初中数学_第一章勾股定理1.探索勾股定理(第2课时)教学设计学情分析教材分析课后反思

合集下载

初中数学教学课例《勾股定理》教学设计及总结反思

初中数学教学课例《勾股定理》教学设计及总结反思

理的探索和验证过程,努力做到由传统的数学课堂向实
验课堂转变.
活动 1 欣赏图片了解历史
活动 2 探索勾股定理
活动 3 证明勾股定理
活动 4 小结、布置作业
通过对赵爽弦图的了解,激发起学生对勾股定理的
探索兴趣. 教学过程
观察、分析方格图,得出直角三角形的性质——勾
股定理,发展学生分析问题的能力.
通过剪拼赵爽弦图证明勾股定理,体会数形结合思
想,激发探索精神.
回顾、反思、交流.布置课后作业,巩固、发展提
高.
根据教材的特点,本节课从知识与方法、能力与素
质的层面确定了相应的教学目标.把学生的探索和验证
活动放在首位,一方面要求学生在老师的引导下自主探 课例研究综
索,合作交流,另一方面要求学生对探究过程中用到的 述
数学思想方法有一定的领悟和认识,达到培养能力的目
初中数学教学课例《勾股定理》教学设计及总结反思
学科
初中数学
教学课例名
《勾股定理》

在勾股定理探索过程中,发展合情理能力,体现数
形结合思想。
教材分析
重点 探索和证明勾股定理
难点
用拼图方法证明勾股定理
了解勾股定理的文化背景,体验勾股定理的探索过 教学目标
程。
1.通过拼图活动,体验数学思维的严谨性,发展形
学生学习能 象思维。
力分析
2.探究活动中,学会与人合作并能与他探索式教学法,采用教师引导启发。学生
独立思考,自主探究,讨论交流合作的方式,为学生提
教学策略选 供探索,思考,观察的时间和空间。
择与设计
整课以问题情景----分析探究----得出猜想----
实践验证----总结升华为主线,使学生亲身体验勾股定

北师大版-数学-八年级上册-《勾股定理》教学分析与建议

北师大版-数学-八年级上册-《勾股定理》教学分析与建议

北师大版八年级数学(上)第一章勾股定理教学分析与建议一、主要内容勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。

它的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。

它是几何学中的重要的定理之一。

教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生经历观察、归纳、猜想和验证的数学发现过程教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体现其文化价值。

当然限于学生的已有知识,问题解决中所涉及的数据均为完全平方数,本章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。

二、评价建议1,关注对探索勾股定理等活动的评价。

一方面要关注学生是否积极参与,是否能与同伴进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括能力,学生是否能够有条理地表达活动过程和所获得的结论等。

2,关注考查对勾股定理及其逆定理的理解和应用。

注意评价时,不应以复杂运算为主,我们应更另关注学生对有关结论的正确使用。

三、教学目标l.经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想;2.掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题;3.掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题;4.通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。

四、教材特点勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。

勾股定理的发现、验证和应用蕴涵着丰富的文化价值。

勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。

北师大版八年级上册第一章勾股定理1.1.1 探索勾股定理(教案)

北师大版八年级上册第一章勾股定理1.1.1 探索勾股定理(教案)

