见试题解答内容【解答】解:原式=√×1﹣(√−1)+9=√2−√2+1+9=10.41.(2019•百色)计算:(﹣1)3+√9−(π﹣112)0﹣2√3tan60°【答案】见试题解答内容【解答】解:原式=﹣1+3﹣1﹣2√3×√3=1﹣2×3=﹣5;42.(2019•柳州)计算:22+|﹣3|−√4+π0.【答案】见试题解答内容【解答】解:原式=4+3﹣2+1=6.43.(2019•玉林)计算:|√3−1|﹣(﹣2)3−√122+(π﹣cos60°)0.【答案】见试题解答内容【解答】解:原式=√3−1+8−√3+1=8.44.(2019•广西)计算:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2.【答案】见试题解答内容【解答】解:(﹣1)2+(√6)2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.45.(2019•贺州)计算:(﹣1)2019+(π﹣3.14)0−√16+2sin30°.【答案】见试题解答内容【解答】解:原式=﹣1+1﹣4+2×12=﹣4+1=﹣3.46.(2019•河池)计算:30+√8−(1)﹣2+|﹣3|.2【答案】见试题解答内容【解答】解:原式=1+2√2−4+3=2√247.(2018•河池)计算:(﹣2)2+|﹣2|−√4−2tan45°【答案】见试题解答内容【解答】解:原式=4+2﹣2﹣2×1=2.48.(2018•百色)计算:|2−√2|+2sin45°﹣(x)0.3【答案】见试题解答内容−1【解答】解:原式=2−√2+2×√22=1−√2+√2=1.49.(2018•贺州)计算:(﹣1)2018+|−√3|﹣(√2−π)0﹣2sin60°.【答案】见试题解答内容【解答】解:原式=1+√3−1﹣2×√32=1+√3−1−√3=0.50.(2018•桂林)计算:√18+(﹣3)0﹣6cos45°+(1)﹣1.2【答案】见试题解答内容+2=3√2+1﹣3√2+2=3.【解答】解:原式=3√2+1﹣6×√22。

广西省2018-2020年中考数学试题代数式、整式分类汇编

广西省2018-2020年中考数学试题代数式、整式分类汇编

广西省2018-2020年中考数学试题代数式、整式分类汇编数学试题一.选择题(共28小题)1.(2020•玉林)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.499B.500C.501D.10022.(2019•贺州)计算11×3+13×5+15×7+17×9+⋯+137×39的结果是()A.1937B.1939C.3739D.38393.(2018•河池)下列单项式中,与3a2b为同类项的是()A.﹣a2b B.ab2C.3ab D.34.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999B.10000C.10001D.10002 5.(2018•贺州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.(√2)n﹣1B.2n﹣1C.(√2)n D.2n6.(2018•柳州)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元7.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)8.(2020•桂林)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2 9.(2020•河池)下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1D.a2+a=3a10.(2020•广西)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2 11.(2020•玉林)下列计算正确的是()A.8a﹣a=7B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a3 12.(2019•梧州)下列计算正确的是()A.3x﹣x=3B.2x+3x=5x2C.(2x)2=4x2D.(x+y)2=x2+y213.(2019•桂林)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.a2+a2=2a2D.(a+3)2=a2+914.(2019•玉林)下列运算正确的是()A.3a+2a=5a2B.3a2﹣2a=aC.(﹣a)3•(﹣a2)=﹣a5D.(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a215.(2019•柳州)计算:x(x2﹣1)=()A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x 16.(2019•广西)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+117.(2019•贵港)下列运算正确的是()A.a3+(﹣a)3=﹣a6B.(a+b)2=a2+b2C.2a2•a=2a3D.(ab2)3=a3b518.(2018•河池)下列运算正确的是()A.2a+3b=5ab B.a6÷a2=a3C.a3•a2=a5D.(a﹣b)2=a2﹣b219.(2018•贺州)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a4 20.(2018•贵港)下列运算正确的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5 21.(2018•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b 22.(2018•桂林)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=2 23.(2018•南宁)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a324.(2018•玉林)下列计算结果为a6的是()A.a7﹣a B.a2•a3C.a8÷a2D.(a4)2 25.(2020•桂林)因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)26.(2019•贺州)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)227.(2018•百色)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)28.(2018•贺州)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)二.填空题(共10小题)29.(2020•广西)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是.30.(2019•百色)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是.31.(2019•柳州)计算:7x﹣4x=.32.(2019•河池)a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是.33.(2018•百色)观察以下一列数:3,54,79,916,1125,…则第20个数是.34.(2020•桂林)计算:ab•(a+1)=.35.(2019•贺州)计算a3•a的结果是.36.(2019•桂林)若x2+ax+4=(x﹣2)2,则a=.37.(2018•贵港)因式分解:ax2﹣a=.38.(2018•南宁)因式分解:2a2﹣2=.三.解答题(共1小题)39.(2019•河池)分解因式:(x﹣1)2+2(x﹣5).广西省2018-2020年中考数学试题分类代数式、整式答案详解一.选择题(共28小题)1.(2020•玉林)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.499B.500C.501D.1002【答案】C【解答】解:由题意,得第n个数为2n,那么2n+2(n﹣1)+2(n﹣2)=3000,解得:n=501,故选:C.2.(2019•贺州)计算11×3+13×5+15×7+17×9+⋯+137×39的结果是()A.1937B.1939C.3739D.3839【答案】B【解答】解:原式=12(1−13+13−15+15−17+17−19+⋯+137−139)=12×(1−139)=1939.故选:B.3.(2018•河池)下列单项式中,与3a2b为同类项的是()A.﹣a2b B.ab2C.3ab D.3【答案】A【解答】解:∵3a2b含有字母a、b,且次数分别为2、1,∴与3a2b是同类项的是﹣a2b.故选:A.4.(2018•梧州)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999B.10000C.10001D.10002【答案】A【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,35=62﹣1,…,∴第100个数是1002﹣1=9999,故选:A.5.(2018•贺州)如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()A.(√2)n﹣1B.2n﹣1C.(√2)n D.2n【答案】B【解答】解:第一个正方形的面积为1=20,第二个正方形的面积为(√2=2=21,第三个正方形的面积为22,…第n个正方形的面积为2n﹣1.故选:B.6.(2018•柳州)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【答案】A【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.7.(2018•桂林)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【答案】B【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.8.(2020•桂林)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2【答案】B【解答】解:A.x•x=x2,故本选项不合题意;B.x+x=2x,故本选项符合题意;C.(x3)3=x9,故本选项不合题意;D.(2x)2=4x2,故本选项不合题意.故选:B.9.(2020•河池)下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1D.a2+a=3a【答案】A【解答】解:A、a(﹣a)=﹣a2,原计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、2a﹣a=a,原计算错误,故此选项不符合题意;D、a2与a不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A.10.(2020•广西)下列运算正确的是()A.2x2+x2=2x4B.x3•x3=2x3C.(x5)2=x7D.2x7÷x5=2x2【答案】D【解答】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.11.(2020•玉林)下列计算正确的是()A.8a﹣a=7B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a3【答案】C【解答】解:A.因为8a﹣a=7a,所以A选项错误;B.因为a2+a2=2a2,所以B选项错误;C.因为2a•3a=6a2,所以C选项正确;D.因为a6÷a2=a4,所以D选项错误.故选:C.12.(2019•梧州)下列计算正确的是()A.3x﹣x=3B.2x+3x=5x2C.(2x)2=4x2D.(x+y)2=x2+y2【答案】C【解答】解:A、3x﹣x=2x,故此选项错误;B、2x+3x=5x,故此选项错误;C、(2x)2=4x2,正确;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:C.13.(2019•桂林)下列计算正确的是()A.a2•a3=a6B.a8÷a2=a4C.a2+a2=2a2D.(a+3)2=a2+9【答案】C【解答】解:A、a2•a3=a5,故此选项错误;B、a8÷a2=a6,故此选项错误;C、a2+a2=2a2,正确;D、(a+3)2=a2+6a+9,故此选项错误;故选:C.14.(2019•玉林)下列运算正确的是()A.3a+2a=5a2B.3a2﹣2a=aC.(﹣a)3•(﹣a2)=﹣a5D.(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a2【答案】D【解答】解:A、3a+2a=5a,故此选项错误;B、3a2﹣2a,无法计算,故此选项错误;C、(﹣a)3•(﹣a2)=a5,故此选项错误;D、(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a2,正确.故选:D.15.(2019•柳州)计算:x(x2﹣1)=()A.x3﹣1B.x3﹣x C.x3+x D.x2﹣x 【答案】B【解答】解:x(x2﹣1)=x3﹣x;故选:B.16.(2019•广西)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【答案】A【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.17.(2019•贵港)下列运算正确的是()A.a3+(﹣a)3=﹣a6B.(a+b)2=a2+b2C.2a2•a=2a3D.(ab2)3=a3b5【答案】C【解答】解:a3+(﹣a3)=0,A错误;(a+b)2=a2+2ab+b2,B错误;(ab2)3=a3b5,D错误;故选:C.18.(2018•河池)下列运算正确的是()A.2a+3b=5ab B.a6÷a2=a3C.a3•a2=a5D.(a﹣b)2=a2﹣b2【答案】C【解答】解:A、2a与3b不是同类项,不能合并,错误;B、a6÷a2=a4,错误;C、a3•a2=a5,正确;D、(a﹣b)2=a2﹣2ab+b2,错误;故选:C.19.(2018•贺州)下列运算正确的是()A.a2•a2=2a2B.a2+a2=a4C.(a3)2=a6D.a8÷a2=a4【答案】C【解答】解:A、a2•a2=a4,错误;B、a2+a2=2a2,错误;C、(a3)2=a6,正确;D、a8÷a2=a6,错误;故选:C.20.(2018•贵港)下列运算正确的是()A.2a﹣a=1B.2a+b=2abC.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5【答案】D【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.21.(2018•柳州)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【答案】B【解答】解:(2a)•(ab)=2a2b.故选:B.22.(2018•桂林)下列计算正确的是()A.2x﹣x=1B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=2【答案】C【解答】解:A、2x﹣x=x,错误;B、x(﹣x)=﹣x2,错误;C、(x2)3=x6,正确;D、x2+x=x2+x,错误;故选:C.23.(2018•南宁)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a3【答案】D【解答】解:A、a(a+1)=a2+a,故本选项错误;B、(a2)3=a6,故本选项错误;C、不是同类项不能合并,故本选项错误;D、a5÷a2=a3,故本选项正确.故选:D.24.(2018•玉林)下列计算结果为a6的是()A.a7﹣a B.a2•a3C.a8÷a2D.(a4)2【答案】C【解答】解:A、a7与a不能合并,A错误;B、a2•a3=a5,B错误;C、a8÷a2=a6,C正确;D、(a4)2=a8,D错误;故选:C.25.(2020•桂林)因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)【答案】A【解答】解:原式=(a+2)(a﹣2),故选:A.26.(2019•贺州)把多项式4a2﹣1分解因式,结果正确的是()A.(4a+1)(4a﹣1)B.(2a+1)(2a﹣1)C.(2a﹣1)2D.(2a+1)2【答案】B【解答】解:4a2﹣1=(2a+1)(2a﹣1),故选:B.27.(2018•百色)因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)【答案】C【解答】解:原式=x(1﹣4x2)=x(1+2x)(1﹣2x),故选:C.28.(2018•贺州)下列各式分解因式正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2﹣4xy+9y2=(2x﹣3y)2C.2x2﹣8y2=2(x+4y)(x﹣4y)D.x(x﹣y)+y(y﹣x)=(x﹣y)(x+y)【答案】A【解答】解:A、x2+6xy+9y2=(x+3y)2,正确;B、2x2﹣4xy+9y2=无法分解因式,故此选项错误;C、2x2﹣8y2=2(x+2y)(x﹣2y),故此选项错误;D、x(x﹣y)+y(y﹣x)=(x﹣y)2,故此选项错误;故选:A.二.填空题(共10小题)29.(2020•广西)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.【答案】556个.【解答】解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,因为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.30.(2019•百色)观察一列数:﹣3,0,3,6,9,12,…,按此规律,这一列数的第21个数是57.【答案】见试题解答内容【解答】解:由题意知,这列数的第n个数为﹣3+3(n﹣1)=3n﹣6,当n=21时,3n﹣6=3×21﹣6=57,故答案为:57.31.(2019•柳州)计算:7x﹣4x=3x.【答案】见试题解答内容【解答】解:7x﹣4x=(7﹣4)x=3x,故答案为:3x.32.(2019•河池)a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是6.【答案】见试题解答内容【解答】解:由任意三个相邻数之和都是15可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵2019÷3=673,因此a2019=a3=6.故答案为:6.33.(2018•百色)观察以下一列数:3,54,79,916,1125,…则第20个数是41400.【答案】见试题解答内容【解答】解:观察数列得:第n个数为2n+1n2,则第20个数是41400,故答案为:4140034.(2020•桂林)计算:ab•(a+1)=a2b+ab.【答案】a2b+ab.【解答】解:原式=a2b+ab,故答案为:a2b+ab.35.(2019•贺州)计算a3•a的结果是a4.【答案】见试题解答内容【解答】解:a3•a=a3+1=a4,故答案为:a4.36.(2019•桂林)若x2+ax+4=(x﹣2)2,则a=﹣4.【答案】见试题解答内容【解答】解:∵x2+ax+4=(x﹣2)2,∴a=﹣4.故答案为:﹣4.37.(2018•贵港)因式分解:ax2﹣a=a(x+1)(x﹣1).【答案】见试题解答内容【解答】解:原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).38.(2018•南宁)因式分解:2a2﹣2=2(a+1)(a﹣1).【答案】见试题解答内容【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).三.解答题(共1小题)39.(2019•河池)分解因式:(x﹣1)2+2(x﹣5).【答案】见试题解答内容【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).。

