湖北职业高中数学对口升学高考复习模拟试题六(含答案)
职高对口高考模拟数学试卷
#### 一、填空题(每空2分,共20分)1. 若函数 \( f(x) = ax^2 + bx + c \) 在 \( x = 1 \) 处取得极值,则 \( a + b + c = \) ________。
2. 在等差数列 \(\{a_n\}\) 中,若 \( a_1 = 3 \),公差 \( d = 2 \),则\( a_5 = \) ________。
3. 已知圆的方程为 \( x^2 + y^2 - 4x - 6y + 9 = 0 \),则该圆的半径为________。
4. 若 \( \cos \alpha = \frac{1}{3} \),则 \( \sin \alpha \) 的值为________。
5. 函数 \( y = \frac{1}{x} \) 的图像关于 ________ 对称。
6. 若 \( \sqrt{a^2 + b^2} = 5 \),\( a = 3 \),则 \( b \) 的值为________。
7. 三个数的和为 12,其中两个数分别为 3 和 5,则第三个数为 ________。
8. 若 \( \triangle ABC \) 中,\( a = 5 \),\( b = 6 \),\( c = 7 \),则\( \cos A \) 的值为 ________。
9. 下列不等式中,正确的是 ________(选项:A. \( 2x > 4 \);B. \( 3x \leq 9 \);C. \( x^2 \geq 4 \);D. \( \frac{1}{x} < 1 \))10. 已知 \( \log_2 8 = 3 \),则 \( \log_2 32 = \) ________。
#### 二、选择题(每题3分,共30分)1. 函数 \( y = x^3 - 3x \) 的图像在 \( x = 0 \) 处的切线斜率为:A. 0;B. -3;C. 3;D. 不存在。
(完整word版)对口升学数学模拟试题(word文档良心出品)
对口升学数学模拟试题班级姓名一、选择题(50分)1.设U={2,3,a 2+2a-3},A={|a+1|,2},U A ð={5},则 a= ( ) A .2B .-3或1C .-4D .-4或22.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件; ②“5+a 是无理数”是“a 是无理数”的充要条件③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中真命题的个数是( )A .1B .2C .3D .43.四个数241,,3,a a 中,若前三个数成等差数列,后三个数成等比,则( )A .29,242=-=a aB .29,242==a aC .29,242-==a aD .29,242-=-=a a4.函数1()102x f x -=-,则1(8)f -= ( ) A .1 B .-2 C .1/2 D .25.ABC ∆中,若22tan tan ba B A =,则ABC ∆形状是 ( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形1.设全集是R ,M ={1,2,3,4},N ={x |x ≤1+2,x ∈R },则M ∩U N ð=( ) (A ){4} (B ){3,4} (C ){2,3,4} (D ){1,2,3,4} 2.函数y =2x -x 2lg (2x -1) +32x -1的定义域是 ( )(A )(12 ,1) (B )(1,2) (C )(12 ,2) (D )(12 ,1)∪(1,2) 3、如果函数y=f(x)的图象过点(0,1),则y=f -1(x)+2的图象必过点( ) (A ) (1,2) (B )(2,1) (C ) (0,1) (D )(2,0)4.若△ABC 中tan A 、tan B 是方程3x 2+8x -1=0的两个根,则tan C =( ) (A )2 (B )-2 (C )4 (D )-4( )1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4}则(C I A)∪(C I B)= ( ) (A){0} (B){0,1} (C){0,1,4} (D){0,1,2,3,4} 2.已知y=()x f 是奇函数,当x>0时,()x f =x(x+1),当x<0时,()x f = ( ) (A)-x (1-x ) (B)x (1-x ) (C)-x (1+x ) (D)x (1+x ) 3.若πθπ<<2,且cos ()3253sin ππθθ⎛⎫-=-+ ⎪⎝⎭,则= ( )(A)10334-- (B)10334- (C)10334+- (D)10334+ 4..已知a>b>1,那么下列不等式中成立的是 ( )(A)ba22log log < (B)ba ⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛2121 (C)0.3a <0.3b (D)b a 2.02.0log log >7.在等比数列{a n }中,a 1、a 5是方程2x 2-15x+4=0的两根,则a 1·a 3·a 5=( ) (A)22 (B)-22 (C)445(D)22± 1.已知A={1,2,a 2-3a-1},B={1,3},A =⋂B {3,1}则a 等于 ( ) A 、4-或1 B 、1-或4 C 、1- D 、4 2.不等式xx 42-≥1的解集为( )A 、{x|0<x≤2}B 、{x|x ≥2或x<0}C 、{x|x ≥4或x<0}D 、{x|x ≥4或x≤0} 3.函数1()102(01)x f x a -=-<<,则1(8)f -=() A 、1 B 、0 C 、1/2 D 、24.22cos 75cos 15cos75cos15︒+︒+︒︒等于 ( )A 、14+B C 、54 D 、345.已知)32()1(i i a z +-+=为纯虚数,a 为实数,则a 的取值为 ( ) A 、32≠≠a a 或 B 、2=a C 、32≠≠a a 且 D 、3=a1.设集合{}3,2,1=A ,则满足A B A = 的集合B 的个数是 ( )A.3B.4C.6D.82.三个数20.620.6,2,log 0.6的大小关系是 ( ) A.20.620.62log 0.6<< B.20.62log 0.60.62<< C.0.622log 0.620.6<< D.20.620.6log 0.62<<3.已知向量()1,1a =与()2,3b =-,若2ka b -与a 垂直,则实数k 等于 ( ) A.-1 B. -10 C. 2 D. 0 4.已知等比数列{a n }中,a 9=2-,则此数列前17项的积等于( ) A.216 B.-216 C.217 D.-2175.已知cos α=,且sin 0α>,则tan α为 ( ) A.2 B. -2 C.12 D.12- 8.0a >且b>0是ab>0的 ( ) A.充要条件 B. 必要而非充分条件 C.充分而非必要条件 D. 以上均不对10.已知3tan =θ,θθθ22cos 2sin sin 2-+= ( ) A.71 B.94 C.25 D.1023二 填空题11.若a x f x x lg 22)(--=为奇函数,则a=__________。
中职对口升学数学综合题六套
中职生对口升学考试模拟《数学》试卷(一)一、单项选择题(每小题3分,共21分)1.一元二次方程09)2(2=+-+x k x 有两个不相等的实数解的条件是)(∈k )8,4.(-A )8,4.[-B ),8[]4.(+∞--∞ C ),8()4.(+∞--∞ D2.设集合)3,1(),1,5(-=-=B A ,则)(=B A )3,5.(-A )1,1.(-B )1,5.(--C )3,1.(D3.下列各函数中,在区间),0(+∞上为减函数的是( )x y A 2.= x y B 3log .= 1.--=x y C xy D 21log .=4. )(54cos 53cos 52cos5cos =+++ππππA.-1B.0C.1D.2 5. )(=++BD CB AC AB A . BC B . AD C . DA D .6.已知平面γβα,,和直线l ,则下列可以推出βα//的是( )γβγα//,//.A βα//,//.l l B βα//.l l C 内,在 βγα//.l l D ,相交于直线和7.圆6)7()2(22=-++y x 的圆心和半径分别为( )6),7,2(.-A 6),7,2(.-B 6),7,2(.-C 6),7,2(.-D二、填空题(每空3分,共12分)1.设集合)7,4[],4,2(=-=B A ,则._______________=B A2.在等差数列}{n a 中,,827,81,835-=-==n S d a 则._____________=n 3.设向量)1,4(),,2(-==b m a ,且b a ⊥,则m 的值为__________________. 4.一个玩具下半部分是半径为3的半球,上半部分是圆锥,如果圆锥母线长为5,圆锥底面与半球截面密合,则该玩具的全面积是_________. 三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知54sin -=α,且α是第四象限的角,求αcos 和αtan .2.一个直径为32cm 的圆柱形水桶,将一个球全部放入水中,水桶的水面升高9cm ,求这个球的半径.3.为了参加国际马拉松比赛,某同学给自己制订了10天的训练计划.第一天跑2000米,以后每天比前一天多跑500米,这位同学第7天跑了多少米?10天共跑了多长的距离?中职生对口升学考试模拟《数学》试卷(二)一、单项选择题(每小题3分,共21分)1.若A ,B 为互斥事件,则( )1)()(.<+B P A P A 1)()(.≤+B P A P B 1)()(.=+B P A P C 1)()(.>+B P A P D2.不等式0)4)(2(<-+x x 的解集为( ))4,2.(-A ),4()2,.(+∞--∞ B )8,1.(-C )4,2.(-D3.下列各函数中,图像经过点)1,2(-π的是( )x y A sin .= x y B cos .= x y C sin .-= x y D cos .-=4.已知函数 ⎪⎩⎪⎨⎧<=>=0,20,10,0)(x x x x x f ,则)6(f 的值等于( ) A.0 B.1 C.-1 D.115. 已知数列}{n a 中,,3,111+==+n n a a a 则这个数列的一个通项公式为( ) 23.-=n a A n 12.-=n a B n 2.+=n a C n 34.-=n a D n6.平行于同一平面的两条直线的位置关系,以下说法正确的是( ) A.平行 B.相交 C.异面 D.以上都有可能7.房间有5本不同的科幻书,4本不同的故事书,从中任取一本的取法共有( )A.5种B.4种C.9种D.20种 二、填空题(每空3分,共12分)1.与01360-角终边相同的角的集合为_____________.2.若,043log <a则a 的取值范围是_____________. 3.已知点M(3,b)到直线0927=+-y x 的距离为4,则b=_____________.4. ._________________=++AB BC CD三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知)8,(x P 是角α终边上的点,且53cos =α,求点P 的横坐标x 和αtan 的值.2.设有按顺序排好的四个数,前三个数成等差数列,后三个数成等比数列,第一、四两个数的和为16,第二、三两个数的和为8,求这四个数.3.已知点M (2,7),N (3,-4),现将线段MN 分成四等份,试求出各分点的坐标.