1. 探究勾股定理1.经历用测量法和数格子的方法探究勾股定理的过程,开展合情推理才能,体会数形结合的思想.2.会解决直角三角形的两边求另一边的问题.1.经历“测量—猜测—归纳—验证〞等一系列过程,体会数学定理发现的过程.2.在观察、猜测、归纳、验证等过程中培养语言表达才能和初步的逻辑推理才能.3.在探究过程中,体会数形结合、由特殊到一般及化归等数学思想方法.通过让学生参加探究与创造,获得参加数学活动成功的经历.【重点】勾股定理的探究及应用.【难点】勾股定理的探究过程.【老师准备】分发给学生打印的方格纸.【学生准备】有刻度的直尺.导入一:展示教材P2开头的情境.如下图,从电线杆离地面8 m处向地面拉一条钢索,假如这条钢索在地面的固定点间隔电线杆底部6 m,那么需要多长的钢索?事实上,古人发现,直角三角形的三条边长度的平方存在一个特殊关系,学完了这节课,我们就会很容易地求出钢索的长度.[设计意图]创设问题情境,造成学生的认知冲突,激发学生的求知欲望.导入二:如下图,强大的台风使得一个旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处.旗杆折断之前有多高?【师生活动】在直角三角形中,任意两条边确定了,第三条边确定吗?为什么?在直角三角形中,任意两条边确定了,第三条边也就随之确定,三边之间存在着一种特定的数量关系.事实上,古人发现,直角三角形的三条边长度的平方存在一种特殊的关系.让我们一起去探究吧!一、用测量的方法探究勾股定理思路一【学生活动】1.画一个直角三角形,使直角边长分别为3 cm和4 cm,测量一下斜边长是多少.2.画一个直角边长分别是6 cm和8 cm的直角三角形,测量一下斜边长是多少.3.画一个直角边长分别是5 cm和12 cm的直角三角形,测量一下斜边长是多少.【问题】你能观察出直角三角形三边之间的关系吗?[设计意图]帮助学生感知直角三角形三条边的长度存在特殊的关系,进而激发学生的探究欲望.思路二任意画一个直角三角形,分别测量三条边长,把长度标在图形中,计算三边的平方,把结果填在表格中.直角三角形直角边长直角边长斜边长123【师生活动】师:观察表格,有什么发现?生1:a2+b2=c2.生2:两直角边的平方和很接近斜边的平方.师:很准确,他用了很接近这个词,非常棒!有哪些数据得到了a2+b2=c2?生:3,4,5;6,8,10;2,1.5,2.5;5,12,13……师:哪些数据没得到a2+b2=c2?生:2,4,4.5;5,8,9.5;2.4,4.8,9.3……师:怎样验证直角三角形三边之间的平方关系呢?二、验证直角三角形三条边长度存在的特殊关系,用数格子的方法探究勾股定理1.探究等腰直角三角形的情况.思路一展示教材P2图1 - 2局部图.探究问题:(1)这个三角形是什么样的三角形?(2)直角三角形三边的平方分别是多少?它们满足怎样的数量关系?(学生通过数格子的方法可以得出S A+S B=S C)[设计意图]通过三个正方形面积的关系,得到直角三角形三边的关系.思路二展示教材P2图1 - 2,直角三角形三边的平方分别是多少,它们满足上面所猜测的数量关系吗?你是如何计算的?【师生活动】师:在这幅图中,边长的平方是如何刻画的?我们的猜测如何实现?生:用正方形A,B,C刻画的,就是证A+B=C.师:再准确点说呢?生:是用三个正方形A,B,C的面积刻画的,就是证明正方形A的面积加上正方形B的面积等于正方形C的面积.师:请同学们快速算一算正方形A,B,C的面积.(学生交流面积C的求法,老师巡视点评)生:A的面积是9,B的面积也是9,C的面积是18.师:你用什么方法得到正方形C的面积为18个单位面积?生1:我先数整个格子有12个,两个三角形格子拼成一个正方形格子,能凑6个,一共是18个.生2:把正方形对折,得到两个三角形.(学生板演,并列式计算) 生3:分成四个全等的直角三角形.(学生板演,口述面积求法)师:方法不错,你们很擅长动脑筋,我们用数格子、分割图形的方法得到C的面积,还有什么方法可以得到吗?生:在正方形C的外侧画一个大正方形,用大正方形的面积减去4个三角形的面积.(学生板演,口述面积求法)师:很好,他采用了补形的方法计算面积,我们能得到什么结论?生1:S A+S B=S C.生2:a2+b2=c2.师:我们看到上面的三角形具有特殊性,是等腰直角三角形,一般三角形能验证吗?2.探究边长为3,4,5的直角三角形的情况.展示教材P2图1 - 3局部图.对于一般的直角三角形是否也有这样的关系?你是如何计算的?【问题】(1)正方形A的面积是多少个方格?正方形B的面积是多少个方格?(2)怎样求出正方形C的面积是多少个方格?(3)三个正方形的面积之间有什么关系?同桌交流、小组讨论,共同讨论如何求正方形的面积,找到三边平方之间的关系.【提示】在正方形C的四周再补上三个相等的直角三角形,变成一个新的大正方形.【拓展】假如直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面所猜测的数量关系还成立吗?说明你的理由.学生考虑、交流,老师请学生口答,并板书,指出这就是这节课要学习的勾股定理.【学生总结】直角三角形两直角边的平方和等于斜边的平方.假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.[考虑](1)运用此定理的前提条件是什么?(2)公式a2+b2=c2有哪些变形公式?(3)由(2)知直角三角形中,只要知道条边,就可以利用求出.[设计意图]让学生经历“独立考虑——小组讨论——合作交流〞的环节,进一步加深对勾股定理的理解,并激发学生的爱国热情.[知识拓展]1.由勾股定理的根本形式a2+b2=c2可以得到一些变形关系式,如a2=c2-b2=(c+b)(c-b);b2=c2-a2=(c+a)(c-a).2.在钝角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2<c2,在锐角三角形中,三角形三边长分别为a,b,c,假设c为最大边长,那么有a2+b2>c2.1.勾股定理的由来.2.勾股定理的探究方法:测量法和数格子法.3.勾股定理:直角三角形两直角边的平方和等于斜边的平方.假如a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.1.直角三角形ABC的两直角边BC=12,AC=16,那么ΔABC的斜边AB的长是()C.9.6D.8解析:BC2=122=144,AC2=162=256,AB2=AC2+BC2=400=202.应选A.2.直角三角形两直角边长分别是6和8,那么周长与最短边长的比是()A.7∶1B.4∶1C.25∶7D.31∶7解析:利用勾股定理求出斜边的长为10.应选B.3.(2021·温州模拟)如下图,在ΔABC中,AB=AC,AD是ΔABC的角平分线,假设BC=10,AD=12,那么AC=.解析:根据等腰三角形三线合一,判断出ΔADC为直角三角形,利用勾股定理即可求出AC的长为13.故填13.4.如下图,在RtΔABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为S1,S2,那么S1+S2的值等于.解析:根据半圆面积公式结合勾股定理,知S1+S2等于以斜边为直径的半圆的面积.所以S1+S2=1πAB2=12.5π.故填12.5π.8第1课时1.概念:直角三角形两直角边的平方和等于斜边的平方.2.表示法:假如用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.一、教材作业【必做题】教材第3页随堂练习第1,2题.【选做题】教材第4页习题1.1第2题.二、课后作业【根底稳固】1.在RtΔABC中,AB=6,BC=10,∠A=90°,那么AC=.2.假设三角形是直角三角形,且两条直角边长分别为5,12,那么此三角形的周长为,面积为.3.(2021·凉山中考)直角三角形的两边长分别是3和4,那么第三边长为.4.假如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是.【才能提升】5.如下图,在正方形网格中,ΔABC的三边长a,b,c的大小关系是() A.a<b<c B.c<a<b C.c<b<a D.b<a<c6.如下图,在一个由4×4个小正方形组成的正方形网格中,以EF为边的小正方形与正方形ABCD的面积比是.7.如下图,阴影局部是一个正方形,它的面积为.8.如下图,三个正方形的面积中,字母A所在的正方形的面积是.9.飞机在空中程度飞行,某一时刻飞机刚好飞到一个男孩头顶正上方4000米处,过20秒,飞机间隔这个男孩头顶5000米,飞机每小时飞行多少千米?10.一个门框的尺寸如下图,一块长3 m,宽2.2 m的薄木板能否从门框内通过?为什么?11.在ΔABC中,AB=25,AC=30,BC边上的高AD=24,求BC的长.【拓展探究】12.如下图,在RtΔABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,那么BD=.13.如下图,一个机器人从O点出发,向正东方向走3米到A1点,再向正北方向走6米到达A2点,再向正西方向走9米到达A3点,…,按此规律走下去,当机器人走到A6点时,离O点的间隔是.【答案与解析】1.8(解析:AC2=BC2-AB2=64.)2.3030(解析:由题意得此直角三角形的斜边长为13.)3.5或√74.12米5.D(解析:两个正数比拟大小,可以按照下面的方法进展:假如a>0,b>0,并且a2>b2,那么a>b.可以设每一个小正方形的边长为1,在直角三角形BDC中,根据勾股定理可以求出a2=10,同理可以求出b2=5,c2=13,因为a>0,b>0,c>0,且b2<a2<c2,所以b<a<c.)6.5∶8(解析:可以设每个小正方形的边长为1,那么正方形ABCD的面积就是4×4=16,斜放的小正方形的边长应该是直角三角形DEF的斜边长,另外两条直角边长分别是1和3,根据勾股定理可以求出小正方形的面积是10.所以以EF为边的小正方形与正方形ABCD的面积比是10∶16=5∶8.)7.64 cm2(解析:设阴影局部的边长为x,那么它的面积为x2=172-152=64(cm2).)8.7(解析:根据正方形的面积公式和勾股定理,知以直角三角形的两条直角边为边的正方形的面积和等于以斜边为边的正方形的面积,由勾股定理可知A=16-9=7.故A的面积为7.)9.解:根据题意可以先画出符合题意的图形.如下图,在ΔABC中,∠C=90°,AC=4000米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里飞行的路程,即图中的CB长,由于RtΔABC的斜边AB=5000米=5千米,AC=4000米=4千米,由勾股定理得BC2=AB2-AC2,即BC=3千米.飞机20秒飞行3千米,那么它1小时飞行×3=540(千米).答:飞机每小时飞行540千米.的间隔为36002010.解:连接AC,在RtΔABC中,根据勾股定理得AC2=AB2+BC2=12+22=5.又因为2.22=4.84<5.所以AC>木板的宽,所以木板可以从门框内通过.11.解:在RtΔABD中,由勾股定理得BD2=AB2-AD2=252-242=49,所以BD=7.在RtΔADC中,由勾股定理得CD2=AC2-AD2=302-242=324,所以CD=18.所以BC=BD+DC=7+18=25.12.2(解析:∵在RtΔABC中,AC=3,BC=4,∴AB=5,∵以点A为圆心,AC 长为半径画弧,交AB于点D,∴AD=AC,∴AD=3,∴BD=AB-AD=5-3=2.)13.15(解析:解此题时要求出A1A2,A2A3,A3A4,A4A5,A5A6等各线段的长,再利用勾股定理求解.)从本节课教案的思路设计看,始终贯彻以学生为主体,充分运用各种手段调动学生参与探究活动的积极性.课前的导入利用生活中的问题,唤起学生带着问题进入本节课的学习.在探求直角三角形三边平方关系时,遵循了发现问题、证实问题到推导问题的认识过程.在引导学生进展探究的过程中,对学生的指导过多,不敢放手让学生自己进展尝试.比方在利用教材第2页下面的两幅图的时候,要求学生选取与教材一致的数据.在这里应该放手让学生自己选取数据.在总结勾股定理的时候,可以让学生自己总结勾股定理的数学表达式.在利用教材给出的例如进展勾股定理结论探究的时候,一定要立足于“面积相等〞这个探究的立足点,这样才能保证学生找准探究活动的方向.随堂练习(教材第3页)1.解:字母A代表的正方形的面积=225+400=625,字母B代表的正方形的面积=225-81=144.2.解:不同意他的想法,因为29 in的电视机是指屏幕长方形的对角线长为29 in,由屏幕的长为58 cm,宽为46 cm,可知屏幕的对角线长的平方=(46025.4)2+(58025.4)2,所以对角线长≈29 in.习题1.1(教材第4页)1.解:①x2=62+82=100,x=10.②y2=132-52=144,y=12.2.解:172-152=64,所以另一条直角边长为8 cm.面积为12×8×15=60(cm2).3.解:此题具有一定的开放性,现给出4种方案:如下图,设①的面积为g,③的面积为e,④的面积为f,⑦的面积为a,⑨的面积为b,⑧的面积为d ,⑩的面积为c ,那么(1)a +b +c +d =g ,(2)a +b +f =g ,(3)e +c +d =g ,(4)e +f =g.4.解:过C 点作CD ⊥AB 于D ,因为CA =CB =5 cm,所以AD =BD =12AB =3 cm .在Rt ΔADC 中,CD 2=AC 2-AD 2,所以CD =4 cm,所以S ΔABC =12AB ·CD =12×6×4=12(cm 2).(2021·淮安中考)如左下列图所示,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,那么线段AB 的长度为( )C .7D .25〔解析〕 此题考察勾股定理的知识,解答此题的关键是掌握格点三角形中勾股定理的应用,建立格点三角形.如下图,利用勾股定理求解AB 的长度即可.由图可知AC =4,BC =3,那么由勾股定理得AB =5.应选A .如下图,直线l 上有三个正方形a ,b ,c ,假设a ,c 的面积分别为3和4,那么b 的面积为 .〔解析〕 ∵∠ACB +∠ECD =90°,∠DEC +∠ECD =90°,∴∠ACB =∠DEC.∵∠ABC =∠CDE ,AC =CE ,∴ΔABC ≌ΔCDE ,∴BC =DE.根据勾股定理的几何意义,b的面积=a的面积+c的面积,∴b的面积=3+4=7.故填7.。