2018年广西南宁市中考数学试卷(附答案)

2018年广西南宁市中考数学试卷(附答案)

2018年广西北部湾经济区六市同城初中毕业升学统一考试(南宁、北海、钦州、防城港、崇左和来宾市)数 学一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项是符合要求的) 1. -3的倒数是 ( ) A. -3 B. 3 C. 31-D. 31 2. 下列美丽的壮锦图案是中心对称图形的是 ( ) A B C D3. 2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为 ( ) A. 81×103 B. 8.1×103 C. 8.1×104 D. 0.81×1054. 某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分 A. 7分 B. 8分 ( ) C. 9分 D. 10分5. 下列运算正确的是 ( ) A. a(a+1) = a 2+1 B. (a 2)3 = a 5 C. 3a 2+a=4a 3 D. a 5÷a 2 = a 36. 如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于 ( ) A. 40° B. 45°C. 50°D. 55°7. 若m>n ,则下列不等式正确的是 ( ) A. m-2<n-2 B.4n4m > C. 6m<6n D. -8m>-8n 8. 从-2,-1, 2这三个数中任取两个不同的数相乘,积为正数的概率是 ( ) A.32B.21 C. 31 D.419. 将抛物线216x 2x 21y +-=向左平移2个单位后,得到新抛物线的解析式为 ( )A. +528)-(x 21=yB. +524)-(x 21=yC.328)(x 21y +-=D. 324)(x 21y +-=10. 如图,分别以等边三角形ABC 的三个顶点为圆点,以边长为半径画弧,得到封闭图形是莱洛三角形。

(10)2018-2020年北京中考数学复习各地区模拟试题分类(10)——四边形参考答案

(10)2018-2020年北京中考数学复习各地区模拟试题分类(10)——四边形参考答案

∵四边形 ABCD 是平行四边形,
∴AB∥CD,AD=BC=10,
∴∠BAF=∠DFA,
∵DC=16,
∴DF=DC﹣CF=16﹣6=10,
∴AD=DF,
∴∠DAF=∠DFA,
∴∠BAF=∠DAF,
∴AF 平分∠DAB.
13.【解答】(1)证明:∵四边形 ABCD 是平行四边形,
∴AD=BC,AD∥BC,
∴MA=ME<BM, ∴点 M 不在 AB 的垂直平分线上, ∴点 M 不在∠AOB 的角平分线上,故②错误, ③如图 3 中,作 PM∥OA 交 AB 于 M.
∵PM∥OA, ∴∠BMP=∠BAO=60°,∠BPM=∠AOB=60°, ∴△PMB 是等边三角形, ∴PB=PM=AQ, ∵PE⊥BM, ∴EM=BM, ∵∠AQD=∠MPD,∠ADQ=∠MQP,AQ=PM, ∴△ADQ≌△MDP(AAS), ∴AD=DM, ∴DE=DM+ME= 12AM+ 12BM= 12(AM+BM)= 12AB,故③正确, 故答案为①③. 6.【解答】解:①如图 1,
故存在两个中点四边形 MNPQ 是正方形. 故答案为:①②③④.
8.【解答】解:①如图,连接 AC,BD 交于 O, ∵四边形 ABCD 是菱形,连接 AC,BD 交于 O, 过点 O 直线 MP 和 QN,分别交 AB,BC,CD,AD 于 M,N,P,Q, 则四边形 MNPQ 是平行四边形, 故存在无数个四边形 MNPQ 是平行四边形;故正确; ②如图,当 PM=QN 时,四边形 MNPQ 是矩形,故存在无数个四边形 MNPQ 是矩形;故正确; ③如图,当 PM⊥QN 时,存在无数个四边形 MNPQ 是菱形;故正确; ④当四边形 MNPQ 是正方形时,MQ=PQ, 则△AMQ≌△DQP(AAS), ∴AM=QD,AQ=PD, ∵PD=BM, ∴AB=AD, ∴四边形 ABCD 是正方形, 当四边形 ABCD 为正方形时,四边形 MNPQ 是正方形,故存在无数个四边形 MNPQ 是正方形;故④错 误; 故答案为①②③.