中职生对口升学考试模拟《数学》试卷(三)一、单项选择题(每小题3分,共21分)1.设全集为R ,集合}72|{<≤-=x x A ,则=A C ( )}2|{.-<x x A }7|{.≥x x B }72|{.≥-<x x x C 或 }72|{.>-<x x x D 或2.已知0>a ,且1≠a ,直列式子中错误的是( )3443243431.21log .01log ..aaD aC B aa A a a =-===-3.若函数)(x f y =的图像关于原点O 中心对称,且5)3(=f ,则=-)3(f ( )3.5.3.5.--D C B A4.若)1320cos(0-的值为( )23.23.21.21.D C B A --5.已知点)3,1(),3,1(-B A ,则下列各式正确的是( )||||..)6,0(..OA AB D OAAB C AB B OBOA A ==-==6.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 的中点,则∠AED 的大小为( )0090.60.30.45.D C B A7.从1,2,3,4这四个数中任取两个数,则取到的数都是奇数的概率为( )65.61.51.41.D C B A 二、填空题(每空3分,共12分)1.已知集合}2{},2,0{},9,1{==-+B A B a A =,则=a _____________.2..______________)271(125)21(31322=-+--3.在等差数列}{n a 中,,207-=S 则.______________71=+a a4.用数字2,4,5,8可以组成________个没有重复数字的三位数. 三、解答题(第1题5分,第2、第3小题各6分,共17分)1.已知α终边上点P(3,-4),求.tan ,cos ,sin ααα2. 如图所示,有一个倾角为030的山坡(即山坡与地面所成的二面角为030),山坡上有一条和斜坡底线AB 成060角的直路EF.如果沿EF 上行,行走100米,问约升高多少米?3.设直线l 平行于直线0523=+-y x ,并经过点P(1,2),求直线的一般式方程.1 E中职生对口升学考试模拟《数学》试卷(四)一、单项选择题(每小题3分,共21分)1.不等式0122<--x x 的解集为( )}43|{.<<-x x A }43|{.>-<x x x B 或 }34|{.<<-x x C }34|{.>-<x x x D 或2.一元二次方程有实数解的条件是∈m ( )),10[]10,(.),10()10,(.]10,10[.)10,10(.+∞--∞+∞--∞-- D C B A3.下列计算正确的是( ))0()(.01ln .42.0)2(.53220>====-a a a D C B A4.下列函数既是奇函数又是增函数的是( )x y D x y C xy B xy A 31.2.1.3.2-====5.下列函数中,为偶函数的是( )1.1.4.2.2-=-=+==y D xy C xx y B xy A6.已知||||OB OA =,且060=∠AOB ,则下列各式中正确的是( )||||....OA AB D OAAB C OBAB B OBOA A ====7.某校关注学生的用眼健康,从八年级400名学生中随机抽取了20名学生进行视力检查,发现有10名学生近视眼,据此估计这400名学生中,近视的学生人数约是( )300.200.150.100.D C B A二、填空题(每空3分,共12分) 1. ._____________55563=÷⨯2.已知正四棱柱底面边长为3cm ,高为4cm ,则其体积为_________.3cm3. 互斥事件的加法概率公式为____________.4. 在如图4-1所示的长方体中,AB 与1CC 所在 直线的位置关系为________.三、解答题(第1题5分,第2、第3小题各6分, 共17分)1.讨论函数xx y 1+=在区间),1(+∞上的单调性.2. 在等差数列}{n a 中,,20,271==a a 求.13S3.已知)3,4(),5,7(==b a ,求).42()3(),()(b a b a b a b a +•-+•-中职生对口升学考试模拟《数学》试卷(五)一、单项选择题(每小题3分,共21分) 1.函数0122<--x x 的定义域为( )R D C B A .),1()1,(.]2,1()1,2[.]22[.+∞--∞ ,-2.若3log 2=a ,则=-6log 29log 22( )2.2.22.2.D a C a B A ---3.已知向量n m NK n m MN -=+=2,23,则KM 等于( )n m D n m C nm B nm A 3.3.5.5.--+--+4.数列的通项公式为4cos πn a n =,则数列的第四项为( )22.1.0.1.-=-y D C B A 5.在空间中,下列哪些命题是正确的( ) ①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行.A.仅①正确B.仅②正确C.仅③正确D.四个命题都正确 6.直线052=+-y x 的斜率和y 轴上的截距分别是( )25,21.2,5.5,2.52.D C B A --, 7.已知向量)5,(x a =的模为13,则x 等于( )5.12.12.21.D C B A ±-二、填空题(每空3分,共12分)1.方程组⎩⎨⎧=-=+46723y x y x 的解集可用列举法表示为 _____________.2.若a x =-1sin 3,则a 的取值范围是 _________.3. ._____________)2()(34=+--+-c b a b a a4.某校电子商务班有男生16人,女生10人,若要选男、女生各1人作为代表参加学校的拔河比赛,共有_______种不同的选法.三、解答题(第1题5分,第2、第3小题各6分,共17分) 1.如图5-1所示,正四面体(四个面是全等的等边三角形)P -ABC 的棱长为a,求相邻两个面所成二面角的余弦值.2.化简:.sin 1cos sin )2(;100sin 1)1(202ααα--3.空间四边形ABCD 中,对角线AC 与BD 所成的角为030,H G F E cm BD cm AC ,,,,4,2==分别为AB ,BC ,CD ,DA 的中点,求四边形EFGH的面积.CABD中职生对口升学考试模拟《数学》试卷(六)一、单项选择题(每小题3分,共21分)1.设全集U ={0,1,2,3,4,5,6,7,8},集合A ={2,3,4,5},则A 补集为( )A.{0,1,2,6,7,8}B.{0,1,6,7,8}C.{1,6,7,8}D.{6,7,8}2.不等式x x -≤+122的解集为( )}0{....D Z C B R A φ3.使得函数x y sin =为增函数,且值为负数的区间是( ))2,23(.)23,(.),2(.)2,0(.πππππππD C B A 4.若3271log -=a,底数=a ( ) 31.3.3.31.D C B A -- 5.下列函数中,图像经过点(1,1)和点(-1,1)的是( )32..1.||.x y D x y C x y B x y A ====6.已知数列1)2(-=n n a ,则此数列的第8项8a 等于( )A.4B.7C.15D.107.书架上层有4本不同的数学书,中层有5本不同的英语书,下层有3本不同物理书,若要从中任取3本,数学、英语、物理各一本,则不同取法的种数是( )A.3B.60C.12D.9二、填空题(每空3分,共12分)1.函数12+=x y 的定义域为(用区间表示)________________.2.函数122+-=x y 在区间),0(+∞上的单调性为________________.3.向量b a ,的坐标分别为(2,-1),(-1,2),则b a 32+的坐标为_____________.4.一圆锥的轴截面是边长等于2的等边三角形,则圆锥的体积为______________.三、解答题(第1题5分,第2、第3小题各6分,共17分)1.求等差数列-1,2,5,……的第8项.2.求过直线0434=++y x 与065=-+y x 的交点,且与直线052=+-y x 垂直的直线方程.3.已知A (4,3),B (6,1),求以AB 为直径的圆的方程.。
职高高考模拟数学试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. πC. √9D. 无理数答案:C2. 已知 a < b,下列不等式中正确的是()A. a - b < 0B. a + b > 0C. a - b > 0D. a + b < 0答案:A3. 下列函数中,定义域为全体实数的是()A. y = √(x - 1)B. y = 1/xC. y = x^2D. y = log2x答案:C4. 已知等差数列 {an} 的前n项和为 Sn,若 S5 = 25,S10 = 75,则 a1 = ()A. 1B. 2C. 3D. 4答案:A5. 下列命题中,正确的是()A. 若 a > b,则 a^2 > b^2B. 若 a > b,则 a - b > 0C. 若 a > b,则 ac > bcD. 若 a > b,则 a/c > b/c答案:B6. 已知等比数列 {an} 的前三项为 a1, a2, a3,若 a1 + a2 + a3 = 12,a1 a2 a3 = 64,则 a1 = ()A. 1B. 2C. 4D. 8答案:C7. 已知函数 y = ax^2 + bx + c,若 a ≠ 0,且函数图象开口向上,则()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c >0 D. a < 0, b < 0, c > 0答案:B8. 已知正方形的对角线长为2√2,则其面积是()A. 4B. 6C. 8D. 10答案:A9. 下列各数中,绝对值最小的是()A. -1/2B. -1C. 1/2D. 1答案:C10. 已知函数 y = x^3 - 3x,求该函数的极值点。
职高高三复习数学试题卷附答案
职高高三复习数学试题卷姓名________________ 准考证号________________ 本试题卷共3大题,共X 页。
满分0分,考试时间X 分钟。
注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔填写在答题卡和试卷上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
非选择题用0.5毫米黑色字迹的签字笔将答案写在答题卡规定位置上。
3.所有试题均需在答题卡上作答,在试卷和草稿纸上作答无效。
4.考试结束后,将试卷和答题卡一并交回。
一、单项选择题(本大题共16小题,每小题0分,共0分)在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