第一章1 探索勾股定理第2课时

第一章1 探索勾股定理第2课时

17
【举一反三】 1.(2024·宿州质检)如图,将长为8 cm的橡皮筋放置在水平桌面上,固定两端A和B, 然后把中点P垂直向上拉升3 cm至点C,则橡皮筋被拉长了 ( C )
A.4 cm
B.3 cm
C.2 cm
D.1 cm
18
2. (2024·沈阳质检)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号 轮船同时离开港口,“远航”号以每小时12 nmile的速度沿北偏东60°方向航行,“海 天”号以每小时16 n mile的速度沿北偏西30°方向航行,2小时后,“远航”号、“海天” 号分别位于M,N处,则此时“远航”号与“海天”号的距离为____4_0___n mile.
22
3.(8分·模型观念、运算能力、应用意识)如图,台风过后,一希望小学的旗杆在离 地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米. (1)求出旗杆在离底部多少米的位置断裂; 【解析】(1)设AB=x米, 因为AB+AC=16米, 所以AC=(16-x)米, 在Rt△ABC中,∠ABC=90°,BC=8米, 由勾股定理得:AC2=AB2+BC2, 即(16-x)2=x2+82,解得x=6. 答:旗杆在离底部6米的位置断裂.
A.4
B.8
C.12
D.16
7
新知要点 2.勾股定理的简单应用 实际应用的问题,如大树折断、方位角等问题,可以借助勾股定理解决.
8
对点小练
2.如图,在A村与B村之间有一座大山,原来从A村到B村,需沿道路A→C→B(∠C=90°)
绕过村庄间的大山,打通A,B间的隧道后,就可直接从A村到B村.已知AC=6 km,BC=
8 km,那么打通隧道后从A村到B村比原来减少的路程为

初中数学八年级上册学情分析

初中数学八年级上册学情分析

第一章探索勾股定理一知识点1. 掌握勾股定理,2了解利用拼图验证勾股定理的方法,3.运用勾股定理解决一些实际问题。

4. 知道什么叫勾股数,并能记住一些常见的勾股数..5. 会应用勾股定理的逆定理判定一个三角形是否是直角三角形二易错点:(1)忽略勾股定理的前提条件:直角三角形中,有时不是直角三角形也应用勾股定理。

(2)利用勾股定理时,分不清直角边、斜边,求直角边时,有时会把直角边当成斜=+431h h222边求。

如图所示,求。

有些同学错解为:,正确的解法为:=-=。

h222437图1(3)利用勾股定理得到的是边的平方,有些同学往往误认为是边的长度。

如图2所示,正方形的面积为172-152=64,而有些同学认为正方形的面积为642。

(4)利用图形证明勾股定理的推导第二章实数一知识点1. 了解无理数、实数、算术平方根、平方根(二次根式)、立方根、开平方、开立方的概念2.找出一组数中的无理数3.会求一个数的算术平方根、平方根、立方根4.估算无理数的大小5. 通过估算比较数的大小6. 会对实数进行分类7. 会在数轴上表示实数以及利用数轴比较大小8.掌握二次根式的乘法和除法运算公式9.简单的二次根式的化简10.实数范围的四则运算11.会用计算器进行数的开方运算二易错点:(1)求平方跟丢解。

如:1. 8的平方根是_____.2. 平方根等于本身的数是_____.(2)估算大小时精确度把握不好7如: 估算的大小(误差小于0.1)(3)二次根式的化简不彻如: 把根号8、根号4.2、根号45等数作为化简题的最后结果。