2020年广西中考数学试卷汇编

2020年广西中考数学试卷汇编

2020年广西北部湾经济区中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列实数是无理数的是()A. B. 1 C. 0 D. -52.下列图形是中心对称图形的是()A. B. C. D.3.2020 年2 月至5 月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000 次,则数据889000 用科学记数法表示为()A. 88.9×103B. 88.9×104C. 8.89×105D. 8.89×1064.下列运算正确的是()A. 2x2+x2=2x4B. x3•x3=2x3C. (x5)2=x7D. 2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A. 检测长征运载火箭的零部件质量情况B. 了解全国中小学生课外阅读情况C. 调查某批次汽车的抗撞击能力D. 检测某城市的空气质量6.一元二次方程x2-2x+1=0 的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A. 60°B. 65°C. 70°D. 75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.第1页,共19页9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2 倍,提速后行车时间比提速前减少20min,则可列方程为()A. - =B. = -C. -20=D. = -2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2 为图1 的平面示意图),推开双门,双门间隙CD的距离为2 寸,点C和点D距离门槛AB都为1 尺(1 尺=10 寸),则AB的长是()A. 50.5 寸B. 52 寸C. 101 寸D. 104 寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y= (x>0)于点C,D.若AC= BD,则3OD2-OC2 的值为()A. 5B. 3C. 4D. 2二、填空题(本大题共6小题,共18.0分)13.如图,在数轴上表示的x的取值范围是______.14.计算:- =______.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9 环以上”的次数15 33 78 158 231 801 “射中9 环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9 环以上”的概率是______ (结果保留小数点后一位).第2页,共19页16.如图,某校礼堂的座位分为四个区域,前区一共有8 排,其中第1 排共有20 个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10 排,则该礼堂的座位总数是______.17.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.18.如图,在边长为2 的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.三、解答题(本大题共8小题,共66.0分)19.计算:-(-1)+32÷(1-4)×2.20.先化简,再求值:÷(x- ),其中x=3.21.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.第3页,共19页22.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20 份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600 名家长参加了此次问卷测评活动,请估计成绩不低于90 分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20 nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2 台A型机器人和5 台B型机器人同时工作2h共分拣垃圾3.6 吨,3 台A型机器人和2 台B型机器人同时工作5h 共分拣垃圾8 吨.第4页,共19页(1)1 台A型机器人和1 台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20 吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30 台购买数量不少于30 台A型20 万元/台原价购买打九折B型12 万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF= ,求的值.26.如图1,在平面直角坐标系中,直线l1:y=x+1 与直线l2:x=-2 相交于点D,点A是直线l2 上的动点,过点A作AB⊥l1 于点B,点C的坐标为(0,3),连接AC,BC .设点A的纵坐标为t,△ABC的面积为s.(1)当t=2 时,请直接写出点B的坐标;(2)s关于t的函数解析式为s= ,其图象如图2 所示,结合图1、2 的信息,求出a与b的值;(3)在l2 上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A的坐标和△ABC的面积;若不存在,请说明理由.第5页,共19页答案和解析1.【答案】A【解析】解:无理数是无限不循环小数,而1,0,-5 是有理数,因此是无理数,故选:A.无限不循环小数是无理数,而1,0,-5 是整数,也是有理数,因此是无理数.本题考查无理数的意义,准确把握无理数的意义是正确判断的前提.2.【答案】D【解析】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180 度后两部分重合.3.【答案】C【解析】解:889000=8.89×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于889000 有6 位,所以可以确定n=6-1=5.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.【答案】D【解析】解:A、2x2+x2=3x2,故此选项错误;B、x3•x3=x6,故此选项错误;C、(x5)2=x10,故此选项错误;D、2x7÷x5=2x2,正确.故选:D.直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.5.【答案】A【解析】解:检测长征运载火箭的零部件质量情况适合用全面调查,而“了解全国中小学生课外阅读情况”“调查某批次汽车的抗撞击能力”“检测某城市的空气质量”则不适合用全面调查,宜采取抽样调查,故选:A.利用全面调查、抽样调查的意义,结合具体的问题情境进行判断即可.本题考查全面调查、抽样调查的意义,在具体实际的问题情境中理解全面调查、抽样调查的意义是正确判断的前提.6.【答案】B第7页,共19页【解析】解:∵a=1,b=-2,c=1,∴△=(-2)2-4×1×1=4-4=0,∴有两个相等的实数根,故选:B.先根据方程的一般式得出a、b、c的值,再计算出△=b2-4ac的值,继而利用一元二次方程的根的情况与判别式的值之间的关系可得答案.本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0 时,方程有两个不相等的两个实数根;②当△=0 时,方程有两个相等的两个实数根;③当△<0 时,方程无实数根.上面的结论反过来也成立.7.【答案】B【解析】解:∵BA=BC,∠B=80°,∴∠A=∠ACB= (180°-80°)=50°,∴∠ACD=180°-∠ACB=130°,观察作图过程可知:CE平分∠ACD,∴∠DCE= ACD=65°,∴∠DCE的度数为65°故选:B.根据等腰三角形的性质可得∠ACB的度数,观察作图过程可得,进而可得∠DCE的度数.本题考查了作图-基本作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.8.【答案】C【解析】解:∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6 种路径,∵获得食物的有2 种路径,∴获得食物的概率是= ,故选:C.由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6 种路径,且获得食物的有2 种路径,然后利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】B【解析】解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,第8页,共19页∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴= (相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60-x,∴= ,解得:x=40,∴AN=60-x=60-40=20.故选:B.设正方形EFGH的边长EF=EH=x,易证四边形EHDN是矩形,则DN=x,根据正方形的性质得出EF∥BC,推出△AEF∽△ABC,根据相似三角形的性质计算即可得解.本题考查了相似三角形的判定和性质,矩形的判定和性质.解题的关键是掌握相似三角形的判定和性质,矩形的判定和性质的运用,注意:矩形的对边相等且平行,相似三角形的对应高的比等于相似比,题目是一道中等题,难度适中.10.【答案】A【解析】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2 倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:- = .故选:A.直接利用总时间的差值进而得出等式求出答案.此题主要考查了由实际问题抽象出分式方程,正确表示出行驶时间是解题关键.11.【答案】C【解析】解:过D作DE⊥AB于E,如图2 所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r,则AB=2r,DE=10,OE= CD=1,AE=r-1,在Rt△ADE中,AE2+DE2=AD2,即(r-1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101 寸,故选:C.