1.分别与两条异面直线平行的两条直线的位置关系是( ) A .平行 B .相交 C .异面D .相交或异面2.若x =!3!n ,则x 等于( ) A .3A nB .3A n n -C .3A nD .3A n n -3.6名同学排成一排,其中甲、乙两人不站在一起的不同排法有( ) A .720种 B .480种 C .360种D .240种4.在△ABC 中,若sin A =35,∠C =120°,BC =23,则AB 等于 ( ) A .3 B .4 C .5 D .65.α,β是两个不同的平面,a ⊆α,b ⊆β,且α∥β,则直线a ,b 的位置关系是 ( )A .相交B .平行C .异面D .不相交6.在下列双曲线中,以y =12x 为渐近线的双由线是 ( )A .216x -24y =1 B .24x -216y =1C .22x -21y =1D .21x -22y =17.终边落在直线x -y =0上的角的集合可表示为 ( )A .π=2πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,B .π=πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,C .π=-2πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,D .116y =-8.在△ABC 中,下列表示不一定成立的是( )A .∠A +∠B +∠C =πB .sin A sin B sinC >0 C .a +b >cD .cos A cos B cos C >09.sin320°cos (-110°)tan (-700°)的最后结果为( )A .正数B .负数C .正数或负数D .零10.若圆柱的底面半径为2,轴截面的面积是8,则该圆柱的体积为( )A .8πB .16πC .32πD .16π311.下列各式中,值为12的是________.( )A .sin15cos15︒︒B .22cos 151︒-C .2tan 22.51tan 22.5︒-︒D12.抛物线y =-4x 2的准线方程是________. ( )A .x =1B .x =-1C .116y =-D .116y =13.若双曲线22189x y k -+=+的离心率为2,则k 的值为________.( )A .-19B .9C .19D .-914.用0,1,2,3,4,5这6个数字可以组成被2整除的无重复数字的两位数共________. ( )A .12个B .13个,C .14个D .15个15.终边落在直线x +y =0上的角的集合可表示为________.( )A .{α|α=π4+2k π,k ∈Z } B .{α|α=π4+k π,k ∈Z } C .{α|α=-π4+2k π,k ∈Z }D .{α|α=3π4+k π,k ∈Z } 16.在△ABC 中,∠A =60°,b =9,S =c =________.( )A .36B .C .84D .42二、填空题(本大题共8小题,每小题0分,共0分)17.6本不同的文艺书平均分给3个学生,不同的分配方法有_________种. 18.同角三角函数的两个基本关系式,sin 2α+cos 2α=________,tan α=________.19.求值:cos π=2πZ 4k k αα⎧⎫+∈⎨⎬⎩⎭,= ,tan 163π= .20.0.9963的近似值为 (精确到0.001).21.若角α的顶点在直角坐标系的原点,始边重合于x 轴的正方向,在终边上取点Pcos 3π⎛⎫ ⎪⎝⎭,可得α的正弦函数值为 . 22.从1,2,3,4,5五个数字中每次取两个,分别作为对数的底数和真数,用此五个数字总共可以得到 种不同的对数值.23.在△ABC 中,已知a =4,b =5,∠C =30°,则S △ABC =________.24.双曲线221916x y -=的顶点坐标是________. 三、解答题(本大题共8小题,共0分。
职高高三数学模拟试卷答案
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 1答案:C2. 若a,b是方程x² - 3x + m = 0的两个实数根,则m的取值范围是()A. m > 3B. m ≤ 3C. m ≥ 3D. m < 3答案:B3. 函数f(x) = x² - 4x + 3的图像与x轴的交点坐标是()A. (1, 0), (3, 0)B. (0, 1), (3, 1)C. (1, 3), (3, 3)D. (0, 3), (3, 3)答案:A4. 在直角坐标系中,点A(2, 3),点B(-2, -3),则线段AB的中点坐标是()A. (0, 0)B. (1, 1)C. (2, 2)D. (-1, -1)答案:A5. 已知数列{an}的通项公式为an = 2n - 1,则数列的前10项和S10等于()A. 90B. 100C. 110D. 120答案:A6. 若等差数列{an}的第一项为a₁,公差为d,则第n项an的表达式是()A. an = a₁ + (n - 1)dB. an = a₁ - (n - 1)dC. an = a₁ + ndD. an = a₁ - nd答案:A7. 下列函数中,是偶函数的是()A. f(x) = x² - 3x + 2B. f(x) = x³ + 2x² - 3xC. f(x) = 2x + 3D. f(x) = x² + 2答案:D8. 若sinθ = 1/2,则cos(2θ)的值是()A. 3/4B. 1/4C. -1/4D. -3/4答案:B9. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC的值是()A. √3/2B. 1/2C. √2/2D. √6/4答案:C10. 下列不等式中,恒成立的是()A. x² + 1 > 0B. x² - 1 > 0C. x² + 1 < 0D. x² - 1 < 0答案:A二、填空题(每题5分,共25分)11. 若函数f(x) = 3x² - 2x + 1在x = 1时取得极值,则该极值为______。
2020年中职数学对口升学考前冲刺模拟试题含答案
2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。
湖北中职对口升学高考数学冲刺模拟试题:选择题06
对口升学高考数学冲刺模拟试题选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合2{|230},{|1}A x x x B x x =--<=>,则B A =A .{|1}x x >B .{|3}x x <C .{|13}x x <<D .{|11}x x -<<2、函数()f x =3)42tan(π-x ,x R ∈的最小正周期为A .2π B .π C .2πD .4π3、如果偶函数)(x f 在]7,3[上是增函数且最小值是2,那么)(x f 在]3,7[--上是 A. 减函数且最小值是2 B.. 减函数且最大值是2 C. 增函数且最小值是2 D. 增函数且最大值是2.4、 函数()2tan f x x x =-在(,)22ππ-上的图像大致为5、已知3sin()35x π-=,则cos()6x π+=A .35B .45C .35-D .45-6、 函数y=sin(2x+25π)图象的一条对称轴方程是:A .2π-=x B . 4π-=x C . 8π=x D .45π=x7、在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于A .1B .725- C .257 D .2524-8、函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图象如图示,则将()y f x =的图象向右平移6π个单位后,得到的图象解析为 A .x y 2sin = B. x y 2cos = C. )322sin(π+=x y D. )62sin(π-=x y9、某商场对顾客实行购物优惠活动,规定一次购物付款总额: (1)如果不超过200元,则不给予优惠;(2)如果超过200元但不超过500元,则按标价给予9折优惠;(3)如果超过500元,其500元内的按第(2)条给予优惠,超过500元的部分给予7折优惠.某人两次去购物,分别付款168元和423元,假设他一次性购买上述两次同样的商品,则应付款是A .413.7元 B. 513.7元 C. 546.6元 D .548.7元10、给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π ⑤函数||sin sin x x y +=的值域是]2,0[其中正确命题的个数为:A . 3B . 2C . 1D . 0选择题。
湖北宜昌市高职对口招生考试数学模拟试题六(含答案)
数学试题一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={}x y x lg =,B={}022≤-+x x x ,则=B A ( )A .)0,1[-B .]1,0(C .]1,0[D .]1,2[-2.已知集合}01|{2=-=x x A ,则下列式子表示正确的有( ) ①A ∈1 ②A ∈-}1{ ③A ⊆φ ④A ⊆-}1,1{A .1个B .2个C .3个D .4个3、设2:f x x →是集合M 到集合N 的映射, 若N={1,2}, 则M 不可能是 ( ) A 、{-1} B 、{2,2}- C 、{2,1,1,2}-- D 、{1,2,2} 4、已知函数xx f 1)(=,则1)1(+-=x f y 的单调递减区间为( ) A 、[0,1) B 、(-∞,0) C 、}1|{≠x x D 、(-∞,1)和(1,+∞) 5、偶函数()f x 与奇函数()g x 的定义域均为[4,4]-,()f x 在[4,0]-,()g x 在[0,4]上的图象如图,则不等式()()0f x g x ⋅<的解集为( )A 、[2,4]B 、(4,2)(2,4)--C 、(2,0)(2,4)- D 、(2,0)(0,2)-6.已知函数)(1)62sin(2)(R x x x f ∈-+=π则)(x f 在区间[0,2π]上的最大值与最小值分 别是( )A. 1, -2 B .2 , -1 C. 1, -1 D.2, -2 7..函数)(x f y =的图象向右平移6π个单位后与函数)22cos(π-=x y 的图象重合.则 )(x f y =的解析式是( )A.)32cos()(π-=x x f B. )62cos()(π+=x x fC. )62cos()(π-=x x f D. )32cos()(π+=x x f8.设02x π≤≤,且1sin 2sin cos x x x -=-,则( ) A.0x π≤≤ B.744x ππ≤≤C.544x ππ≤≤D.322x ππ≤≤ 9.若)2sin(3)(ϕ+=x x f +a ,对任意实数x 都有),3()3(x f x f -=+ππ且4)3(-=πf ,则实数a 的值等于( )A .-1B .-7或-1C .7或1D .7或-710.在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线y =f (x )(实线表示),另一种是平均价格曲线y =g(x )(虚线表示)(如f (2)=3是指开始买卖后两个小时的即时价格为3元g(2)=3表示2个小时内的平均价格为3元),下图给出四个图象:其中可能正确的图象序号是 。
湖北中职对口升学高考数学冲刺模拟试题:填空题06
对口升学高考数学冲刺模拟试题一、 填空题(每小题5分,共25分)1. 与双曲线2244x y -=有共同的渐近线,并且经过点(2,3)的双曲线是 。
2. 椭圆221123x y +=的焦点分别为1F 和2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么12cos F PF ∠= 。
3. 某班有50名学生,一次考试的数学成绩ξ服从正态分布2(100,10)N ,已知(90100)0.3P ξ≤≤=,估计该班学生成绩在110以上的人数为 人。
4. 8的展开式中含x 的整数次幂的项的系数之和为 (用数字作答)。
5. 圆222(0)x y r r +=>经过椭圆22221(0)x y a b a b +=>>的两个焦点12,F F ,且与该椭圆有四个不同交点,设P 是其中的一个交点,若12PF F ∆的面积为26,椭圆的长轴长为15,则a b c ++=(c 为半焦距)。