(4)二次根式计算错误。

主要体现在公式不熟练,特别是在根号a方的化简上掌握不好.第三章生活中的平移与旋转一.知识点:1.平移的概念及性质;旋转的概念及性质。

2.平移和旋转做图。

3.图形之间的变换关系。

4.会运用轴对称,平移和旋转的组合进行图案设计。

二.学生掌握较好处1.平移和旋转的基本概念及性质。

2.有关于平移和旋转的计算。

2022年数学精品初中教学设计《认识勾股定理2》特色教案

2022年数学精品初中教学设计《认识勾股定理2》特色教案

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理第一环节:创设情境, 引入新课内容:2002年世界数学家大会在我国北京召开, 投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理〞有关的图形, 数学家曾建议用“勾股定理〞的图来作为与“外星人〞联系的信号.今天我们就来一同探索勾股定理.〔板书课题〕第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图, 引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察, 归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和, 等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手, 让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1, 为探究活动二作铺垫.效果:1.探究活动一让学生独立观察, 自主探究, 培养独立思考的习惯和能力;2.通过探索发现, 让学生得到成功体验, 激发进一步探究的热情和愿望. 2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?〔1〕观察下面两幅图:〔2〕填表:A的面积〔单位面积〕B的面积〔单位面积〕C的面积〔单位面积〕左图〔3〕你是怎样得到正方形C 的面积的?与同伴交流.〔学生可能会做出多种方法, 教师应给予充分肯定.〕4⨯=C S 方法二:如图2, 在正方形C 外补四个全等的直角三角形, 形成大正方形, 用大正方形的面积减去四个直角三角形的面积, 133221452=⨯⨯⨯-=C S .方法三:如图3, 正方形C 中除去中间5个小正方形外, 将周围局部适当拼接可成为正方形, 如图3中两块红色〔或两块绿色〕局部可拼成一个小正方形, 按此拼法,13542=+⨯=C S .〔4〕分析填表的数据, 你发现了什么? 学生通过分析数据, 归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和, 等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点, 为此设计了一个交流环节.效果:学生通过充分讨论探究, 在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:〔1〕你能用直角三角形的边长a , b , c 来表示上图中正方形的面积吗?〔2〕你能发现直角三角形三边长度之间存在什么关系吗?〔3〕分别以5厘米、12厘米为直角边作出一个直角三角形, 并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a , b , c 分别表示直角三角形的两直角边和斜边, 那么222c b a =+.数学小史:勾股定理是我国最早发现的, 中国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股, 斜边称为弦, “勾股定理〞因此而得名.〔在西方文献中又称为毕达哥拉斯定理〕意图:议一议意在让学生在结论2的根底上, 进一步发现直角三角形三边关系, 得到勾股定理.效果:1.让学生归纳表述结论, 可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如下图, 一棵大树在一次强烈台风中于离地面10m 处折断倒下, 树顶落在离树根24m 处. 大树在折断之前高多少?〔教师板演解题过程〕 练习:1.根底稳固练习:求以下图形中未知正方形的面积或未知边的长度〔口答〕: 2.生活中的应用:小明妈妈买了一部29 in 〔74 cm 〕的电视机. 小明量了电视机的屏幕后, 发现屏幕只有58 cm 长和46 cm 宽, 他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用, 意在稳固根底知识.效果:例题和练习第2题是实际应用问题, 表达了数学来源于生活, 又效劳于生活, 意在培养学生“用数学〞的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结弦股勾内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的根底上, 师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a , b , c 分别表示直角三角形的两直角边和斜边, 那么222c b a =+.2.方法:〔1〕 观察—探索—猜测—验证—归纳—应用; 〔2〕“割、补、拼、接〞法.3.思想:〔1〕 特殊—一般—特殊; 〔2〕 数形结合思想.意图:鼓励学生积极大胆发言, 可增进师生、生生之间的交流、互动. 效果:通过畅谈收获和体会, 意在培养学生口头表达和交流的能力, 增强不断反思总结的意识.第五环节:布置作业内容:布置作业:.2.观察以下图, 探究图中三角形的三边长是否满足222c b a =+?意图:课后作业设计包括了三个层面:作业1是为了稳固根底知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识, 进行课后探究而设计, 通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思 〔一〕设计理念依据“学生是学习的主体〞这一理念, 在探索勾股定理的整个过程中, 本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时, 进行引导或组织学生通过讨论来突破难点.〔二〕突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理, 本节课首先情景创设激发兴趣, 再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手, 自然过渡到探究一般直角三角形, 学生通过观察图形, 计算面积, 分析数据, 发现直角三角形三边的关系, 进而得到勾股定理.课题学习《最短路径》教学设计一、教材分析1、地位作用:随着课改的深入, 数学更贴近生活, 更着眼于解决生产、经营中的问题, 于是就出现了为省时、省财力、省物力而希望寻求最短路径的数学问题.这类问题的解答依据是“两点之间, 线段最短〞或“垂线段最短〞, 由于所给的条件的不同, 解决方法和策略上又有所差异. 初中数学中路径最短问题, 表达了数学来源于生活, 并用数学解决现实生活问题的数学应用性.2、目标和目标解析:〔1〕目标:能利用轴对称解决简单的最短路径问题, 体会图形的变化在解决最值问题中的作用;感悟转化思想.〔2〕目标解析:达成目标的标志是:学生能讲实际问题中的“地点〞“河〞抽象为数学中的线段和最小问题, 能利用轴对称将线段和最小问题转化为“连点之间, 线段最短〞问题;能通过逻辑推理证明所求距离最短;在探索最算路径的过程中, 体会轴对称的“桥梁〞作用, 感悟转化思想.3、教学重、难点教学重点:利用轴对称将最短路径问题转化为“连点之间, 线段最短〞问题教学难点:如何利用轴对称将最短路径问题转化为线段和最小问题突破难点的方法:利用轴对称性质, 作任意点的对称点, 连接对称点和点, 得到一条线段, 利用两点之间线段最短来解决.二、教学准备:多媒体课件、导学案三、教学过程C 不重合〕, 连接AC ′, BC ′, B ′C ′. 由轴对称的性质知,BC =B ′C , BC ′=B ′C ′. ∴ AC +BC= AC +B ′C = AB ′, AC ′+BC ′= AC ′+B ′C ′.方法提炼:将最短路径问题抽象为“线段和最小问题〞. 问题4练习 如图, 一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客, 然后将游客送往河岸BC 上, 再返回P 处, 请画出旅游船的最短路径.根本思路:由于两点之间线段最短, 所以首先可连接PQ , 线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC , 这样问题就转化为“点P , Q 在直线BC 的同侧,学生独立完成, 集体订正互相交流解题经验独立完成, 交注意问题解决方法的小结:抓轴对称来解决经历观察-画图-说理等活动, 感受几何的研究方法, 培养学生的逻辑思考能力.提炼思想方法:轴对称, 线段和最短体会转化思想,A B C P Q山 河岸大桥BlAB ′CC ′1N1.由平移性质可知, AM=A1N, AA1=MN=M1N1, AM1=A1N1.AM+MN+BN 转化为AA1+A1B, 而AM1+M1N1+BN1 转化为AA1+A1N1+BN1.在△A1N1B中, 由线段公理知A1N1+BN1>A1B 因此AM1+M1N1+BN1> AM+MN+BN 如下图:方法提炼:将最短路径问题转化为“线段和最小问题〞交流体会体验转化思想教学内容与教师活动学生活动设计意图 三、稳固训练 〔一〕根底训练:1、最短路径问题 (1)求直线异侧的两点与直线上一点所连线段的和最小的问题, 只要连接这两点, 与直线的交点即为所求. 如下图, 点A , B 分别是直线l 异侧的两个点, 在l 上找一个点C , 使CA +CB 最短, 这时点C 是直线l 与AB 的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题, 只要找到其中一个点关于这条直线的对称点, 连接对称点与另一个点,那么与该直线的交点即为所求.如下图, 点A , B 分别是直线l 同侧的两个点, 在l 上找一个点C ,使CA +CB 最短, 这时先作点B 关于直线l 的对称点B ′, 那么点C 是直线l 与AB ′的交点.学生独立思考解决问题稳固所学知识, 增强学生应用知识的能力, 渗透转化思想.A1 NN1M1 MB A两地之间有两条河, 现要在两条河上各造一桥分别建在何处才能使从〔假定河的两岸是平行的直线, 桥要与河岸垂直〕B村的距离相等, B两村的水管最短班举行文艺晚会, 桌子摆成如图桌面上摆满了橘子, OB处的学生小明先拿橘子再拿糖果, 然后到图a 图b。

北师大版八年级数学上册第一章《勾股定理》(大单元教学设计)

北师大版八年级数学上册第一章《勾股定理》(大单元教学设计)
3.针对不同学生的学习程度,设计分层练习题,使学生在课后能够有针对性地巩固所学知识。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,梳理勾股定理及其逆定理的知识体系。
2.学生分享自己在学习勾股定理过程中的收获和感悟,提高学生的归纳总结能力。
3.教师强调勾股定理在实际生活中的应用价值,激发学生学习数学的兴趣。
6.课堂小结,巩固提高
通过对本节课所学知识的回顾和总结,帮助学生梳理知识体系,巩固重点,突破难点。
7.作业布置,分层设计
根据学生的学习程度,分层布置作业,使学生在课后能够有针对性地巩固所学知识。
8.教学评价,多元反馈
采用课堂提问、作业批改、小组评价等多种方式,全面了解学生的学习情况,给予及时、有效的反馈,促进学生全面发展。
注意事项:
1.请同学们认真完成作业,保持字迹工整,便于教师批改和反馈。
2.遇到问题时,可先与同学讨论,如仍有疑问,可向教师请教。
3.作业完成后,及时检查,确保解答过程正确,避免因粗心大意而出现错误。
4.家长在辅导孩子完成作业时,注意引导孩子独立思考,切勿直接给出答案。
3.小组合作,共同探讨勾股定理在几何图形证明中的应用。选取一个或多个几何图形,运用勾股定理进行证明,并将证明过程和结果整理成文档,以便在课堂上分享。
4.完成课后拓展题(见附件),挑战更高难度的勾股定理相关问题。此部分作业旨在提高学生的逻辑思维能力和创新意识。
5.家长参与作业:请同学们向家长介绍勾股定理及其在实际生活中的应用,并邀请家长参与一起解决一道勾股定理相关问题,增进家校互动,提高学生学习兴趣。
9.教学反思,持续改进
教师在教学过程中,要关注学生的学习反馈,及时进行教学反思,调整教学方法,提高教学效果。