画出直角三角形,根据勾股定理即可得到结论.本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.12.【答案】C【解析】解:延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,第9页,共19页∴A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y= (x>0)上,则CE= ,DF= .∴BD=BF-DF=b- ,AC= -a.又∵AC= BD,∴-a= (b- ),两边平方得:a2+ -2=3(b2+ -2),即a2+ =3(b2+ )-4,在直角△ODF中,OD2=OF2+DF2=b2+ ,同理OC2=a2+ ,∴3OD2-OC2=3(b2+ )-(a2+ )=4.故选:C.延长CA交y轴于E,延长BD交y轴于F.设A、B的横坐标分别是a,b,点A、B为直线y=x上的两点,A的坐标是(a,a),B的坐标是(b,b).则AE=OE=a,BF=OF=b .根据AC= BD得到a,b的关系,然后利用勾股定理,即可用a,b表示出所求的式子从而求解.本题考查了反比例函数、一次函数图象上点的坐标特征,勾股定理,正确利用AC= BD 得到a,b的关系是解题的关键.13.【答案】x<1【解析】解:在数轴上表示的x的取值范围是x<1,故答案为:x<1.根据“小于向左,大于向右及边界点含于解集为实心点,不含于解集即为空心点”求解可得.本题主要考查在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.14.【答案】【解析】解:=2 - = .故答案为:.先化简=2 ,再合并同类二次根式即可.本题主要考查了二次根式的加减,属于基础题型.15.【答案】0.8【解析】解:根据表格数据可知:根据频率稳定在0.8,估计这名运动员射击一次时“射中9 环以上”的概率是0.8.故答案为:0.8.大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.本题考查了利用频率估计概率,解决本题的关键是理解当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计第10页,共19页概率.16.【答案】556 个【解析】解:因为前区一共有8 排,其中第1 排共有20 个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8-1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10 排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556 个.故答案为:556 个.根据题意可得前区最后一排座位数为:20+2(8-1)=34,所以前区座位数为:(20+34)×8÷2=216,后区的座位数为:10×34=340,进而可得该礼堂的座位总数.本题考查了规律型:数字的变化类,解决本题的关键是根据数字的变化性质规律.17.【答案】(-4,3)【解析】解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(-4,3).故答案为:(-4,3).如图,根据点M(3,4)逆时针旋转90°得到点N,则可得点N的坐标为(-4,3).本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.18.【答案】π【解析】解:如图,作△CBD的外接圆⊙O,连接OB,OD.∵四边形ABCD是菱形,∵∠A=∠C=60°,AB=BC=CD=AD,∴△ABD,△BCD都是等边三角形,∴BD=AD,∠BDF=∠DAE,∵DF=AE,∴△BDF≌△DAE(SAS),∴∠DBF=∠ADE,第11页,共19页∵∠ADE+∠BDE=60°,∴∠DBF+∠BDP=60°,∴∠BDP=120°,∵∠C=60°,∴∠C+∠DPB=180°,∴B,C,D,P四点共圆,由BC=CD=BD=2 ,可得OB=OD=2,∵∠BOD=2∠C=120°,∴点P的运动的路径的长= = π.故答案为π.如图,作△CBD的外接圆⊙O,连接OB,OD.利用全等三角形的性质证明∠DPB=120°,推出B,C,D,P四点共圆,利用弧长公式计算即可.本题考查菱形的性质,等边三角形的判定和性质,弧长公式等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.【答案】解:原式=1+9÷(-3)×2=1-3×2=1-6=-5.【解析】直接利用有理数的混合运算法则计算得出答案.此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.20.【答案】解:原式= ÷(- )= ÷= •= ,当x=3 时,原式= = .【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x的值代入计算可得答案.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【答案】(1)证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);(2)证明:由(1)得:△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE,又∵AB=DE,第12页,共19页∴四边形ABED是平行四边形.【解析】(1)证出BC=EF,由SSS即可得出结论;(2)由全等三角形的性质得出∠B=∠DEF,证出AB∥DE,由AB=DE,即可得出结论.本题考查了平行四边形的判定、全等三角形的判定与性质以及平行线的判定等知识;熟练掌握平行四边形的判定,证明三角形全等是解题的关键.22.【答案】解:(1)将这组数据重新排列为:81,82,83,86,87,88,89,90,90 ,90,92,93,96,96,98,99,100,100,100,100,∴a=5,b= =91,c=100;(2)估计成绩不低于90 分的人数是1600×=1040(人);(3)中位数,在被调查的20 名学生中,中位数为91 分,有一半的人分数都是再91 分以上.【解析】(1)将数据从小到大重新排列,再根据中位数和众数的概念求解可得;(2)用总人数乘以样本中不低于90 分的人数占被调查人数的比例即可得;(3)从众数和中位数的意义求解可得.考查中位数、众数的意义及求法,理解各个统计量的意义,明确各个统计量的特点是解决问题的前提和关键.23.【答案】解:(1)过B作BM⊥AC于M,由题意可知∠BAM=45°,则∠ABM=45°,在Rt△ABM中,∵∠BAM=45°,AB=40nmile,∴BM=AM= AB=20 nmile,∴渔船航行20 nmile距离小岛B最近;(2)∵BM=20 nmile,MC=20 nmile,∴tan∠MBC= = = ,∴∠MBC=60°,∴∠CBG=180°-60°-45°-30°=45°,在Rt△BCM中,∵∠CBM=60°,BM=20 nmile,∴BC= =2BM=40 nmile,故救援队从B处出发沿点B的南偏东45°的方向航行到达事故地点航程最短,最短航程是40 nmile.【解析】(1)过B作PM⊥AB于C,解直角三角形即可得到结论;(2)在Rt△BCM中,解直角三角形求得∠CBM=60°,即可求得∠CBG=45°,BC=40 nmile ,即可得到结论.此题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24.【答案】解:(1)1 台A型机器人和1 台B型机器人每小时各分拣垃圾x吨和y吨,由题意可知:,解得:,第13页,共19页答:1 台A型机器人和1 台B型机器人每小时各分拣垃圾0.4 吨和0.2 吨.(2)由题意可知:0.4a+0.2b=20,∴b=100-2a(10≤a≤45).(3)当10≤a<30 时,此时40≤b≤80,∴w=20×a+0.8×12(100-2a)=0.8a+960,当a=10 时,此时w有最小值,w=968 万元,当30≤a≤35时,此时30≤b≤40,∴w=0.9×20a+0.8×12(100-2a)=-1.2a+960,当a=35 时,此时w有最小值,w=918 万元,当35<a≤45时,此时10≤b<30,∴w=0.9×20a+12(100-2a)=-6a+1200当a=45 时,w有最小值,此时w=930,答:选购A型号机器人35 台时,总费用w最少,此时需要918 万元.【解析】(1)1 台A型机器人和1 台B型机器人每小时各分拣垃圾x吨和y吨,根据题意列出方程即可求出答案.(2)根据题意列出方程即可求出答案.(3)根据a的取值,求出w与a的函数关系,从而求出w的最小值.本题考查一次函数,解题的关键正确找出题中的等量关系,本题属于中等题型.25.【答案】解:(1)∵AC为直径,∴∠ADC=90°,∴∠ACD+∠DAC=90°,∵∠DAE=∠ACE,∴∠DAC+∠DAE=90°,即∠CAE=90°,∴AP是⊙O的切线;(2)连接DB,如图1,∵PA和PB都是切线,∴PA=PB,∠OPA=∠OPB,PO⊥AB,∵PD=PD,∴△DPA≌△DPB(SAS),∴AD=BD,∴∠ABD=∠BAD,∵∠ACD=∠ABD,又∠DAE=∠ACE,∴∠DAF=∠DAF,∵AC是直径,∴∠ADE=∠ADC=90°,∴∠ADE=∠AFD=90°,∴△FAD∽△DAE;第14页,共19页(3)∵∠AFO=∠OAP=90°,∠AOF=∠POA,∴△AOF∽△POA,∴,∴,∴PA=2AO=AC,∵∠AFD=∠CAE=90°,∠DAF=∠ABD=∠ACE,∴△AFD∽△CAE,∴,∴,∵,不妨设OF=x,则AF=2x,∴,∴,∴,∴.【解析】(1)由AC为直径得∠ADC=90°,再由直角三角形两锐角互余和已知条件得∠DAC+∠DAE=90°,进而结出结论;(2)由切线长定理得PA=PB,∠OPA=∠OPB,进而证明△PAD≌△PBD,得AD=BD,得△BAD=△BDA,再由圆周角定理得∠DAF=∠EAD,进而便可得:△FAD∽△DAE;(3)证明△AOF∽△POA,得AP=2OA,再△AFD∽△CAE,求得的值使得的值.