填空题11. 12. 80; 13. 360; 14. 4 ; 15.①②④填空题:本大题共7小题,每小题5分,共35分.11.某饮料店的日销售收入y (单位:百元)与当天平均气温x (单位:℃)之间有下列数据:甲、乙、丙三位同学对上述数据进行了研究,分别得到了x 与y 之间的三个线性回归方程:①3ˆ+-=x y;②8.2ˆ+-=x y ;③6.2ˆ+-=x y ,④.42ˆ+-=x y ,其中正确方程的序号是 12.若PQ 是圆O :229x y +=的弦,PQ 的中点是(1,2)M ,则直线PQ 的方程是_________13.在区间[]2,5-上随机地取一个数x ,若x 满足||x m ≤的概率为57,m =14.因乙肝疫苗事件,需要对某种疫苗进行检测,现从800支中抽取60支进行检验,利用随机数表抽取样本时,先将800支按000,001,…,799进行编号,如果从随机数表第7行第10列的数开始向右读,则得到的第4个样本个体的编号是 (下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 1206 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 5238 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5415.市交警部门计划对翻坝高速联棚至夷陵长江大桥路段进行限速,为调查限速70km/h 是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80)分组,绘制成如图所示的频率分布直方图.则这300辆汽车中车速低于限速的汽车有_____辆.16.如下图是把二进制数(2)1111化成十进制数的一个程序框图,则判断框内应填入的条件是 .17.下列命题:①直线2y x =在,x y 轴上的截距相等; ②直线21ax y +=与直线0x y +=平行的充要条件是2a =;③世界上第一个把π计算到3.1415926 3.1415927π<<的是中国人祖冲之; ④抛两枚均匀的骰子,恰好出现一奇一偶的概率为14; ⑤满足122(0)PF PF a a -=>的动点P 的轨迹是双曲线; ⑥设(P x 、)y 221259x y =上的点,12(4,0),(4,0)F F -,则必有12||||10PF PF +<。
湖北中职对口升学高考数学冲刺模拟试题:解答题08
对口升学高考数学冲刺模拟试题解答题(本大题共5小题,共65分.解答应写出文字说明,证明过程或演算步骤.) 18.(本小题满分12分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.19. (本小题满分13分)已知双曲线1C :22221x y a b-=(0,0a b >>)的与双曲线13:222=-y x C 有公共渐近线,且过点10A (,). (1)求双曲线1C 的标准方程(2)设F 1、F 2分别是双曲线1C 左、右焦点.若P 是该双曲线左支上的一点,且1260F PF ∠=,求12F PF ∆的面积S.20. (本小题满分13分)设2()61025f x lnx ax ax a =+-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点(0,6).(1)求a 的值; (2)求函数()f x 的单调区间与极值.21. (本小题满分13分)已知抛物线2:2(0)C y px p =>的准线方程为2x =-.(1)求此抛物线的方程;(2)已知点(1,0)B -,设直线:(0)l y kx b k =+≠与抛物线C 交于不同的两点1122(,),(,)P x y Q x y ,若x 轴是PBQ ∠的角平分线, 证明直线l 过定点,并求出该定点坐标.22. (本小题满分14分)如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中斜率为k 的直线1l 交圆2C 于A,B 两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)试用k 表示ABD ∆的面积S;xOyBl 1l 2PDA(第22题图)(3)求ABD ∆面积S 取最大值时直线1l 的方程.18.若p 为真,则24020m m m ⎧∆=->⇒>⎨-<⎩若q 为真,则216(2)1616(1)(3)013m m m m ∆=--=--<⇒<< 由p 或q 为真,p 且q 为假知,p 和q 一真一假①若p 真q 假,则2313m m m m >⎧⇒⎨⎩≥≤或≥②若p 假q 真,则2213m km m ⎧⇒⎨<<⎩≤≤ 综上知12m <≤或3m ≥19.解:(1)2213y x -=,(2)设21,PF m PF n ==,则m n -=2在12F PF ∆中,由余弦定理有222162cos602m n mn m n mn mn =+-=-+-12mn ∴= 11sin 6012222S mn ∴==⨯⨯=20.(1)因为6()2(5)f x a x x'=-+令1,(1)16,(1)68,()x f a f a y f x '===-=得所以曲线 在点(1,(1))f 处的切线方程为16(68)(1)y a a x -=--由点(0,6)在切线上可得161686,2a a a -=-=故.(2)由(1)知,21()(5)6ln (0)2f x x x x =-+>,6(2)(3)()5x x f x x x x --'=-+=令()0f x '=,解得122,3x x ==当02x <<或3x >时,()0f x '>,故()f x 在(0,2),(3,)+∞上为增函数;当23x <<时,()0f x '<,故()f x 在(2,3)上为减函数. 由此可知,()f x 在2x =处取得极大值9(2)6ln 22f =+,在3x =处取得极小值(3)26ln3f =+ 21. 解:(1)x y 82=(2)将28y kx b y x =+=代入中,得222(28)0k x bk x b +-+=, 其中32640kb ∆=-+>由根与系数的关系得,12282,bkx x k -+= ①2122.b x x k =②∵x 轴是∠PBQ 的解平分线, ∴121211y yx x =-++,即1221(1)(1)0,y x y x +++= ∴1221()(1)()(1)0kx b x kx b x +++++=,∴12122()()20kx x b k x x b ++++=,③ 将①②代入③并整理得222()(82)20kb k b bk k b ++-+=,∴k b =-,此时△>0 ∴直线l 的方程为(1)y k x =-,即直线l 过定点(1,0).22.解:(1)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=; (2)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k=--⇒++=,所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =所以直线1l 被圆224x y +=所截的弦AB ==; 由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||44D P k x x DP k k +=-∴==++所以11||||22S AB DP ===(3)S ==2323213==≤=++当252k k =⇒=⇒=时等号成立, 此时直线,1:1l y x =-。
湖北中职对口升学高考数学冲刺模拟试题:解答题06
对口升学高考数学冲刺模拟试题解答题:本大题共5个小题,共65分.解答应写出文字说明,证明过程或演算步骤.18、(本题满分12分) (Ⅰ)化简:︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(Ⅱ)已知:3tan =α, 求)2sin()cos(4)23sin(3)2cos(2απααπαπ-+-+--的值.19、(本题满分12分)已知全集为R ,函数)1lg()(x x f -=的定义域为集合A ,集合}6)1(|{>-=x x x B ,(Ⅰ)求,A B )(B C A R ;(Ⅱ)若}21|{m x m x C <<+-=,且Φ≠C ,))((B C A C R ⊆,求实数m 的取值范围.20、(本题满分13分)已知3cos()(,).41024x x πππ-=∈ (1)求sin x 的值;(2)求sin(2)3x π+的值.21、(本题满分14分)已知x x x x x f 424cos 3)cos (sin sin 3)(-++=(1)求()f x 的最小值及取最小值时x 的集合;(2)求()f x 在]2,0[π∈x 时的值域; (3)求()f x 在]2,2[ππ-∈x 时的单调递减区间;22、(14分) 已知函数1)(log )(2++=a x x f 过点)4,4(.(1)求实数a ;(2)将函数)(x f 的图象向下平移1个单位,再向右平移a 个单位后得到函数)(x g 图象,设函数)(x g 关于y 轴对称的函数为)(x h ,试求)(x h 的解析式;(3)对于定义在)0,4(-上的函数)(x h y =,若在其定义域内,不等式2[()2]()1h x h x m +>-恒成立,求实数m 的取值范围.解答题18、解:(Ⅰ)原式=︒-︒︒︒-20cos 20sin 20cos 20sin 21=︒-︒︒-︒20cos 20sin 20sin 20cos =1- 6分 (Ⅱ)解:原式=ααααsin cos 4cos 3sin 2-+ =2tan 394tan αα+=- 6分19.解:(1)由01>-x 得,函数)1lg()(x x f -=的定义域{}1|<=x x A ……2分 062>--x x ,0)2)(3(>+-x x ,得B {|32}x x x =><-或 ……4分 ∴{}31|><=x x x B A 或 , ……5分 R C B {|23}x x =-≤≤,{}12|)(<≤-=∴x x B C A R ……6分(2) {}12|<≤-⊆x x C ,且φ≠C ,⎪⎩⎪⎨⎧≤-≥+-<+-122121m m m m , ……10分211≤<-m 12分 20、.(1)因为3(,),24x ππ∈所以(,)442x πππ-∈,于是sin()410x π-== 3分 sin sin[()]sin()cos cos()sin 444444x x x x ππππππ=-+=-+-4.1021025=+= 6分(2)因为3(,).24x ππ∈故3cos .5x ===- 8分 2247sin 22sin cos .cos 22cos 1.2525x x x x ==-=⨯-=- 10分所以中24sin(2)sin 2cos cos 2sin 33350x x x πππ++=+=- 12分 21、化简得 1)32sin(2)(+-=πx x f 4分最小值为1- 5分 x 的集合为},12|{Z k k x x ∈-=ππ 7分 (2)当]2,0[π∈x 时,]32,3[32πππ-∈-x ,]3,13[)(+-∈x f 10分 (3)当2323222πππππ+≤-≤+k x k 即Z k k x k ∈+≤≤+,1211125ππππ ∴ ]2,125[],12,2[ππππ-- 14分 22. 解:(1)由已知41)4(log 2=++a .4=a 3分(2)1)4(log )(2++=x x f 向下平移1个单位后再向右平移4个单位后得到函数x x g 2log )(= ,函数)(x g 关于y 轴对称的函数为)(x h)0)((log )(2<-=∴x x x h 6分(3)1)(log )2)((log 222-->+-x m x 在)0,4(-恒成立 ∴设)04)((log 2<<--=x x t 则2t < 2(2)1t tm ∴+>- 即:2(4)+50t m t +->,在2t <时恒成立. 8分 令5)4()(2+-+=t m t t g∴⎪⎩⎪⎨⎧<--=∆≤-020)4(2222m m 8524≤<-∴m 11分 或⎪⎩⎪⎨⎧≥-=>-0217)2(222m g m 2178≤<∴m 13分 综合得:217524≤<-m 14分。
湖北武汉市高职对口招生考试数学模拟试题六(含答案)