初中数学最新版《认识勾股定理》精品导学案(2022年版)

初中数学最新版《认识勾股定理》精品导学案(2022年版)

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理学习目标1、经历用数格子的方法探索勾股定理的过程,进一步开展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2 、探索并理解直角三角形的三边之间的数量关系,进一步开展学生的说理和简单推理的意识及能力。

重点、难点重点:了解勾股定理的由来并能用它解决一些简单问题。

难点:勾股定理的发现。

学习过程一、创设问题的情境,激发学生的学习热情:我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边。

对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系。

那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理。

出示投影1〔章前的图文 P1 〕我国是最早了解勾股定理的国家之一介绍商高〔三千多年前周朝数学家〕。

出示投影2。

〔书中P2 图1一2〕并答复:1、观察图1一2,正方形A中有个小方格,即A的面积为个面积单位。

正方形B 中有个小方格.即B的面积为个面积单位。

正方形C 中有个小方格,即C的面积为个面积单位。

2、你是怎样得出上面结果的?在学生交流答复的根底上教师接着发问。

3、图l一2 中,A、B、C之间的面积之间有什么关系?在学生交流后形成共识老师板书。

A + B=C ,接着提出图1一1中A、B、C的关系呢?二、做一做出示投影3〔书中P3 图1一3,图1一4 )提问:1、图1一3中,A 、B、C之间有什么关系?2、图1 一4中,A 、B 、C 之间有什么关系?3、从图1一l 、1一2 、1一3 、l一4中你发现了什么?在学生讨论、交流形成共识后,老师总结:以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。

三、议一议1、图1一1、1一2、1一3、1一4中,你能用三角边的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流根底上,老师板书:直角三角边的两直角边的平方和等于斜边的平方。

《探索勾股定理第2课时》示范公开课教学设计【北师大版八年级数学上册】

《探索勾股定理第2课时》示范公开课教学设计【北师大版八年级数学上册】

第一章勾股定理1. 1 探索勾股定理第 2 课时教学设计1.学会应用勾股定理,并领会“数与行”相结合的应用思想.2.经历勾股定理应用的过程,掌握勾股定理的使用方法.3.培养良好的合作、交流意识,发展数学观念,体会勾股定理的实际应用.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.四个全等的直角三角形纸片.一、创设情境,引入新知如图,这是一幅美丽的图案,仔细观察,你能发现这幅图中的奥秘吗?带着疑问我们来一起探索吧.◆教学目标◆教学重难点◆◆课前准备◆◆教学过程二、合作交流,探究新知勾股定理的初步认识问题1:观察下面地板砖示意图:你发现图中三个正方形的面积之间存在什么关系吗?问题2:观察右边两幅图:完成下表(每个小正方形的面积为单位1).方法一:割分割为四个直角三角形和一个小正方形.方法二:补补成大正方形,用大正方形的面积减去四个直角三角形的面积.方法三:拼将几个小块拼成若干个小正方形,图中两块红色(或绿色)可拼成一个小正方形.分析表中数据,你发现了什么?结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.想一想(1)你能用直角三角形的两直角边的长a,b 和斜边长 c 来表示图中正方形的面积吗?根据前面的结论,它们之间又有什么样的关系呢?(2)以5 cm、12 cm为直角边作出一个直角三角形,并测量斜边的长度.(1)中的规律对这个三角形仍成立吗?勾股定理直角三角形两直角边的平方和等于斜边的平方.如果a,b和 c 分别表示直角三角形的两直角边和斜边那么a2+b2=c2名字的由来我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.在西方又称毕达哥拉斯定理三、运用新知求下列图形中未知正方形的面积或未知边的长度(口答):已知直角三角形两边,求第三边.利用勾股定理进行计算:例求斜边长为17 cm、一条直角边长为15 cm的直角三角形的面积.四、巩固新知1. 图中阴影部分是一个正方形,则此正方形的面积为 .2. 判断题①△Rt ABC 的两直角边AB=5, AC=12,则斜边BC=13 ( )②△ABC 的两边a = 6 , b = 8, 则c = 10 ( )3. 填空题在△ABC中, ∠C=90°, AC = 6, CB = 8,则△ABC 的面积为_____,斜边上的高CD 为______.4. 一高为 2.5 米的木梯,架在高为 2.4 米的墙上(如图),这时梯脚与墙的距离是多少?五、归纳小结◆教学反思略.。

初中数学_《勾股定理(1)》教学设计学情分析教材分析课后反思

初中数学_《勾股定理(1)》教学设计学情分析教材分析课后反思

《勾股定理(1)》教学设计教学目标:知识与技能1、了解勾股定理的文化背景,体验勾股定理的探索过程。

2、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。

3、能利用勾股定理的数学模型解决现实世界中的简单实际问题。

过程与方法1、在勾股定理的探索过程中,发展合情推理能力,体会数形结合思想。

2、经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。

情感、态度与价值观1、通过对勾股定理历史的了解,感受数学文化,激发学习热情。

2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。

教学重点:探索和验证勾股定理。

教学难点:用拼图的方法验证勾股定理。

课时安排:1课时教学过程:一、情境导入相传2500年前,古希腊数学家毕达哥拉斯到朋友家做客时,发现朋友家的地砖反映了直角三角形三条边的数量关系。

请同学们观察,并填空1、观察图形(简化图中每个小方格代表一个单位面积)①正方形A的面积是个单位面积。

②正方形B的面积是个单位面积。

③正方形C的面积是个单位面积。

结论:2、观察图形,填表A的面积B的面积C的面积图1-1图1-2教师口述毕达哥拉斯发现勾股定理的故事,并展示图案。

学生认真观察图形,填空,探究发现,学生就发现的特点用语言描述出来。

教师做详细准确的归纳。

通过毕达哥拉斯的故事激发学生的学习兴趣。

渗透从特殊到一般的数学思想,充分发挥学生的主体地位。

鼓励学生体会观察、大胆猜想、归纳,提高学生的语言表达能力和归纳概括能力。

你能发现图1-1正方形A、B、C的的面积有什么关系吗?图1-2呢?3、用边长表示A的面积用边长表示B的面积用边长表示C的面积用边长表示图1-1图1-2二、探究新知大胆猜想:命题:直角三角形中,三边的长度存在什么关系?语言描述:符号表示:动手拼拼图1、准备四个全等的三角形(设直角三角形的两条直角边分别为a和b,斜边为c)2、你能用这四个直角三角形拼出边长为c的正方形吗?拼一拼,试试看。

北师大版八年级上册1.1探索勾股定理(第2课时)教案

北师大版八年级上册1.1探索勾股定理(第2课时)教案
2.如何验证勾股定理呢 ? 二.自主学习:
利用拼图验证勾股定理(课前准备 8 个全等的直角三角形): 活动:用四个全等的直角三角形拼出图 1,并思考: 1.拼成的图 1 中有_______个正方形, ___个直角三角形。 2.图中大正方形的边长为_______,小正方形的边长为_______。
(a + b)2 (a + b)2 (a + b)2
四、达标测评: 1、如右图,AD = 3,AB = 4,BC = 12,则 CD=________;
2、如图,阴影部分的面积为

D
15
8
A
3
B
C
3、一个直角三角形的三边分别为 3,4, x ,则 x2 =
4、若等腰三角形的腰为 10cm,底边长为 16cm,则它的面积为

5、从电线杆离地面 6 米处向地面拉一条长 10 米的缆绳,这条缆绳在地面的固定点
3 你能利用类似的方法由图 2 得到勾股定理吗?
9、飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方 4000 m 处,过了 20 s,飞机距离这个男孩子头顶 5000m,飞机每小时飞行多少千米?
◎备课留白:
1/1
◎教学反思: ◎安全提醒:
距离电线杆底部有
米。
6、一直角三角形的斜边比直角边大 2,另一直角边长为 6,则斜边长为

7、直角三角形一直角边为 5 厘米、斜边为 13 厘米,那么斜边上的高是

8、直角三角形的三边长为连续偶数,则其周长为

图22Leabharlann 三.合作探究:21. 如图 1,你能表示大正方形的面积吗?能用两种方法表示吗?
2. (a+b)2 与 c2+2ab 有什么关系?为什么?你能验证勾股定理了吗?