本题是圆的一个综合题,主要考查了圆周角定理,切线的性质与判定,切线长定理,相似三角形的性质与判定,勾股定理,解直角三角形的应用,第(3)小题关键在证明相似三角形.难度较大,一般为中考压轴题.26.【答案】解:(1)如图1,连接AG,第15页,共19页当t=2 时,A(-2,2),设B(x,x+1),在y=x+1 中,当x=0 时,y=1,∴G(0,1),∵AB⊥l1,∴∠ABG=90°,∴AB2+BG2=AG2,即(x+2)2 +(x+1-2)2+x2+(x+1-1)2=(-2)2+(2-1)2,解得:x1=0(舍),x2=- ,∴B(- ,);(2)如图2 可知:当t=7 时,s=4,把(7,4)代入s= 中得:+7b- =4,解得:b=-1,如图3,过B作BH∥y轴,交AC于H,由(1)知:当t=2 时,A(-2,2),B(- ,),∵C(0,3),第16页,共19页设AC的解析式为:y=kx+b,则,解得,∴AC的解析式为:y= x+3,∴H(- ,),∴BH= - = ,∴s= = = ,把(2,)代入s=a(t+1)(t-5)得:a(2+1)(2-5)= ,解得:a=- ;(3)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,∵AB⊥l1,∴AC∥l1,∵l1:y=x+1,C(0,3),∴AC:y=x+3,∴A(-2,1),∵D(-2,-1),在Rt△ABD中,AB2+BD2=AD2,即(x+2)2+(x+1-1)2+(x+2)2+(x+1+1)2=22,解得:x1=-1,x2=-2(舍),∴B(-1,0),即B在x轴上,∴AB= = ,AC= =2 ,∴S△ABC= = =2;②当∠ACB=90°时,如图5,第17页,共19页∵∠ABD=90°,∠ADB=45°,∴△ABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2 或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,Rt△ACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3 代入得:x2-3x=0,解得:x=0 或3,当x=3 时,如图5,则t=2×3+3=9,∴A(-2,9),B(3,4),∴AC= =2 ,BC= = ,∴S△ABC= = =10;当t=0 时,如图6,第18页,共19页此时,A(-2,3),AC=2,BC=2,∴S△ABC= = =2.【解析】(1)先根据t=2 可得点A(-2,2),因为B在直线l1 上,所以设B(x,x+1),在Rt△ABG中,利用勾股定理列方程可得点B的坐标;(2)先把(7,4)代入s= 中计算得b的值,计算在-1<t<5 范围内图象上一个点的坐标值:当t=2 时,根据(1)中的数据可计算此时s= ,可得坐标(2,),代入s=a(t+1)(t-5)中可得a的值;(3)存在,设B(x,x+1),分两种情况:①当∠CAB=90°时,如图4,②当∠ACB=90°时,如图5 和图6,分别根据两点的距离公式和勾股定理列方程可解答.本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题,本题的突破点是运用两点的距离公式计算或表示线段的长,属于中考压轴题.第19页,共19页2020年广西崇左市中考数学试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列实数是无理数的是()A. B. 1 C. 0 D. -52.下列图形是中心对称图形的是()A. B. C. D.3.2020 年2 月至5 月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约889000 次,则数据889000 用科学记数法表示为()A. 88.9×103B. 88.9×104C. 8.89×105D. 8.89×1064.下列运算正确的是()A. 2x2+x2=2x4B. x3•x3=2x3C. (x5)2=x7D. 2x7÷x5=2x25.以下调查中,最适合采用全面调查的是()A. 检测长征运载火箭的零部件质量情况B. 了解全国中小学生课外阅读情况C. 调查某批次汽车的抗撞击能力D. 检测某城市的空气质量6.一元二次方程x2-2x+1=0 的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定7.如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为()A. 60°B. 65°C. 70°D. 75°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.B.C.D.第1页,共19页9.如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为()A. 15B. 20C. 25D. 3010.甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2 倍,提速后行车时间比提速前减少20min,则可列方程为()A. - =B. = -C. -20=D. = -2011.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2 为图1 的平面示意图),推开双门,双门间隙CD的距离为2 寸,点C和点D距离门槛AB都为1 尺(1 尺=10 寸),则AB的长是()A. 50.5 寸B. 52 寸C. 101 寸D. 104 寸12.如图,点A,B是直线y=x上的两点,过A,B两点分别作x轴的平行线交双曲线y= (x>0)于点C,D.若AC= BD,则3OD2-OC2 的值为()A. 5B. 3C. 4D. 2二、填空题(本大题共6小题,共18.0分)13.如图,在数轴上表示的x的取值范围是______.14.计算:- =______.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数20 40 100 200 400 1000 “射中9 环以上”的次数15 33 78 158 231 801 “射中9 环以上”的频率0.75 0.83 0.78 0.79 0.80 0.80(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9 环以上”的概率是______ (结果保留小数点后一位).第2页,共19页16.如图,某校礼堂的座位分为四个区域,前区一共有8 排,其中第1 排共有20 个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10 排,则该礼堂的座位总数是______.17.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为______.18.如图,在边长为2 的菱形ABCD中,∠C=60°,点E,F分别是AB,AD上的动点,且AE=DF,DE与BF交于点P.当点E从点A运动到点B时,则点P的运动路径长为______.三、解答题(本大题共8小题,共66.0分)19.计算:-(-1)+32÷(1-4)×2.20.先化简,再求值:÷(x- ),其中x=3.21.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.(1)求证:△ABC≌△DEF;(2)连接AD,求证:四边形ABED是平行四边形.第3页,共19页22.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20 份答卷,并统计成绩(成绩得分用x表示,单位:分),收集数据如下:90 82 99 86 98 96 90 100 89 83 87 88 81 90 93 100 100 96 92 100整理数据:80≤x<85 85≤x<90 90≤x<95 95≤x<1003 4 a8分析数据:平均分中位数众数92 b c根据以上信息,解答下列问题:(1)直接写出上述表格中a,b,c的值;(2)该校有1600 名家长参加了此次问卷测评活动,请估计成绩不低于90 分的人数是多少?(3)请从中位数和众数中选择一个量,结合本题解释它的意义.23.如图,一艘渔船位于小岛B的北偏东30°方向,距离小岛40nmile的点A处,它沿着点A的南偏东15°的方向航行.(1)渔船航行多远距离小岛B最近(结果保留根号)?(2)渔船到达距离小岛B最近点后,按原航向继续航行20 nmile到点C处时突然发生事故,渔船马上向小岛B上的救援队求救,问救援队从B处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器人公司研发出A型和B型两款垃圾分拣机器人,已知2 台A型机器人和5 台B型机器人同时工作2h共分拣垃圾3.6 吨,3 台A型机器人和2 台B型机器人同时工作5h 共分拣垃圾8 吨.第4页,共19页(1)1 台A型机器人和1 台B型机器人每小时各分拣垃圾多少吨?(2)某垃圾处理厂计划向机器人公司购进一批A型和B型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾20 吨.设购买A型机器人a台(10≤a≤45),B型机器人b台,请用含a的代数式表示b;(3)机器人公司的报价如下表:型号原价购买数量少于30 台购买数量不少于30 台A型20 万元/台原价购买打九折B型12 万元/台原价购买打八折在(2)的条件下,设购买总费用为w万元,问如何购买使得总费用w最少?请说明理由.25.如图,在△ACE中,以AC为直径的⊙O交CE于点D,连接AD,且∠DAE=∠ACE,连接OD并延长交AE的延长线于点P,PB与⊙O相切于点B.(1)求证:AP是⊙O的切线;(2)连接AB交OP于点F,求证:△FAD∽△DAE;(3)若tan∠OAF= ,求的值.26.如图1,在平面直角坐标系中,直线l1:y=x+1 与直线l2:x=-2 相交于点D,点A是直线l2 上的动点,过点A作AB⊥l1 于点B,点C的坐标为(0,3),连接AC,BC .设点A的纵坐标为t,△ABC的面积为s.(1)当t=2 时,请直接写出点B的坐标;(2)s关于t的函数解析式为s= ,其图象如图2 所示,结合图1、2 的信息,求出a与b的值;(3)在l2 上是否存在点A,使得△ABC是直角三角形?若存在,请求出此时点A。