数学试题第Ⅰ卷(选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.准线为2y =-的抛物线的标准方程为(A )24x y = (B )24x y =- (C )28x y = (D )28x y =-2.下列命题为真命题的是(A ),1x R x x ∃∈+> (B )2,2x Z x ∃∈=(C )2,0x R x ∀∈> (D )2,x Z x x ∀∈>3.下列选项中与点(1,2)位于直线210x y -+=的同一侧的是(A )(1,1)- (B )(0,1) (C )(1,0)- (D )(1,0)4.等差数列{}n a 的前n 项和为n S ,且336,0S a ==,则公差d 等于(A )1- (B )1 (C )2- (D )25.已知a b >,则下列不等关系正确的是(A )22a b > (B )22ac bc >(C )22a b > (D )22log log a b >6.若“p q ∨”为真命题,则下列命题一定为假命题的是(A )p (B )q ⌝ (C )p q ∧ (D )p q ⌝⌝∧7.不等式220ax bx +-≥的解集为1{|2}4x x -≤≤-,则实数,a b 的值为(A )8,10a b =-=- (B )1,9a b =-=(C )4,9a b =-=- (D )1,2a b =-=8.设等比数列{}n b 的前n 项和为n S ,若1053S S =,则1510:S S =(A )32 (B )73 (C )83 (D )1349.若k R ∈,则“1k >”是方程“22111x y k k -=-+”表示双曲线的 (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件10.已知等差数列{}n a ,n S 为其前n 项和,若20100S =,且1234a a a ++=,则181920a a a ++=(A )20 (B )24 (C )26 (D )3011.下列不等式正确的是(A )212x x +≥- (B4(0)x ≥> (C )12x x +≥ (D )1sin 2()sin x x k xπ+≥≠ 12.在ABC ∆中,角AB C 、、所对的边分别为,,a b c,若222b c a +-=,且b =,则下列关系一定不成立的是(A )a c = (B )b c = (C )2a c = (D )222a b c +=二.填空题:本大题共4小题,每小题4分,共16分.13. 双曲线22143y x -=的渐近线方程为____________________. 14. 在ABC ∆中,=33A BC =AB =π,,,则C =_____________.15.设,x y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为6,则12a b+的最小值为________________. 16.在直角坐标系中任给一条直线,它与抛物线22y x =交于A B 、两点,则OA OB ⋅的取 值范围为________________.三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 求以椭圆22+198x y =的焦点为焦点,且过,(2点的双曲线的标准方程. 18.(本小题满分12分)设{}n a 为等比数列,n S 为其前n 项和,已知121n n a S +=+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}n na 的前n 项和n H .19.(本小题满分12分)在ABC ∆中,角A B C 、、所对的边分别为,,a b c ,且,,a b c 成等比数列.(Ⅰ)若a c +=,60B =,求,,a b c 的值;(Ⅱ)求角B 的取值范围.20.(本小题满分12分)在数列{}n a 中,111,8n a a +==(Ⅰ)求23,a a ;(Ⅱ)设2log n n b a =,求证:{2}n b -为等比数列;(Ⅲ)求{}n a 的前n 项积n T .21.(本小题满分13分)抛物线22(0)y px p =>,其准线方程为1x =-,过准线与x 轴的交点M 做直线l 交抛物线于A B 、两点.(Ⅰ)若点A 为MB 中点,求直线l 的方程;(Ⅱ)设抛物线的焦点为F ,当AF BF ⊥时,求ABF ∆的面积.22.(本小题满分13分)已知椭圆22221(0)x y a b a b+=>>上的点P 到左右两焦点12,F F 的距离之和为,离心率为2. (Ⅰ)求椭圆的方程;(Ⅱ)过右焦点2F 的直线l 交椭圆于A B 、两点,若y 轴上一点M 满足 ||||MA MB =,求直线l 的斜率k 的值.一.选择题C AD C C, D C B A C, A B二.填空题13. y = 14. 4π15. 16. [)1,-+∞ 三.解答题17.(本小题满分12分)解:由椭圆的标准方程可知,椭圆的焦点在x 轴上 设双曲线的标准方程为22221(0,0)x y a b a b-=>> -----------------------2分 根据题意2222144514a b a b⎧+=⎪⎨-=⎪⎩, --------------------6分 解得221434a b ⎧=⎪⎪⎨⎪=⎪⎩或221615a b ⎧=⎪⎨=-⎪⎩(不合题意舍去) -----------------------10分 ∴双曲线的标准方程为224413y x -= -----------------------12分 18.(本小题满分12分)解:(Ⅰ)121n n a S +=+,-121,(2)n n a S n =+≥∴112()2,(2)n n n n n a a S S a n +--=-=≥∴13,(2)n n a a n +=≥ -----------------------2分 ∴3q = -----------------------3分 对于121n n a S +=+令1,n =可得211213a a a =+=,解得11a =----------------5分∴13n n a -= -----------------------6分(Ⅱ)13n n na n -=⋅ -----------------------7分21123333n n H n -=+⋅+⋅++⋅① 233323333n n H n =+⋅+⋅++⋅② -----------------------8分①-②得2113213333313n n n n n H n n ---=++++-⋅=-⋅------------------------10分 ∴211=344n n n H -⨯+ -----------------------12分 19.(本小题满分12分)解:(Ⅰ)∵,,a b c 成等比数列,∴2b ac = -----------------------2分∵60B =∴2221cos 22a cb B ac +-== -----------------------4分联立方程组2222122b ac a c a c b ac ⎧⎪=⎪⎪+=⎨⎪+-⎪=⎪⎩,解得a b c === -----------------------6分 (Ⅱ)22222cos 22a c b a c ac B ac ac+-+-== -----------------------8分 ∵222a c ac +≥,∴2221cos 222a c ac ac ac B ac ac +--=≥=-----------------------10分 ∴060B <≤ -----------------------12分20.(本小题满分12分)解:(Ⅰ)2128,1,8a a a ==∴= -----------------------1分3138,8,a a a ==∴= -----------------------2分(Ⅱ)22121222221log 8log 22log 222log 2log 22log 112log 22n n n n n n n n n a b a b a a a a ++----===----=⨯=-- -----------------5分∴{2}n b -为等比数列,公比为12- ----------------------6分 (Ⅲ)设数列{2}n b -的前n 项和为n S12321222212(1())22log log log 2112log 2n n n n n S b b b b n a a a n T n---==++++-=++-+=- -----------------------8分 ∴241log [()1]232n n T n =--+, -----------------------10分 ∴41[()1]2322n n n T --+= -----------------------12分 21.(本小题满分13分)解:(Ⅰ)∵抛物线的准线方程为1x =- ∴1,22p p == -----------------------1分 ∴抛物线的方程为24y x = -----------------------2分 显然,直线l 与坐标轴不平行∴设直线l 的方程为1x my =-,221212(,)(,)44y y A y B y -----------------------3分 联立直线与抛物线的方程214x my y x =-⎧⎨=⎩,得2440y my -+=-----------------------4分 2=16160m ∆->,解得1m <-或1m > -----------------------5分 ∵点A 为MB 中点,∴2102y y +=,即212y y = ∴212124,y y y ==解得1y = -----------------------6分124y y m +=,∴4m =或4m =∴m = -----------------------7分直线方程为440x -+=或440x ++=. -----------------------8分(Ⅱ)焦点(1,0)F ,221212(1,),(1,)44y y FA y FB y =-=- ∵AF BF ⊥22221212122222121212212144441164()804y y y y FA FB y y y y y y y y y y ⋅=⋅--+++=-+++=-= ∴212()=32y y + -----------------------11分212111||||||||22||||4ABF MBF AMF S S S MF y MF y y y ∆∆∆=-=⋅-⋅=-== -----------------------13分22.(本小题满分13分)解:(Ⅰ)|212PF |+|PF |a ==a = -----------------------1分2c e a ==,∴12c ==, -----------------------2分 ∴222211b a c =-=-= -----------------------3分 椭圆的标准方程为2212x y += -----------------------4分 (Ⅱ)已知2(1,0)F ,设直线的方程为(1)y k x =-,1122(,)(,)A x y B x y ----------5分 联立直线与椭圆的方程22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,化简得:2222(12)4220k x k x k +-+-= -----------------------6分 ∴2122412k x x k +=+,121222()212k y y k x x k k -+=+-=+ ∴AB 的中点坐标为2222(,)1212k k k k-++ -----------------------8分 ①当0k ≠时,AB 的中垂线方程为22212()1212k k y x k k k --=--++ --------------9分 ∵||||MA MB =,∴点M 在AB 的中垂线上,将点M 的坐标代入直线方程得:22271212k k k k+=++,即270k -+=解得k =6k = -----------------------11分 ②当0k =时,AB 的中垂线方程为0x =,满足题意. -----------------------12分∴斜率k 的取值为0, -----------------------13分。