北师大版数学八年级上册1《探索勾股定理》教学设计4

北师大版数学八年级上册1《探索勾股定理》教学设计4

北师大版数学八年级上册1《探索勾股定理》教学设计4一. 教材分析《探索勾股定理》是北师大版数学八年级上册第一单元的教学内容。

本节课的主要目标是让学生通过探究活动,发现并证明勾股定理。

教材从学生的实际出发,设计了丰富的探究活动,让学生在探究中发现问题、解决问题,培养学生的探究能力和合作精神。

二. 学情分析学生在七年级时已经学习了相似三角形的性质,对三角形有一定的了解。

但是,对于勾股定理的证明,他们可能还没有接触过。

因此,在教学过程中,教师需要引导学生从直观到抽象,逐步理解并证明勾股定理。

三. 教学目标1.了解勾股定理的发现过程,感受数学的探究乐趣。

2.掌握勾股定理,并能运用勾股定理解决实际问题。

3.培养学生的探究能力和合作精神。

四. 教学重难点1.重难点:勾股定理的证明。

2.难点:理解并证明勾股定理。

五. 教学方法1.引导探究法:教师引导学生通过探究活动,发现并证明勾股定理。

2.合作学习法:学生分组进行探究,培养合作精神。

六. 教学准备1.课件:勾股定理的相关图片和探究活动的指导。

2.学具:直尺、三角板、纸张等。

七. 教学过程1.导入(5分钟)教师通过展示勾股定理的相关图片,引导学生思考:为什么勾股定理这么重要?它的发现过程是怎样的?2.呈现(10分钟)教师呈现探究活动,引导学生分组进行探究。

探究活动包括:a.用直尺和三角板构造一个直角三角形,测量其三边的长度。

b.计算并验证勾股定理是否成立。

3.操练(10分钟)学生分组进行探究,教师巡回指导。

在学生探究过程中,教师引导学生从直观到抽象,逐步理解勾股定理。

4.巩固(10分钟)教师选取几组学生的探究结果,进行讲解和分析。

引导学生总结勾股定理的证明过程。

5.拓展(10分钟)教师提出一些与勾股定理相关的实际问题,引导学生运用勾股定理进行解决。

例如:一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。

八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)

八年级数学上册第1章《探索勾股定理(2)》优质教案(北师大版)