广西省2018-2020年中考数学试题分类(8)——图形初步认识与三角形(含解析)

广西省2018-2020年中考数学试题分类(8)——图形初步认识与三角形(含解析)

广西省2018-2020年中考数学试题分类(8)——图形初步认识与三角形一.选择题(共22小题)1.(2019•梧州)如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°2.(2019•玉林)若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′3.(2019•广西)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.4.(2018•梧州)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°5.(2020•桂林)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.60°D.70°6.(2020•河池)如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.邻补角7.(2019•百色)如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.328.(2019•河池)如图,∠1=120°,要使a∥b,则∠2的大小是()A.60°B.80°C.100°D.120°9.(2019•贺州)如图,已知直线a∥b,∠1=60°,则∠2的度数是()A.45°B.55°C.60°D.120°10.(2018•贺州)如图,下列各组角中,互为对顶角的是()A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠511.(2018•桂林)如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°12.(2020•河池)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A .5√22B .3√52C .4√53D .5√2313.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读k ǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是( )A .50.5寸B .52寸C .101寸D .104寸14.(2020•玉林)如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西55°方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形15.(2019•梧州)如图,DE 是△ABC 的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且AC =8,BC =5,则△BEC 的周长是( )A .12B .13C .14D .1516.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A .60°B .65°C .75°D .85°17.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的()A.重心B.外心C.内心D.中心18.(2018•百色)在△OAB中,∠O=90°,∠A=35°,则∠B=()A.35°B.55°C.65°D.145°19.(2018•梧州)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是()A.2B.3C.4D.620.(2018•贺州)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED =3,则BC的长为()A.3√2B.3√3C.6D.6√221.(2018•玉林)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直22.(2018•柳州)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个二.填空题(共11小题)23.(2019•柳州)如图,若AB∥CD,则在图中所标注的角中,一定相等的角是.24.(2019•贵港)如图,直线a∥b,直线m与a,b均相交,若∠1=38°,则∠2=.25.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD =50°,则∠BEF的度数为.26.(2018•柳州)如图,a∥b,若∠1=46°,则∠2=°.27.(2019•梧州)如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是cm.28.(2019•广西)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.29.(2018•贺州)如图,正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,分别交BD、CD于G、F两点.若点P、Q分别为DG、CE的中点,则PQ的长为.30.(2018•梧州)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是cm.31.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是.32.(2018•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.33.(2018•成都)等腰三角形的一个底角为50°,则它的顶角的度数为.三.解答题(共3小题)34.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.35.(2019•桂林)如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.36.(2018•柳州)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.广西省2018-2020年中考数学试题分类(8)——图形初步认识与三角形一.选择题(共22小题)1.(2019•梧州)如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°【答案】B【解答】解:∵钟面分成12个大格,每格的度数为30°,∴钟表上10点整时,时针与分针所成的角是60°.故选:B.2.(2019•玉林)若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′【答案】B【解答】解:∵α=29°45′,∴α的余角等于:90°﹣29°45′=60°15′.故选:B.3.(2019•广西)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【答案】D【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.4.(2018•梧州)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°【答案】B【解答】解:∵∠A=55°,∴它的余角是90°﹣∠A=90°﹣55°=35°,故选:B.5.(2020•桂林)如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】B【解答】解:∵a∥b,∴∠1=∠2,∵∠1=50°,∴∠2=50°,故选:B.6.(2020•河池)如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.邻补角【答案】A【解答】解:如图所示,∠1和∠2两个角都在被截直线b和a同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选:A.7.(2019•百色)如图,已知a∥b,∠1=58°,则∠2的大小是()A.122°B.85°C.58°D.32【答案】C【解答】解:∵a∥b,∴∠1=∠2,∵∠1=58°,∴∠2=58°,故选:C.8.(2019•河池)如图,∠1=120°,要使a∥b,则∠2的大小是()A.60°B.80°C.100°D.120°【答案】D【解答】解:如果∠2=∠1=120°,那么a∥b.所以要使a∥b,则∠2的大小是120°.故选:D .9.(2019•贺州)如图,已知直线a ∥b ,∠1=60°,则∠2的度数是( )A .45°B .55°C .60°D .120°【答案】C【解答】解:∵直线a ∥b ,∠1=60°,∴∠2=60°.故选:C .10.(2018•贺州)如图,下列各组角中,互为对顶角的是( )A .∠1和∠2B .∠1和∠3C .∠2和∠4D .∠2和∠5【答案】A【解答】解:互为对顶角的是:∠1和∠2.故选:A .11.(2018•桂林)如图,直线a ,b 被直线c 所截,a ∥b ,∠1=60°,则∠2的度数是( )A .120°B .60°C .45°D .30°【答案】B【解答】解:∵直线被直线a 、b 被直线c 所截,且a ∥b ,∠1=60°∴∠2=∠1=60°.故选:B .12.(2020•河池)如图,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于点E ,BF ⊥CD 于点F .若FB =FE =2,FC =1,则AC 的长是( )A .5√22B .3√52C .4√53D .5√23【答案】B【解答】解:连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ACE +∠BCF =90°,∵BF ⊥CD ,∴∠CFB =90°,∴∠CBF +∠BCF =90°,∴∠ACE =∠CBF ,∵AE ⊥CD ,∴∠AEC =∠CFB =90°,∴△ACE ∽△CBF ,∴AA AA =AA AA ,∵FB =FE =2,FC =1,∴CE =CF +EF =3,BC =√AA 2+AA 2=√12+22=√5, ∴√5=32, ∴AC =3√52, 故选:B .13.(2020•广西)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读k ǔn ,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD 的距离为2寸,点C 和点D 距离门槛AB 都为1尺(1尺=10寸),则AB 的长是( )A .50.5寸B .52寸C .101寸D .104寸 【答案】C【解答】解:如图2所示:由题意得:OA =OB =AD =BC ,设OA =OB =AD =BC =r 寸,则AB =2r ,DE =10,OE =12CD =1,AE =r ﹣1,在Rt △ADE 中,AE 2+DE 2=AD 2,即(r ﹣1)2+102=r 2,解得:r =50.5,∴2r =101(寸),∴AB =101寸, 故选:C .14.(2020•玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【答案】A【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∵∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=180°﹣∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.15.(2019•梧州)如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC =5,则△BEC的周长是()A.12B.13C.14D.15【答案】B【解答】解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故选:B.16.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【答案】C【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.17.(2018•百色)顶角为30°的等腰三角形三条中线的交点是该三角形的()A.重心B.外心C.内心D.中心【答案】A【解答】解:三角形三条中线的交点是三角形的重心,故选:A.18.(2018•百色)在△OAB中,∠O=90°,∠A=35°,则∠B=()A.35°B.55°C.65°D.145°【答案】B【解答】解:∵在△OAB中,∠O=90°,∠A=35°,∴∠B=90°﹣35°=55°.故选:B.19.(2018•梧州)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是()A.2B.3C.4D.6【答案】D【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.20.(2018•贺州)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED =3,则BC的长为()A .3√2B .3√3C .6D .6√2【答案】D【解答】解:∵AD =ED =3,AD ⊥BC ,∴△ADE 为等腰直角三角形,根据勾股定理得:AE =√32+32=3√2,∵Rt △ABC 中,E 为BC 的中点,∴AE =12BC , 则BC =2AE =6√2,故选:D .21.(2018•玉林)如图,∠AOB =60°,OA =OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直【答案】A【解答】解:∵∠AOB =60°,OA =OB ,∴△OAB 是等边三角形,∴OA =AB ,∠OAB =∠ABO =60°⊙当点C 在线段OB 上时,如图1,∵△ACD 是等边三角形,∴AC =AD ,∠CAD =60°,∴∠OAC =∠BAD ,在△AOC 和△ABD 中,{AA =AAAAAA =AAAA AA =AA ,∴△AOC ≌△ABD ,∴∠ABD =∠AOC =60°,∴∠DBE =180°﹣∠ABO ﹣∠ABD =60°=∠AOB ,∴BD ∥OA ,⊙当点C 在OB 的延长线上时,如图2,同⊙的方法得出OA ∥BD ,∵△ACD 是等边三角形,∴AC =AD ,∠CAD =60°,∴∠OAC =∠BAD ,在△AOC 和△ABD 中,{AA =AAAAAA =AAAA AA =AA ,∴△AOC ≌△ABD ,∴∠ABD =∠AOC =60°,∴∠DBE =180°﹣∠ABO ﹣∠ABD =60°=∠AOB ,∴BD ∥OA ,22.