湖北职业高中数学对口升学高考复习模拟试题二(含答案)
数学试题第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|560A x x x =--<,{}|2B x x =<,则()R A C B ⋂=( )A .()1,2-B .[)1,2-C .()2,6D .[)2,62. 已知回归直线的斜率的估计值是1.2,样本点的中心为()4,5,则回归直线方程是( ) A . 1.24y x ∧=+ B . 1.25y x ∧=+ C . 1.20.2y x ∧=+ D .0.95 1.2y x ∧=+ 3.已知向量()1,2a =,(),2b x =-,且()a ab ⊥-,则实数x 等于( ) A .4- B .4 C .0 D .94.已知数列{}n a 的前n 项和()221n S n n t =-+-,则“1t =”是“数列{}n a 为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.某空间组合体的三视图如图所示,则该组合体的体积为( ) A .48 B .56 C .64 D .726.在如图所示的程序框图中,若输出49S =,则判断框内实数p 的取值范围是( )A .(]17,18B .()17,18C .(]16,17D .()16,177.已知函数()sin()32mf x x π=+-在[]0,π上有两个零点,则实数m 的取值范围为( ) A .3,2⎡⎤-⎣⎦ B .)3,2⎡⎣C .(3,2⎤⎦ D .3,2⎡⎤⎣⎦第5题图第6题图8.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C ,若,,A B C 三点的横坐标成等比数列,则双曲线的离心率为( )A .3B .5C .10D .139.已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( ) A .5164π- B .564π C .116π- D .16π 10.设函数2()21ln f x x x a x =-++有两个极值点12,x x ,且12x x <,则( )A .212ln 2()4f x +<B .212ln 2()4f x -< C .212ln 2()4f x +> D .212ln 2()4f x ->第Ⅱ卷(非选择题,共100分)二、填空题:本大题共7小题,每小题5分,共35分,请将答案填在答题卡对应题号的位置上.11.在复平面内,复数103ii-对应的点的坐标为___________. 12.统计某学校高三年级某班40名学生的数学期末考试成绩,分数均在40至100之间,得到的频率分布直方图如图所示.则图中a 的值为___________.13.若存在x R ∈,使13x a x -+-≤成立,则实数a 的取值范围是___________.14.已知()f x 是定义在R 上以2为周期的偶函数,且当01x ≤≤时,12()log (1)f x x =-,则2011()4f -=___________. 15.已知圆的方程为22680x y x y +--=,设该圆过点()3,5的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为___________.16.钝角三角形的三边长分别为,1,2a a a ++,其最大角不超过120,则a 的取值范围是___________.第12题图17.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推. (1) 试问第n 层()2n N n *∈≥且的点数为___________个;(2) 如果一个六边形点阵共有169个点,那么它一共有___________层.三、解答解:本大题共5个小题,共65分.解答应写出文字说明,证明过程或演算步骤. 18.设函数()f x m n =⋅,其中向量()2cos ,1m x =,()cos ,3sin 2n x x =,x R ∈. (1)求()f x 的单调递增区间;(2)在ABC ∆中,,,a b c 分别是角,,A B C 的对边,已知()2,1f A b ==,ABC ∆的面积为32,求c 的值.19.设正项等比数列{}n a 的前n 项和为n S ,且34a =,23S =. (1)求数列{}n a 的通项公式; (2)若222222log log n n n b a a +=⋅,令数列{}n b 的前n 项和为n T .证明:1n T <.21.已知函数()1ax x ϕ=+,a 为常数. (1)若()ln ()f x x x ϕ=+,且92a =,求函数()f x 的单调区间;(2)若()ln ()g x x x ϕ=+,且对任意12,x x (]0,2∈,12x x ≠,都有2121()()1g x g x x x -<--, 求a 的取值范围.第17题图参考答案一、选择题 序号 1 2 3 4 5 6 7 8 9 10 答案 DCDCCCBCAD二、填空题11.()1,3- 12.0.03 13.[]2,4- 14.2 15. 16.3,32⎡⎫⎪⎢⎣⎭17.(1)()61n - (2)81.()1,6A =-,()2,2B =-,(][),22,R C B =-∞-⋃+∞,则()[)2,6R A C B ⋂= 2.样本点的中心一定在回归直线上3.()1,4a b x -=-,由()a ab ⊥-得180x -+=,解得:9x = 4.两个条件互为充要条件5.14624564V =⨯⨯+⨯⨯= 6.()()()111111233411222n S n n n n n =++⋅⋅⋅++=-⨯⨯++++,令49n S =得16n = 所以实数p 的取值范围是(]16,17 7.令()0f x =得2sin()3m x π=+,即2sin()3y x π=+与直线y m =的图像在[]0,π上有两个交点,数形结合可知m的取值范围是)28.直线方程为y x a =-+,由y x a b y x a =-+⎧⎪⎨=⎪⎩解得2C a x a b =+,由y x ab y x a =-+⎧⎪⎨=-⎪⎩解得2B a x a b =- 由题意可知:222a a a a b a b ⎛⎫=⋅⎪-+⎝⎭即()2()a a b a b +=-得3b a =,所以c e a ===9.动点(,)P a b 满足的不等式组为022022a b a b ≤+≤⎧⎨≤-≤⎩,画出可行域可知P 的运动区域为以31,55C ⎛⎫- ⎪⎝⎭P 到点C 的距离小于或等于14的区域是以31,55C ⎛⎫- ⎪⎝⎭为圆心且半径为14的圆以及圆的内部,所以222145164P ππ⎛⎫- ⎪⎝⎭⎝⎭==-⎝⎭10.()f x 的定义域为()0,+∞,求导得2'22()x x af x x-+=,因为()f x 有两个极值点12,x x ,所以12,x x 是方程2220x x a -+=的两根,又12x x <,且121x x +=,所以2112x <<又22222a x x =-,所以()()()2222222122ln f x x x x x =-+-,令()()22()122ln g t t t t t =-+-112t ⎛⎫<< ⎪⎝⎭,()()'212ln 0g t t t =->所以()g t 在1,12⎛⎫ ⎪⎝⎭上为增函数,所以()112ln 224g t g -⎛⎫>= ⎪⎝⎭,所以2122()4ln f x ->11.()1031010301331010i i i ii i +-+===-+-,所以该复数对应点的坐标为()1,3- 12.由()0.0050.0120.020.025101a +⨯+++⨯=解得0.03a = 13.只需()min13x a x -+-≤成立即可,而11x a x a -+-≥-所以13a -≤即313a -≤-≤解得24a -≤≤ 14.1220112011201131502log 244444f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-==-=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 15.圆的标准方程为()()223425x y -+-=,过点()3,5的最长弦为过圆心的直径10AC =,最短弦为与圆心()3,4和点()3,5连线垂直的弦,BD ===然AC BD ⊥,所以1=2S AC BD ⨯=16.由题意可得()()()222121210221a a a a a a a a ++>+⎧⎪++-+⎨-≤<⎪+⎩解得332a ≤<17.观察图形,可以看出,第一层是1个点,其余各层的点数都是6的倍数且倍数比层数少1,所以:(1)第n 层的点数为()61(2)n n -≥;(2)n 层六边形点阵的总点数为()16121n +⨯++⋅⋅⋅+-=()131n n +-令()131169n n +-=解得7n =-(舍去)或8n = 所以8n =三、解答题 18.解:(1)2()2cos 2f x x x ==cos221x x +=2sin 26x π⎛⎫+⎪⎝⎭+12⋅⋅⋅⋅⋅⋅⋅⋅⋅分 令-222,262k x k k Z πππππ+≤+≤+∈4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 解得-2,366k x k k Z πππππ+≤+≤+∈故()f x 的单调递增区间为()-,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分注:若没写k Z ∈,扣一分(2)由()2sin 2126f A A π⎛⎫=++= ⎪⎝⎭得1sin 262A π⎛⎫+= ⎪⎝⎭7⋅⋅⋅⋅⋅⋅⋅⋅⋅分而()0,A π∈,所以132,666A πππ⎛⎫+∈ ⎪⎝⎭,所以5266A ππ+=得3A π=10⋅⋅⋅⋅⋅⋅⋅⋅⋅分 又1sin 2ABC S bc A ∆=,所以22sin ABC Sc b A∆===12⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分19.解:(1)由题意可得211143a q a a q ⎧=⎨+=⎩解得112a q =⎧⎨=⎩4⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 所以12n n a -=6⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分 (2)()()212122222222228log log log 2log 22121n n n n n b a a n n -++===⋅⋅⋅⋅⋅⋅⋅⋅-+分 =112121n n --+10⋅⋅⋅⋅⋅⋅⋅⋅⋅分 所以1111113352121n T n n =-+-+⋅⋅⋅+--+=1121n -+11⋅⋅⋅⋅⋅⋅⋅⋅⋅分 因为1021n >+,所以1n T <12⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅分21.