第一章勾股定理1.探索勾股定理(2)一、学情与教材分析1.学情分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.2.教材分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.二、教学目标1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.教学难点:验证勾股定理.四、教法建议1.教学方法:引导——探究——应用.2.课前准备:教具:教材,课件,电脑.学具:教材,铅笔,直尺,练习本.五、教学设计(一)课前设计1.预习任务结合课本上P5页1-5和1-6,应用等面积法证明勾股定理,(提示:图中的正方形的面积可以表示为边长的平方,也可以表示成小正方形加上四个直角三角形的面积)2.预习自测一、选择题1. 利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图.观察图形,可以验证()公式.A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2﹣2ab+b2C.c2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2答案:C解析:∵大正方形的面积表示为:c2又可以表示为:ab×4+(b﹣a)2,∴c2=ab×4+(b﹣a)2,c2=2ab+b2﹣2ab+a2,∴c2=a2+b2.故选C.点拨:利用两种方法表示出大正方形的面积,根据面积相等可以整理出c2=a2+b2.二、填空题2. 如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是_________.答案:勾股定理解析:我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是勾股定理.点拨:观察我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,发现它验证了勾股定理.3. 如图,由四个直角三角形拼成2个正方形,则4个直角三角形面积+小正方形面积=大正方形面积,即_________+_________=_________化简得:a2+b2=c2.答案:4×ab、(b﹣a)2、c2.解析:如图所示,4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab+(b﹣a)2=c2,故答案是:4×ab、(b﹣a)2、c2.点拨:根据直角三角形的面积公式和正方形的面积公式进行填空.(二)课堂设计本节课设计了六个教学环节:第一环节:知识回顾;第二环节:探究发现;第三环节:数学小史;第四环节:知识运用;第五环节:随堂检测;第六环节:课堂小结.第一环节:知识回顾内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:探究发现活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系图1整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节:数学小史活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法. 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第四环节:知识运用a b内容:例题:我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s 后,汽车与他相距500m,你能帮小王计算出敌方汽车的速度吗?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.一组生活中勾股定理的应用练习,共3道题.(1)教材P6练习题1.(2)一个25m长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24m,如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移4m吗?(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?说明:这一环节设计了3道题,设计时注意了题目的梯度,由浅入深,第一题为书上练习题,学生容易解决,第二道题虽然计算难度不大,但考查学生的实际应用能力,第三道题是应用勾股定理建立方程求解,有一定难度.意图:在例题的基础上进行拓展,训练学生将实际问题转化为数学问题,再运用勾股定理解决问题.效果:小部分学生在完成第二题时,由于欠缺生活常识时,不能准确地理解题意,约有一半同学对第3道题束手无策,主要是缺乏利用勾股定理建立方程求解的这种思路,经同学点拨,教师引导,绝大部分同学最后都能解决这个问题,通过3个小题的训练,总体感觉学生对勾股定理的应用更加熟练,并对勾股定理的应用价值体会更深.第五环节:随堂检测一、选择题1. 下列选项中,不能用来证明勾股定理的是()A.B.C.D.答案:D解析:A,B,C都可以利用图形面积得出a,b,c的关系,即可证明勾股定理;故A,B,C选项不符合题意;D、不能利用图形面积证明勾股定理,故此选项正确.故选D.点拨:根据图形的面积得出a,b,c的关系,即可证明勾股定理,分别分析得出即可.2.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.﹣9 B.﹣36 C.﹣27 D.﹣34答案:B解析:根据题意得:小正方形的面积=(6﹣3)2=9,大正方形的面积=32+62=45,9﹣45=36.故选B.点拨:由正方形的性质和勾股定理求出小正方形和大正方形的面积,即可得出小正方形与大正方形的面积差.二、填空题3. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是_________.答案:①④解析:直角三角形的斜边长是c,则c2=a2+b2,大正方形的面积是13,即c2=a2+b2=13,①正确;∵小正方形的面积是1,∴b﹣a=1,则(b﹣a)2=1,即a2+b2﹣2ab=1,∴ab=6,故④正确;根据图形可以得到a2+b2=13,b﹣a=1,而b=1不一定成立,故②错误,进而得到③错误.故答案是:①④点拨:根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而判断.4. 利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为_________,该定理的结论其数学表达式是_________.答案:勾股定理、a2+b2=c2.解析:用图(2)较简单,如图正方形的面积=(a+b)2,用三角形的面积与边长为c的正方形的面积表示为4×ab+c2,即(a+b)2=4×ab+c2化简得a2+b2=c2.这个定理称为勾股定理.故答案为:勾股定理、a2+b2=c2.点拨:通过图中三角形面积、正方形面积之间的关系,证明勾股定理.三、解答题5. 勾股定理是一条古老的数学定理,它有很多种证明方法.(1)请你根据图1填空;勾股定理成立的条件是_________三角形,结论是_________(三边关系)(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;答案:(1)直角;a2+b2=c2;(2)见解析解析:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.故答案是:直角;a2+b2=c2;(2)∵Rt△ABE≌Rt△ECD,∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°.∵S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED,∴.整理,得a2+b2=c2.点拨:(1)根据图示直接填空;(2)利用S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED进行解答.第六环节:课堂小结教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.布置作业:1.习题1.2 T2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.分层作业基础型:一、选择题1. 历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA =S△CEBB.S△EDA+S△CEB=S△CDBC.S四边形CDAE =S四边形CDEBD.S△EDA+S△CDE+S△CEB=S四边形ABCD答案:D解析:∵由S△EDA +S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA +S△CDE+S△CEB=S四边形ABCD.故选D.点拨:用三角形的面积和、梯形的面积来表示这个图形的面积,从而证明勾股定理.2. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6答案:C解析:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.点拨:观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.二、填空题3. 如图,以Rt△ABC的三边向外作正方形,若最大正方形的边长为6cm,以AC 为边的正方形的面积为25,则正方形M的面积为________.答案:11=AB2,25=AC2,AC2+AB2=BC2=6×6,解析:根据题意知,SM=36﹣25=11(cm2).∴SM故答案是:11cm2.点拨:根据正方形的面积公式以及勾股定理解答即可.4. 如图,已知△ABC中,AB=17,AC=10,BC边上的高AD=8.则△ABC的周长为_________.答案:48解析:在直角三角形ABD中,AB=17,AD=8,根据勾股定理,得BD=15;在直角三角形ACD中,AC=10,AD=8,根据勾股定理,得CD=6;∴BC=15+6=21,∴△ABC的周长为17+10+21=48,故答案为:48.点拨:分别在两个直角三角形中求得线段BD和线段CD的长,然后求得BC的长,从而求得周长.三、解答题5. 我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a、b,试求:(a+b)2的值.答案:B解析:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.点拨:根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.能力型:一、选择题1. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.72答案:C解析:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得x=13.故“数学风车”的周长是:(13+6)×4=76.故选:C.点拨:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.二、填空题2. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为3cm,则图中所有正方形的面积之和为_______cm2.答案:27解析:∵最大的正方形的边长为3cm,∴正方形G的面积为9cm2,由勾股定理得,正方形E的面积+正方形F的面积=9cm2,正方形A的面积+正方形B的面积+正方形C的面积+正方形D的面积=9cm2,∴图中所有正方形的面积之和为27cm2,故答案为:27.点拨:根据正方形的面积公式求出正方形G的面积,根据勾股定理计算即可.3. 魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为_______.答案:6解析:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.点拨:由BF+CF求出BC的长,即为正方形ABCD的边长,由AB与CE平行,得比例求出CE的长,由DC+CE求出DE的长,在直角三角形ADE中,利用勾股定理求出AE的长即可.三、解答题4. (1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.答案:见解析解析:(1)这个公式为(a+b)2=a2+2ab+b2;证明:由图可知大正方形被分成了一个小正方形和两个长方形,大正方形的面积=(a+b)2,两个长方形的面积=(a+b)b+ab,小正方形的面积=a2,那么大正方形的面积=(a+b)b+ab+a2=(a+b)2=a2+2ab+b2.(2)∵Rt△ABC≌Rt△CDE,∴∠BAC=∠DCE,∴∠ACB+∠DCE=∠ACB+∠BAC=90°;由于B,C,D共线,所以∠ACE=180°﹣(∠ACB+∠DCE)=180°﹣90°=90°.(3)梯形ABDE的面积为(AB+ED)•BD=(a+b)(a+b)=(a+b)2;另一方面,梯形ABDE可分成三个直角三角形,其面积又可以表示成ab+ab+c2.所以,(a+b)2=ab+ab+c2.即a2+b2=c2.点拨:(1)用面积分割法证明:大正方形的面积等于小正方形和两个长方形的面积之和,从而推出平方和公式.(2)利用全等三角形对应角相等,直角三角形的两个锐角互余,推出直角;(3)用面积分割法法证明勾股定理:梯形ABDE的面积=三角形ABC的面积+三角形CDE的面积+三角形ACE的面积.探究型:一、解答题1. 教材第九章中探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助小明完成验证的过程.(2)小明又把这四个全等的直角三角形拼成了一个梯形(如图③),利用上面探究所得结论,求当a=3,b=4时梯形ABCD的周长.(3)如图④,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.请在图中画出△ABC的高BD,利用上面的结论,求高BD的长.答案:见解析解析:(1)证明:由图得,×ab×4+c2=(a+b)×(a+b),整理得,2ab+c2=a2+b2+2ab,即a2+b2=c2;(2)解:∵a=3,b=4,∴c==5,梯形ABCD的周长为:a+c+3a+c═4a+2c=4×3+2×5=22;(3)解:如图4,BD是△ABC的高.∵S=AC•△ABCBD=AB×3,AC==5,∴BD===.点拨:(1)根据四个全等的直角三角形的面积+阴影部分小正方形的面积=大正方形的面积,代入数值,即可证明;(2)由(1)中结论先求出c的值,再根据周长公式即可得出梯形ABCD的周长;(3)先根据高的定义画出BD,由(1)中结论求出AC的长,再根据△ABC的面积不变列式,即可求出高BD的长.2. 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB =S△ACD+S△ABC=b2+ab.又∵S四边形ADCB =S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.证明:连结_______,过点B作______________,则_________.∵S五边形ACBED =S△ACB+S△ABE+S△ADE=______________.又∵S五边形ACBED=______________=ab+c2+a(b﹣a),∴______________=ab+c2+a(b﹣a),∴a2+b2=c2.答案:BD,BF⊥DE于F,BF=b﹣a,ab+ b2+ab,S△ACB +S△ABE+S△ADE,ab+b2+ ab.解析:证明:连结BD,过点B作BF⊥DE于F,则BF=b﹣a,∵S五边形ACBED =S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED =S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴。

1.1探索勾股定理第2课时验证勾股定理(教案)

1.1探索勾股定理第2课时验证勾股定理(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形两直角边的平方和等于斜边的平方。它是解决直角三角形边长计算问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。通过计算3、4、5这组勾股数,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《探索勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过测量直角三角形边长的情况?”(如测量墙角到地面的距离)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
五、教学反思
在今天的课程中,我们探索了勾股定理的验证,这是一节理论与实践相结合的课程。我注意到,在理论讲解部分,学生对勾股定理的概念接受得相对顺利,但到了实际操作和验证环节,部分学生显得有些吃力。这让我意识到,在今后的教学中,我需要更加注重学生对知识的应用和实践。
在实践活动和小组讨论中,学生们的参与度很高,他们积极讨论、动手操作,试图通过自己的努力去验证勾股定理。这让我感到很欣慰,因为他们能够将所学知识应用到实际中去。但同时,我也发现了一些问题,比如学生在进行代数推导时,对平方的概念理解不够深入,导致计算过程中出现错误。这提示我在今后的教学中,需要加强对基础概念的讲解和巩固。