(2018•柳州)如图,图中直角三角形共有()A.1个B.2个C.3个D.4个【答案】C【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.二.填空题(共11小题)23.(2019•柳州)如图,若AB∥CD,则在图中所标注的角中,一定相等的角是∠1=∠3.【答案】见试题解答内容【解答】解:∵AB∥CD,∴∠1=∠3.故答案为24.(2019•贵港)如图,直线a∥b,直线m与a,b均相交,若∠1=38°,则∠2=142°.【答案】见试题解答内容【解答】解:如图,∵a∥b,∵∠1+∠3=180°,∴∠2=180°﹣38°=142°.故答案为142°.25.(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD =50°,则∠BEF的度数为70°.【答案】见试题解答内容【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.26.(2018•柳州)如图,a∥b,若∠1=46°,则∠2=46°.【答案】见试题解答内容【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.27.(2019•梧州)如图,已知在△ABC中,D、E分别是AB、AC的中点,F、G分别是AD、AE的中点,且FG=2cm,则BC的长度是8cm.【答案】见试题解答内容【解答】解:如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC =2DE =8cm ,故答案为:8.28.(2019•广西)如图,AB 与CD 相交于点O ,AB =CD ,∠AOC =60°,∠ACD +∠ABD =210°,则线段AB ,AC ,BD 之间的等量关系式为 AB 2=AC 2+BD 2 .【答案】见试题解答内容【解答】解:过点A 作AE ∥CD ,截取AE =CD ,连接BE 、DE ,如图所示:则四边形ACDE 是平行四边形,∴DE =AC ,∠ACD =∠AED ,∵∠AOC =60°,AB =CD ,∴∠EAB =60°,CD =AE =AB ,∴△ABE 为等边三角形,∴BE =AB ,∵∠ACD +∠ABD =210°,∴∠AED +∠ABD =210°,∴∠BDE =360°﹣(∠AED +∠ABD )﹣∠EAB =360°﹣210°﹣60°=90°,∴BE 2=DE 2+BD 2,∴AB 2=AC 2+BD 2;故答案为:AB 2=AC 2+BD 2.29.(2018•贺州)如图,正方形ABCD 的边长为12,点E 在边AB 上,BE =8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为 2√13 .【答案】见试题解答内容【解答】解:方法一:作QM ⊥EF 于点M ,作PN ⊥EF 于点N ,作QH ⊥PN 交PN 的延长线于点H ,如右图所示,∵正方形ABCD 的边长为12,BE =8,EF ∥BC ,点P 、Q 分别为DG 、CE 的中点,∴DF =4,CF =8,EF =12,∴MQ =4,PN =2,MF =6,∵QM ⊥EF ,PN ⊥EF ,BE =8,DF =4,∴△EGB ∽△FGD ,∴AA AA =AA AA , 即12−AA AA =84,解得,FG =4,∴FN=2,∴MN=6﹣2=4,∴QH=4,∵PH=PN+QM,∴PH=6,∴PQ=√AA2+AA2=√62+42=2√13,故答案为:2√13.方法二:取DF的中点M,连接PF,取CF的中点N,连接QN,作PH⊥QN于点H,∵点P,点Q分别为DG、EC的中点,∴PM=12GF,QN=12EF,∵正方形ABCD的边长为12,点E在边AB上,BE=8,过点E作EF∥BC,AD为对角线,∴BE=EG=8,BE=CF=8,∴GF=4,∴PM=2,QN=6,∴MN=PH=6,QH=QN﹣HN=4,∴PQ=√AA2+AA2=√62+42=2√13,故答案为:2√13.30.(2018•梧州)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是3 cm.【答案】见试题解答内容【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=3cm,故答案为:3.31.(2018•玉林)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是2<AD<8.【答案】见试题解答内容【解答】解:如图,延长BC交AD的延长线于E,作BF⊥AD于F.在Rt△ABE中,∵∠E=30°,AB=4,∴AE=2AB=8,在Rt△ABF中,AF=12AB=2,∴AD的取值范围为2<AD<8,故答案为2<AD<8.32.(2018•桂林)如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是3.【答案】见试题解答内容【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB=180°−36°2=72°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:333.(2018•成都)等腰三角形的一个底角为50°,则它的顶角的度数为80°.【答案】见试题解答内容【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.三.解答题(共3小题)34.(2020•河池)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.【答案】见试题解答内容【解答】(1)证明:在△ACE 和△BCE 中,∵{AA =AAA1=A2AA =AA ,∴△ACE ≌△BCE (SAS );(2)AE =BE .理由如下:在CE 上截取CF =DE ,在△ADE 和△BCF 中,∵{AA =AAA3=A4AA =AA ,∴△ADE ≌△BCF (SAS ),∴AE =BF ,∠AED =∠CFB ,∵∠AED +∠BEF =180°,∠CFB +∠EFB =180°,∴∠BEF =∠EFB ,∴BE =BF ,∴AE =BE .35.(2019•桂林)如图,AB =AD ,BC =DC ,点E 在AC 上.(1)求证:AC 平分∠BAD ;(2)求证:BE =DE .【答案】见试题解答内容【解答】解:(1)在△ABC 与△ADC 中,{AA =AAAA =AA AA =AA∴△ABC ≌△ADC (SSS )∴∠BAC =∠DAC即AC 平分∠BAD ;(2)由(1)∠BAE =∠DAE在△BAE 与△DAE 中,得{AA =AAAAAA =AAAA AA =AA∴△BAE ≌△DAE (SAS )∴BE =DE36.(2018•柳州)如图,AE 和BD 相交于点C ,∠A =∠E ,AC =EC .求证:△ABC ≌△EDC .【答案】见试题解答内容【解答】证明:∵在△ABC 和△EDC 中, {∠A =∠A AA =AA AAAA =AAAA,∴△ABC ≌△EDC (ASA ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2020年广西中考数学试题分类(9)——四边形一.多边形(共1小题)1.(2019•百色)四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',当变形后图形面积是原图形面积的一半时,则∠A'=.二.多边形内角与外角(共1小题)2.(2019•梧州)正九边形的一个内角的度数是()A.108°B.120°C.135°D.140°三.平行四边形的性质(共5小题)3.(2020•河池)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5√2B.6√2C.4√5D.5√54.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对5.(2019•梧州)如图,▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.6.(2018•百色)平行四边形ABCD中,∠A=60°,AB=2AD,BD的中垂线分别交AB,CD于点E,F,垂足为O.(1)求证:OE=OF;(2)若AD=6,求tan∠ABD的值.7.(2018•梧州)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.四.平行四边形的判定(共3小题)8.(2019•河池)如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF9.(2018•玉林)在四边形ABCD 中:▱AB ∥CD ▱AD ∥BC ▱AB =CD ▱AD =BC ,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有( )A .3种B .4种C .5种D .6种10.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD 中,AB =CD ,AD =BC .求证:四边形ABCD 是平行四边形.证明:五.平行四边形的判定与性质(共1小题)11.(2020•玉林)已知:点D ,E 分别是△ABC 的边AB ,AC 的中点,如图所示.求证:DE ∥BC ,且DE =12BC . 证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF ,又AE =EC ,则四边形ADCF 是平行四边形,接着以下是排序错误的证明过程:▱∴DF ∥=BC ;▱∴CF ∥=AD .即CF ∥=BD ;▱∴四边形DBCF 是平行四边形;▱∴DE ∥BC ,且DE =12BC . 则正确的证明顺序应是:( )A .▱→▱→▱→▱B .▱→▱→▱→▱C .▱→▱→▱→▱D .▱→▱→▱→▱六.菱形的性质(共5小题)12.(2020•河池)如图,菱形ABCD 的周长为16,AC ,BD 交于点O ,点E 在BC 上,OE ∥AB ,则OE 的长是 .13.(2019•广西)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO =4,S菱形ABCD=24,则AH=.14.(2020•桂林)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=√3,∠C=60°,求菱形ABCD的面积.15.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.16.(2018•柳州)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.七.菱形的判定(共1小题)17.(2018•河池)如图,要判定▱ABCD是菱形,需要添加的条件是()A.AB=AC B.BC=BD C.AC=BD D.AB=BC18.(2020•玉林)如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 菱形(填“是”或“不是”).19.(2018•贺州)如图,在△ABC中,∠ACB=90°,O、D分别是边AC、AB的中点,过点C作CE∥AB 交DO的延长线于点E,连接AE.(1)求证:四边形AECD是菱形;(2)若四边形AECD的面积为24,tan∠BAC=34,求BC的长.20.(2018•南宁)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.九.矩形的性质(共2小题)21.(2019•玉林)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.22.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.23.(2018•玉林)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.一十一.正方形的性质(共5小题)24.(2019•河池)如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A.1B.2C.3D.425.(2019•贵港)如图,E是正方形ABCD的边AB的中点,点H与B关于CE对称,EH的延长线与AD 交于点F,与CD的延长线交于点N,点P在AD的延长线上,作正方形DPMN,连接CP,记正方形ABCD,DPMN的面积分别为S1,S2,则下列结论错误的是()A.S1+S2=CP2B.AF=2FD C.CD=4PD D.cos∠HCD=35 26.(2018•梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)27.(2018•河池)如图,四边形OABC为正方形,点D(3,1)在AB上,把△CBD绕点C顺时针旋转90°,则点D旋转后的对应点D′的坐标是.28.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F 点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2√2,EB=4,tan∠GEH=2√3,求四边形EHFG的周长.2018-2020年广西中考数学试题分类(9)——四边形参考答案与试题解析一.多边形(共1小题)1.【解答】解:∵S平行四边形S′S′S′S′=12S矩形SSSS,∴平行四边形A'B'C'D'的底边A′D′边上的高等于A′B′的一半,∴∠A'=30°.故答案为:30°二.多边形内角与外角(共1小题)2.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数=1260°9=140°.故选:D.三.平行四边形的性质(共5小题)3.【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE=√SS2+SS2=√42+82=4√5.故选:C.4.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);▱同理可得出△AOB≌△COD(SAS);▱∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);▱同理可得:△ACD≌△CAB(SSS).