解:(1) 2221(2)1'()(1)(1)a x a x f x x x x x +-+=-=++, -------------------------------------2分 ∵92a =,令'()0f x >,得2x >,或12x <,------------------------------------3分∴函数()f x 的单调增区间为1(0,)2, (2,)+∞. -----------------------------4分单调减区间为1,22⎛⎫⎪⎝⎭-----------------------------5分 注:两个单调增区间,错一个扣1分,错两个扣2分(2)∵2121()()1g x g x x x -<--,∴2121()()10g x g x x x -+<-,∴221121()[()]0g x x g x x x x +-+<-,--------------------------------------------------7分设()()h x g x x =+,依题意,()h x 在(]0,2上是减函数.--------------------------8分 当12x ≤≤时, ()ln 1a h x x x x =+++,21'()1(1)a h x x x =-++, 令'()0h x ≤,得:222(1)1(1)33x a x x x x x +≥++=+++对[1,2]x ∈恒成立, 设21()33m x x x x =+++,则21'()23m x x x=+-, ∵12x ≤≤,∴21'()230m x x x=+->,∴()m x 在[1,2]上是增函数,则当2x =时,()m x 有最大值为272, ∴272a ≥.------------------------------------------------------------------------------------11分 当01x <<时, ()ln 1a h x x x x =-+++,21'()1(1)a h x x x =--++, 令'()0h x ≤,得: 222(1)1(1)1x a x x x x x+≥-++=+--, 设21()1t x x x x =+--,则21'()210t x x x=++>,∴()t x 在(0,1)上是增函数,∴()(1)0t x t <=,∴0a≥------------------------------------------------------------------------------------13分综上所述,272a≥------------------------------------------------------------14分。
湖北省职高对口升学高考数学冲刺模拟试题一(含答案)
数学试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线310x y -+=的倾斜角为 ( ).A.6π B.4π C.3π D.23π2.下表是某厂1~4月用水量(单位:百吨)的一组数据. 由散点图知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程为ˆˆ0.7yx a =-+,则ˆa = ( ). 月份 1 2 3 4 用水量4.5432.5A .10.5B .5.15C .5.2D .5.253.经过点(1,0),且与直线220x y --=平行的直线方程是( ).A.210x y --=B.210x y -+=C.220x y +-=D.210x y +-=4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ).A.若m ∥,n α∥α,则m ∥nB.若,αγβγ⊥⊥,则α∥βC.若m ∥,n α∥β,则α∥βD.若,m n αα⊥⊥,则m ∥n5.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是 ( ).A.144ππ+ B.122ππ+ C.12ππ+ D.142ππ+ 6.圆221:20C x y x +-=与圆222:40C x y y +-=位置关系是( ). A.相离 B.相交 C.外切 D.内切7.某四面体的三视图如图所示,则该四面体四个面的面积中最大的是( ).A.8B.10C.62D.828.已知直线320m x y -+=与圆222x y n +=相切,其中,*m n N ∈,且5n m -<,则满足条件的有序实数对(,)m n 共有的对数为 ( ).A.1 B .2 C .3 D .4 9.已知某长方体的三个相邻面的表面积分别为2,3,6,且该长方体的顶点都在同一个球面上,则这个球的表面积为 ( ).A.72πB.56πC.14πD.64π 1直线3y kx =+与圆()()22:324C x y -+-=相交于,M N 两点.若23MN ≥,则k 的取值范围是 ( ).A.3 04⎡⎤-⎢⎥⎣⎦,B.[]3 0 4⎡⎤-∞-+∞⎢⎥⎣⎦,,B.C.33 33⎡⎤-⎢⎥⎣⎦, D.2 03⎡⎤-⎢⎥⎣⎦, A.12S S = B.12S S > C.12S S < D.22221S S π+=二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡的相应位置. 11.用一个与球心距离为1的平面去截球,所得的截面面积为π,则该球的体积为 . 12.已知200辆汽车在通过某一段公路的时速的频率分布直方图如图所示,则时速在[60,70]之间的汽车大约有 辆.13.如果执行如图所示的程序框图,输入6,4n m ==,那么输出的p 值为 .第12题图第13题图14.已知(,)P x y 为直线y x =上的动点,2222(1)(2)(2)(1)m x y x y =-+-+++-,则m 的最小值为 .15.如图,在直角梯形ABCD 中,BC DC ⊥,,AE DC M N ⊥、分别是AD BE 、的中点,将ADE ∆沿AE 折起(D 不在平面ABC 内).下列说法正确的是 .①不论D 折至何位置都有//MN 平面DEC ; ②不论D 折至何位置都有MN AE ⊥; ③不论D 折至何位置都有//MN AB ;④在折起过程中,一定存在某个位置,使EC AD ⊥; ⑤在折起过程中,一定存在某个位置,使//MN BD .三、解答题:本大题共6小题,共50分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分8分)求经过点(1,2)A ,且在两个坐标轴上的截距的绝对值相等的直线方程.17.(本小题满分8分)已知直线:(21)(1)740()l m x m y m m R +++--=∈,圆22:(1)(2)25C x y -+-=. (Ⅰ)证明:直线l 与圆C 相交;(Ⅱ)当直线l 被圆C 截得的弦长最短时,求m 的值.18.(本小题满分8分)已知如图,在斜三棱柱ABC C B A -111中,侧面C C AA 11⊥底面ABC ,侧面C C AA 11为菱形,160A AC ∠=,,E F 分别是11,AC AB 的中点. (Ⅰ)求证:EF ∥平面11BB C C ; (Ⅱ)求证:CE ⊥面ABC .19.(本小题满分9分)汽车是碳排放量比较大的行业之一.欧盟规定,从2012年开始,将对2CO 排放量超过130g/km 的M1型新车进行惩罚.某检测单位对甲、乙两类M1型品牌车各抽取5辆进行2CO 排放量检测,记录如下(单位:g/km ).甲 80 110 120140 150 乙100120xy160经测算发现,乙品牌车2CO 排放量的平均值为120x =乙g/km .(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,则至少有一辆不符合2CO 排放量的概率是多少?(Ⅱ)若90130x <<,试比较甲、乙两类品牌车2CO 排放量的稳定性.(参考公式:2222121[()()()]n s x x x x x x n=-+-++-)20.(本小题满分8分)已知如图,直线:50l x y +-=,圆C 经过(1,0)(3,0)A B 、两点,且与直线l 相切,圆心C 在第一象限. (Ⅰ)求圆C 的标准方程;(Ⅱ)设P 为l 上的动点,求APB ∠的最大值,以及此时P 点坐标.21.(本小题满分9分)已知如图,在三棱锥P ABC -中,顶点P 在底面的投影H 是ABC ∆的垂心. (Ⅰ)证明:PA BC ⊥;(Ⅱ)若PB PC =,2BC =,且二面角P BC A --度 数为60︒,求三棱锥P ABC -的体积P ABC V -的值.参考答案题号 1 2 3 4 5 6 7 8 9 10答案 C D A D B B B D CA11. 82 12. 80; 13. 360; 14. 4 ; 15.①②④三、解答题16.解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;……………3分 当截距不为0时,设直线为1x y a a +=或1x y a a+=-, 因为直线过点(1,2)A ,则得3a =,或1a =-,即30x y +-=,或10x y -+=,…7分 综上可知,所求直线方程为:2y x =,30x y +-=,或10x y -+= ……………8分 17.(Ⅰ)直线l 方程变形为(27)(4)0x y m x y +-++-=,由27040x y x y +-=⎧⎨+-=⎩,得31x y =⎧⎨=⎩,所以直线l 恒过定点(3,1)P , ………………………2分 又||55PC =<,故P 点在圆C 内部,所以直线l 与圆C 相交;………………………4分(Ⅱ)当l PC ⊥时,所截得的弦长最短,此时有1l PC k k ⋅=-, ………………………6分而211,12l PC m k k m +=-=-+,于是2112(1)m m +=-+,解得34m =-. ……………………8分18.(Ⅰ)证明:取BC 中点M ,连结FM ,1C M .在△ABC 中, ∵F ,M 分别为BA ,BC 的中点, ∴FM ∥12AC . ∵E 为11A C 的中点,AC ∥11A C ∴FM ∥1EC . ∴四边形1EFMC 为平行四边形 ∴1EF C M ∥.∵1C M ⊂平面11BB C C ,且EF ⊄平面11BB C C , ∴EF ∥平面11BB C C .………………4分 (Ⅱ)证明:连接C A 1,∵C C AA 11是菱形,160A AC ∠=, ∴△C C A 11为等边三角形 ∵E 是11A C 的中点,∴CE ⊥11C A ,∵四边形C C AA 11是菱形 , ∴11C A ∥AC . ∴CE ⊥AC . ∵ 侧面11AA C C ⊥底面ABC , 且交线为AC ,⊂CE 面11AA C C∴ CE ⊥面ABC . ………………………………………8分 19. 解:(Ⅰ)从被检测的5辆甲类品牌车中任取2辆,共有10种不同的2CO 排放量结果: (110,80);(120,80);(140,80);(150,80);(120,110);(140,110);(150,110);(140,120);(150,120);(150,140). 设“至少有一辆不符合2CO 排放量”为事件A ,则事件A 包含以下7种不同的结果:(140,80);(150,80);(140,110);(150,110);(140,120);(150,120);(150,140). 所以,7.0107)(==A P . ………………………………………4分 (Ⅱ)由题可知,120==乙甲x x ,220=+y x .()22580120S =-+甲()+-2120110()+-2120120()+-2120140()30001201502=-25S =乙()+-2120100()+-2120120()+-2120x ()+-2120y ()2120160-+=2000()+-2120x ()2120-y ………………………………………6分220,x y +=∴25S =乙+2000()+-2120x ()2100-x ,令t x =-120,13090<<x ,1030<<-∴t ,25S ∴=乙+2000+2t ()220+t ,2255S S ∴-=乙甲22406002(30)(10)0t t t t +-=+-<120==乙甲x x ,22<S S 乙甲,∴乙类品牌车碳排放量的稳定性好. ……………………9分20. 