2024-2025学年北师版中学数学八年级上册1.1探索勾股定理(第2课时)教学课件

2024-2025学年北师版中学数学八年级上册1.1探索勾股定理(第2课时)教学课件

400 m
500 m
解:由勾股定理,
得BC 2 =AB2 - AC 2 =5002 - 4002 =90 000,
即BC=300 m.汽车10 s行驶300 m,那么它1 h行驶的距离为:
300 × 3 600=10 80(0 m)=10(8 km /h). 10 答:敌方汽车速度为108 km /h.
15
10
152 x2 102 (25 x)2
C
解得:x 10
D
答:E站应建在距A站10千米处.
你是如何做的? 与同伴交流.
活动1:小明的证明思路如下图,想一想:小明是怎样对 大正方形进行割补的?
D
A C
B

你能将所有三角形和正方形的面积用含a,b,c的关系式表 示出来吗?
毕达哥拉斯证法
a+b
大正方形ABCD的面积可以表示为:
____4_×__12_a_b_+_c2__或者__(_a__+__b_)2__
可得等式_4_×__12_a_b_+_c2_=_(_a+_b_)_2 ____
你能用右图验证勾股定理吗?
证明:∵S正方形ABCD =4
1 ×
2
ab+c 2,
又∵S正方形ABCD =(a+b)2,
∴4 × 1 ab+c2 =(a+b)2. 2
∴2ab+c2 =a2 +2ab+b2.
∴a2 +b2 =c2.
当堂检测
1.如图,高速公路的同侧有A,B两个村庄,它们到高速公路所在直线 MN的距离分别为AA1=2km,BB1=4km,A1B1=8km.现要在高速公路上A1、 B1之间设一个出口P,使A,B两个村庄到P的距离之和最短,求这个最 短距离和.

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案 新版北师大版

八年级数学上册1.1探索勾股定理第2课时验证勾股定理教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第一章“探索勾股定理”的目的是让学生了解勾股定理的发现过程,理解勾股定理的内涵,并能够运用勾股定理解决实际问题。

本节课是该章节的第一课时,主要让学生验证勾股定理。

二. 学情分析八年级的学生已经学习了平面几何的基本知识,对三角形、直角三角形等概念有一定的理解。

但他们对勾股定理的发现过程和证明方法可能还不够深入了解,因此需要通过本节课的教学,让学生从实践中感受勾股定理的真理,提高他们的数学思维能力。

三. 教学目标1.让学生了解勾股定理的发现过程,理解勾股定理的内涵。

2.培养学生运用几何图形进行推理和验证的能力。

3.提高学生对数学的兴趣和探索精神。

四. 教学重难点1.教学重点:让学生通过实际操作,验证勾股定理。

2.教学难点:引导学生理解并证明勾股定理。

五. 教学方法1.实践教学法:让学生通过实际操作,发现并验证勾股定理。

2.问题驱动法:教师提出问题,引导学生思考和探索。

3.小组合作学习:学生分组讨论,共同完成验证勾股定理的任务。

六. 教学准备1.准备三角形模型、直尺、圆规等教具。

2.制作课件,展示勾股定理的发现过程和证明方法。

七. 教学过程1.导入(5分钟)教师通过引入古希腊数学家毕达哥拉斯的故事,让学生了解勾股定理的发现过程,激发学生的学习兴趣。

2.呈现(10分钟)教师展示勾股定理的表述:直角三角形两条直角边的平方和等于斜边的平方。

然后提出问题:如何验证这个定理呢?3.操练(10分钟)学生分组讨论,运用教具和直尺,尝试构造直角三角形,并测量两条直角边和斜边的长度。

每组学生将自己的测量结果填入表格中。

4.巩固(5分钟)教师邀请几组学生汇报自己的测量结果,引导学生发现:不论直角三角形的直角边和斜边的长度如何变化,两条直角边的平方和总是等于斜边的平方。

5.拓展(5分钟)教师提出挑战性问题:如何证明这个结论对所有的直角三角形都成立呢?引导学生进一步思考和探索。

探索勾股定理(第2课时)教学设计-【名师经典教学设计课件】

探索勾股定理(第2课时)教学设计-【名师经典教学设计课件】

第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六)回顾反思,提炼升华;(七)布置作业,课堂延伸.第一环节:复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+) 从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能图1利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。

勾股定理教学设计

勾股定理教学设计

附件 2:《勾股定理》教学设计课程名称 授课人 教学对象 一、教材分析 这节课是九年制义务教育初级中学教材北师大版八年级第一章第 1 节《探索勾股定理》第一课时, 勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。

它在数学的发展中起 过重要的作用,在现时世界中也有着广泛的作用。

学生通过对勾股定理的学习,可以在原有的基础上对 直角三角形有进一步的认识和理解。

二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观) 教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的 习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和 特殊到一般的思想方法。

教学重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

教学难点:用面积法(拼图法)发现勾股定理。

三、教学策略选择与设计 针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提 出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力, 能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂 小结—布置作业六部分。

《 勾股定理 》 谢谢 八年级 学校名称 科 目 数学 福绵区新桥镇初级中学 课时安排 1课时四、教学环境及设备、资源准备 教学环境:本校的多媒体教室及设备 学生准备:课本及练习本、纸张,笔、直尺 教师准备:自制课件 教学资源:人教版八年级下册数学课本 „„ 五、教学过程 教学过程 教师活动 学生活动 媒体设备资源应用分析(一) 、创设情 境→激发兴趣1、2002 年在北京召开的第 24 届国际数学家大会, 这就是本届 大会会徽的图案 . 它象一个转 动的风车, 挥舞着手臂, 欢迎来 自世界各国的数学家们. 问: 你见过这个图案吗?1、 【欣赏图片】 1) 、 学生在轻松活泼的气氛中欣赏图 片。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理1. 探索勾股定理(第2课时)一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.三、教学过程本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升(四)例题讲解,初步应用;(五)追溯历史,激发情感;;(六) 回顾反思,提炼升华;(七) 布置作业,课堂延伸. 第一环节: 复习设疑,激趣引入内容:教师提出问题:(1)勾股定理的内容是什么?(请一名学生回答)(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.第二环节:小组活动,拼图验证.内容: 活动1: 教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)活动2:层层设问,完成验证一. 学生通过自主探究,小组讨论得到两个图形:图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)图1从而利用图1验证了勾股定理.活动3:自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点.第三环节延伸拓展,能力提升1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c22.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角边的长。

意图:在前面已经讨论了直角三角形三边满足的关系,那么锐角三角形或钝角三角形的三边是否也满足这一关系呢?学生通过数格子的方法可以得出:如果一个三角形不是直角三角形,那么它的三边a,b,c不满足a2+b2=c2。

通过这个结论,学生将对直角三角形三边的关系有进一步的认识,并为后续直角三角形的判别打下基础。

第四环节:例题讲解初步应用内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.第五环节:追溯历史激发情感活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图.2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就,又像一只转动的风车,欢迎来自世界各地的数学家们!国际调查组报告:勾股定理与第一次数学危机.约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .趣闻调查组报告:勾股定理的总统证法.在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景……他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着ab什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形……于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.第六环节:回顾反思提炼升华内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.第七环节:布置作业,课堂延伸内容:教师布置作业1.习题1.2 1,2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.六、教学设计反思1.设计说明勾股定理作为“千古第一定理”其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点.2.教学建议如果学生的程度较好可以按照本教学设计进行教学,并且可以把分层练习中“知识拓展”作为课堂教学内容.如果学生程度稍差,可以舍弃第三环节以及第五环节中的(2)(3)两个问题.而把分层练习中“基础训练”作为课堂过关使用.学情分析一、学生起点分析学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.二、教学任务分析本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力,为后面的学习打下基础.为此本节课的教学目标是:1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.学生当堂学习效果评测结果及分析自我检测:评测练习1.直角三角形的两直角边为9、12,则斜边为;2.直角三角形的两边分别为13和 5,则另一条边为。

相关文档
最新文档