▱因此本题共有4对全等三角形.故选:C.5.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC∥AB,∵∠ADC=119°,DF⊥BC,∴∠ADF=90°,则∠EDH=29°,∵BE⊥DC,∴∠DEH=90°,∴∠DHE=∠BHF=90°﹣29°=61°.故答案为:61.6.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠1=∠2,∵EF是BD的中垂线,∴OD =OB ,∠3=∠4=90°,∴△DOF ≌△BOE ,∴OE =OF ;(2)作DG ⊥AB ,垂足为G ,∵∠A =60°,AD =6,∴∠ADG =30°,∴AG =12AD =3,∴DG =√62−32=3√3,∵AB =2AD ,∴AB =2×6=12,BG =AB ﹣AG =12﹣3=9,∴tan ∠ABD =SS SS =3√39=√33 7.【解答】证明:∵▱ABCD 的对角线AC ,BD 交于点O ,∴AO =CO ,AD ∥BC ,∴∠EAC =∠FCO ,在△AOE 和△COF 中 {∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOE ≌△COF (ASA ),∴AE =CF .四.平行四边形的判定(共3小题)8.【解答】解:∵在△ABC 中,D ,E 分别是AB ,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥12AC 且DE =12AC ,A 、根据∠B =∠F 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.B 、根据∠B =∠BCF 可以判定CF ∥AB ,即CF ∥AD ,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC 为平行四边形,故本选项正确.C 、根据AC =CF 不能判定AC ∥DF ,即不能判定四边形ADFC 为平行四边形,故本选项错误.D 、根据AD =CF ,FD ∥AC 不能判定四边形ADFC 为平行四边形,故本选项错误.故选:B .9.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:▱▱、▱▱、▱▱、▱▱. 故选:B .10.【解答】证明:连接AC ,如图所示:在△ABC 和△CDA 中,{SS =SS SS =SS SS =SS ,∴△ABC ≌△CDA (SSS ),∴∠BAC =∠DCA ,∠ACB =∠CAD ,∴AB ∥CD ,BC ∥AD ,∴四边形ABCD 是平行四边形.五.平行四边形的判定与性质(共1小题)11.【解答】证明:延长DE 到点F ,使EF =DE ,连接FC ,DC ,AF , ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴AD =BD ,AE =EC ,∴四边形ADCF 是平行四边形,∴CF ∥=AD .即CF ∥=BD ,∴四边形DBCF 是平行四边形,∴DF ∥=BC , ∴DE ∥BC ,且DE =12BC . ∴正确的证明顺序是▱→▱→▱→▱,故选:A .六.菱形的性质(共5小题)12.【解答】解:∵菱形ABCD 的周长为16,∴AB =BC =CD =AD =4,OA =OC ,∵OE ∥AB ,∴BE =CE ,∴OE 是△ABC 的中位线,∴OE =12AB =2,故答案为:2.13.【解答】解:∵四边形ABCD 是菱形,∴BO =DO =4,AO =CO ,AC ⊥BD ,∴BD =8,∵S 菱形ABCD =12AC ×BD =24,∴AC =6,∴OC =12AC =3,∴BC =√SS 2+SS 2=5,∵S 菱形ABCD =BC ×AH =24,∴AH =245; 故答案为:245.14.【解答】(1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∵点E ,F 分别是边AD ,AB 的中点,∴AF =AE ,在△ABE 和△ADF 中,{SS =SSSS =SS SS =SS ,∴△ABE ≌△ADF (SAS );(2)解:连接BD ,如图:∵四边形ABCD 是菱形,∴AB =AD ,∠A =∠C =60°,∴△ABD 是等边三角形,∵点E 是边AD 的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=tan30°BE=√33BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×√3=2√3.15.【解答】(1)证明:四边形ABCD是菱形∴AB=BC,AD∥BC∴∠A=∠CBF∵BE⊥AD、CF⊥AB∴∠AEB=∠BFC=90°∴△AEB≌△BFC(AAS)∴AE=BF(2)∵E是AD中点,且BE⊥AD∴直线BE为AD的垂直平分线∴BD=AB=216.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长为:8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=√SS2−SS2=√22−12=√3,∴BD=2√3七.菱形的判定(共1小题)17.【解答】解:根据邻边相等的平行四边形是菱形,可知选项D正确,故选:D.八.菱形的判定与性质(共3小题)18.【解答】解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两张等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.19.【解答】(1)证明:∵点O是AC中点,∴OA=OC,∵CE∥AB,∴∠DAO =∠ECO ,在△AOD 和△COE 中,{∠SSS =∠SSSSS =SS SSSS =SSSS,∴△AOD ≌△COE (ASA ),∴AD =CE ,∵CE ∥AB ,∴四边形AECD 是平行四边形,又∵CD 是Rt △ABC 斜边AB 上的中线,∴CD =AD ,∴四边形AECD 是菱形;(2)由(1)知,四边形AECD 是菱形,∴AC ⊥ED ,在Rt △AOD 中,tan ∠DAO =SS SS =SSSSSSS =34,设OD =3x ,OA =4x ,则ED =2OD =6x ,AC =2OA =8x ,由题意可得:12×6S ×8S =24,解得:x =1,∴OD =3,∵O ,D 分别是AC ,AB 的中点,∴OD 是△ABC 的中位线,∴BC =2OD =6.20.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∵BE =DF ,∴△AEB ≌△AFD∴AB =AD ,∴四边形ABCD 是菱形.(2)连接BD 交AC 于O .∵四边形ABCD 是菱形,AC =6,∴AC ⊥BD ,AO =OC =12AC =12×6=3,∵AB =5,AO =3,∴BO =√SS 2−SS 2=√52−32=4,∴BD =2BO =8,∴S 平行四边形ABCD =12×AC ×BD =24. 九.矩形的性质(共2小题)21.【解答】解:如图以AB 为x 轴,AD 为y 轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB 边的碰撞有2次,∵2019÷6=336…3,当点P 第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P 的坐标为(6,4)∴它与AB 边的碰撞次数是=336×2+1=673次故答案为67322.【解答】(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB =CD ,AD =BC ,AD ∥BC ,在Rt △ABE 和Rt △CDF 中,{SS =SS SS =SS , ∴Rt △ABE ≌Rt △CDF (HL );(2)解:当AC ⊥EF 时,四边形AECF 是菱形,理由如下:∵△ABE ≌△CDF ,∴BE =DF ,∵BC =AD ,∴CE =AF ,∵CE ∥AF ,∴四边形AECF 是平行四边形,又∵AC ⊥EF ,∴四边形AECF 是菱形.一十.矩形的判定与性质(共1小题)23.【解答】解:(1)证明:过点E 、F 分别作AD 、BC 的垂线,垂足分别是G 、H .∵∠3=∠4,∠1=∠2,EG ⊥AD ,EM ⊥CD ,EM ′⊥AB∴EG =ME ,EG =EM ′∴EG =ME =M ′E =12MM ′同理可证:FH =NF =N ′F =12NN ′ ∵CD ∥AB ,MM ′⊥CD ,NN ′⊥CD ,∴MM ′=NN ′∴ME =NF =EG =FH又∵MM ′∥NN ′,MM ′⊥CD∴四边形EFNM 是矩形.(2)∵DC ∥AB ,∴∠CDA +∠DAB =180°,∵∠3=12SSSS ,∠2=12∠DAB∴∠3+∠2=90°在Rt △DEA ,∵AE =4,DE =3,∴AD =√3+4=5.∵四边形ABCD 是平行四边形,∴∠DAB =∠DCB ,又∵∠2=12∠DAB ,∠5=12∠DCB ,∴∠2=∠5由(1)知GE =NF在Rt △GEA 和Rt △CNF 中 {∠2=∠5SSSS =SSSS =90°SS =SS∴△GEA ≌△CNF∴AG =CN在Rt △DME 和Rt △DGE 中∵DE =DE ,ME =EG∴△DME ≌△DGE∴DG =DM∴DM +CN =DG +AG =AD =5∴MN =CD ﹣DM ﹣CN =9﹣5=4.∵四边形EFNM 是矩形.∴EF =MN =4一十一.正方形的性质(共5小题)24.【解答】证明:∵四边形ABCD 是正方形,∴AB ∥CD ,AD ∥BC ,AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中,{SS =SS SSSS =SSSS SS =SS ,∴△ABE ≌△BCF (SAS ),∴∠BFC =∠AEB ,∵AD ∥BC ,AB ∥CD ,∴∠DAE =∠AEB ,∠BFC =∠ABF ,故图中与∠AEB 相等的角的个数是3.故选:C .25.【解答】解:∵正方形ABCD ,DPMN 的面积分别为S 1,S 2,∴S 1=CD 2,S 2=PD 2,在Rt △PCD 中,PC 2=CD 2+PD 2,∴S 1+S 2=CP 2,故A 结论正确;连接CF ,∵点H 与B 关于CE 对称,∴CH =CB ,∠BCE =∠ECH ,在△BCE 和△HCE 中,{SS =SS SSSS =SSSS SS =SS∴△BCE ≌△HCE (SAS ),∴BE =EH ,∠EHC =∠B =90°,∠BEC =∠HEC ,∴CH =CD ,在Rt △FCH 和Rt △FCD 中{SS =SS SS =SS ∴Rt △FCH ≌Rt △FCD (HL ),∴∠FCH =∠FCD ,FH =FD ,∴∠ECH +∠FCH =12∠BCD =45°,即∠ECF =45°,作FG ⊥EC 于G ,∴△CFG 是等腰直角三角形,∴FG =CG ,∵∠BEC =∠HEC ,∠B =∠FGE =90°,∴△FEG ∽△CEB ,∴SS SS =SS SS =12, ∴FG =2EG ,设EG =x ,则FG =2x ,∴CG =2x ,CF =2√2x ,∴EC =3x ,∵EB 2+BC 2=EC 2,∴54BC 2=9x 2,∴BC 2=365x 2, ∴BC =6√55x , 在Rt △FDC 中,FD =√SS 2−SS 2=√(2√2S )2−365S 2=2√55x , ∴3FD =AD ,∴AF =2FD ,故B 结论正确;∵AB ∥CN ,∴SS SS =SS SS =12, ∵PD =ND ,AE =12CD , ∴CD =4PD ,故C 结论正确;∵EG =x ,FG =2x ,∴EF =√5x ,∵FH =FD =2√55x , ∵BC =6√55x ,∴AE =3√55x ,作HQ ⊥AD 于Q ,HS ⊥CD 于S ,∴HQ ∥AB ,∴SS SS =SS SS ,即3√55S =2√55S √5S ,∴HQ =6√525x , ∴CS =CD ﹣HQ =6√55x −6√525x =24√525x∴cos ∠HCD =SS SS =24√525S 655S=45,故结论D 错误, 故选:D .26.【解答】解:∵在正方形ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D (﹣3,2),∴将正方形ABCD 向右平移3个单位,则平移后点D 的坐标是(0,2),故选:B .27.【解答】解:△CBD 绕点C 顺时针旋转90°得到的图形如上图所示.∵D 的坐标为(3,1),∴OA =3,AD =1∵在正方形OABC 中,OA =AB ,∴AB =3,∴BD =AB ﹣AD =2,∴OD '=BD =2,∴D '的坐标为(﹣2,0),故答案为(﹣2,0).28.【解答】解:(1)∵四边形ABCD 是正方形,∴AB =CD ,AB ∥CD ,∴∠DCA =∠BAC ,∵DF ∥BE ,∴∠CFD =∠BEA ,∵∠BAC =∠BEA +∠ABE ,∠DCA =∠CFD +∠CDF ,∴∠ABE =∠CDF ,在△ABE 和△CDF 中,∵{∠SSS =∠SSS SSSS =SSSS SS =SS,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∵BH =DG ,∴BE +BH =DF +DG ,即EH =GF ,∵EH ∥GF ,∴四边形EHFG 是平行四边形;(2)如图,连接BD ,交EF 于O ,∵四边形ABCD 是正方形,∴BD ⊥AC ,∴∠AOB =90°,∵AB =2√2,∴OA =OB =2,Rt △BOE 中,EB =4,∴∠OEB =30°,∴EO =2√3,∵OD =OB ,∠EOB =∠DOF ,∵DF ∥EB ,∴∠DFC =∠BEA ,∴△DOF ≌△BOE (AAS ),∴OF =OE =2√3,∴EF =4√3,∴FM =2√3,EM =6,过F 作FM ⊥EH 于M ,交EH 的延长线于M , ∵EG ∥FH ,∴∠FHM =∠GEH ,∵tan ∠GEH =tan ∠FHM =SS SS =2√3, ∴2√3SS =2√3,∴HM =1,∴EH =EM ﹣HM =6﹣1=5,FH =√SS 2+SS 2=√(2√3)2+12=√13, ∴四边形EHFG 的周长=2EH +2FH =2×5+2√13=10+2√13.。

相关文档
最新文档