解:(Ⅰ)由题知,设圆心(2,),0C b b >,半径为r ,则22(21)(0)|25|11r b b r ⎧=-+-⎪⎨+-=⎪+⎩,解得12b r =⎧⎪⎨=⎪⎩, 所以圆C 的标准方程为:22(2)(1)2x y -+-=; ………………………………………4分 (Ⅱ)如图,令圆C 与直线l 相切于0P 点,由平面几何知识可知0APB AQB AP B ∠<∠=∠,所以P 取切点0P 时,APB ∠取得最大值, ………………………………………6分易求直线0:1CP l y x =-,由150y x x y =-⎧⎨+-=⎩解得0(3,2)P , 易知0AP B ∆为等腰直角三角形,则045AP B ∠=︒,所以APB ∠最大值为45︒,此时P 点坐标为(3,2).………………………………………8分 21.(Ⅰ)连接AH ,并延长交BC 于D ,连接BH ,并延长交AC 于E ,连接PD , 由PH ABC ⊥面,得PH BC ⊥,又H 是ABC ∆的垂心,可得AD BC ⊥,而PH AD H ⋂=,则BC PAD ⊥面,所以PA BC ⊥;………………………………4分 (Ⅱ)由(Ⅰ)知BC PAD ⊥面,则BC PD ⊥,所以PDA ∠为二面角P BC A --的平面角,则有=60PDA ∠︒ 由BC PD ⊥,PB PC =,可知=BD DC ,又BC AD ⊥,所以=AB AC 在ABC ∆中,因为H 是垂心,由平面几何可知~ABD BHD ∆∆,所以2,1AD BD AD DH BD BD DH =⇒⋅==,则113tan 60222PAD S AD PH AD DH ∆=⋅=⋅⋅︒=,所以113323323P ABC PAD V S BC -∆=⋅=⨯⨯=. ………………………………………9分。
湖北中职对口升学高考数学冲刺模拟试题:选择题07
对口升学高考数学冲刺模拟试题选择题(本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的).1.“m <14”是“一元二次方程x 2+x +m =0有实数解”的 A .充分不必要条件 B .充分且必要条件C .必要不充分条件D .既不充分也不必要条件2.某研究型学习课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为A .6B .8C .10D .123.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .y ^ =-10x +200B .y ^=10x +200C .y ^ =-10x -200D .y ^ =10x -2004.函数y =f (x )在定义域(-32,3)内的图像如图所示.记y =f (x )的导函数为y =f '(x ),则不等式f '(x )≤0的解集为A .[-13,1]∪[2,3)B .[-1,12]∪[43,83]C .[-32,12]∪[1,2)D .(-32,-13]∪[12,43]∪[43,3) 5.抛物线x y 412=上的一点M 到焦点的距离为1,则点M 到y 轴的距离是 A .1716B .78C .1D .15166.如图甲是某条公共汽车线路收支差额y 与乘客量x 的图象(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格.下面给出四个图象:在这些图象中A .①反映了建议(Ⅱ),③反映了建议(Ⅰ)B .①反映了建议(Ⅰ),③反映了建议(Ⅱ)C .②反映了建议(Ⅰ),④反映了建议(Ⅱ)D .④反映了建议(Ⅰ),②反映了建议(Ⅱ)7.执行如图所示的程序框图,输出的s 值为A .-3B .-12C .13D .28.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含)(n f 个小正方形.则)5(f 等于A .39B .40C .41D .429.若1)()()(=+=B P A P B A P ,则事件A,B 的关系是A .互斥不对立B .对立不互斥C .互斥且对立D .以上答案都不对10.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过图甲5人”,根据连续7天的新增病例数计算,下列① ~ ⑤各个选项中,一定符合上述指标的是 ①平均数3x ≤; ②标准差2S ≤; ③平均数3x ≤且标准差2S ≤; ④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
湖北中职对口升学高考数学冲刺模拟试题:选择题08
对口升学高考数学冲刺模拟试题选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.)1.命题:“对任意的32,10x R x x ∈-+≤”的否定是 ( ) A. 不存在32,10x R x x ∈-+≤B. 存在03200,10x R x x ∈-+≤ C. 存在03200,10x R x x ∈-+>D. 对任意的32,10x R x x ∈-+>2.椭圆22143x y +=的焦距为( )A. 1B.C. 2D.3.对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件4.已知函数xe x xf )3()(-=,则(0)f '=( )A. 2B. 2-C. 3D. 45.斜率是1的直线经过抛物线24y x =的焦点,与抛物线相交于A 、B 两点,则线段AB 的长是( )A .2B .4C .D . 86.在区间[0,4]内随机取两个实数,a b ,则使得方程220x ax b ++=有实根的概率是( ) A .14B .13C .16D .567.过椭圆15622=+y x 内的一点)1,2(-P 的弦恰好被P 点平分,则这条弦所在的直线方程是( )A .01335=--y xB .01335=-+y xC .01335=+-y xD .01335=++y x8. 已知函数()f x 的图象是下列四个图象之一,且其导函数()f x '的图象 如右图所示,则该函数的图象是( )9.已知函数3()3f x x x a =-+有三个零点,则a 的取值范围为( )A .(,2)(2,)-∞-⋃+∞B .(,2][2,)-∞⋃+∞C .(2,2)-D .[-2,2]10. 如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )A .2B .3C .23 D .26CCBBD,A ABCDADCBOxyA BF 1F 210。
2020年中职数学对口升学考前冲刺模拟试题含答案
2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。
湖北武汉中职对口招生考试数学模拟试题:解答题01
对口招生考试数学模拟试题解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求以椭圆22+198x y =的焦点为焦点,且过,(2点的双曲线的标准方程. 18.(本小题满分12分)设{}n a 为等比数列,n S 为其前n 项和,已知121n n a S +=+.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}n na 的前n 项和n H .19.(本小题满分12分)在ABC ∆中,角A B C 、、所对的边分别为,,a b c ,且,,a b c 成等比数列.(Ⅰ)若a c +=,60B =,求,,a b c 的值;(Ⅱ)求角B 的取值范围.20.(本小题满分12分)在数列{}n a 中,111,8n a a +==(Ⅰ)求23,a a ;(Ⅱ)设2log n n b a =,求证:{2}n b -为等比数列;(Ⅲ)求{}n a 的前n 项积n T .21.(本小题满分13分)抛物线22(0)y px p =>,其准线方程为1x =-,过准线与x 轴的交点M 做直线l 交抛物线于A B 、两点.(Ⅰ)若点A 为MB 中点,求直线l 的方程;(Ⅱ)设抛物线的焦点为F ,当AF BF ⊥时,求ABF ∆的面积.22.(本小题满分13分)已知椭圆22221(0)x y a b a b+=>>上的点P 到左右两焦点12,F F 的距离之和为离. (Ⅰ)求椭圆的方程;(Ⅱ)过右焦点2F 的直线l 交椭圆于A B 、两点,若y轴上一点M 满足 ||||MA MB =,求直线l 的斜率k 的值.一.解答题17.(本小题满分12分)解:由椭圆的标准方程可知,椭圆的焦点在x 轴上 设双曲线的标准方程为22221(0,0)x y a b a b-=>> -----------------------2分 根据题意2222144514a b a b⎧+=⎪⎨-=⎪⎩, --------------------6分 解得221434a b ⎧=⎪⎪⎨⎪=⎪⎩或221615a b ⎧=⎪⎨=-⎪⎩(不合题意舍去) -----------------------10分 ∴双曲线的标准方程为224413y x -= -----------------------12分 18.(本小题满分12分)解:(Ⅰ)121n n a S +=+,-121,(2)n n a S n =+≥∴112()2,(2)n n n n n a a S S a n +--=-=≥∴13,(2)n n a a n +=≥ -----------------------2分 ∴3q = -----------------------3分 对于121n n a S +=+令1,n =可得211213a a a =+=,解得11a =----------------5分∴13n n a -= -----------------------6分(Ⅱ)13n n na n -=⋅ -----------------------7分21123333n n H n -=+⋅+⋅++⋅① 233323333n n H n =+⋅+⋅++⋅② -----------------------8分①-②得2113213333313n n n n n H n n ---=++++-⋅=-⋅------------------------10分 ∴211=344n n n H -⨯+ -----------------------12分 19.(本小题满分12分)解:(Ⅰ)∵,,a b c 成等比数列,∴2b ac = -----------------------2分∵60B =∴2221cos 22a cb B ac +-== -----------------------4分联立方程组2222122b ac a c a c b ac ⎧⎪=⎪⎪+=⎨⎪+-⎪=⎪⎩,解得2a b c === -----------------------6分 (Ⅱ)22222cos 22a c b a c ac B ac ac+-+-== -----------------------8分 ∵222a c ac +≥,∴2221cos 222a c ac ac ac B ac ac +--=≥=-----------------------10分 ∴060B <≤ -----------------------12分20.(本小题满分12分)解:(Ⅰ)2128,1,8a a a ==∴= -----------------------1分3138,8,a a a ==∴= -----------------------2分(Ⅱ)22121222221log 8log 22log 222log 2log 22log 112log 22n n n n n n n n n a b a b a a a a ++----===----=⨯=-- -----------------5分∴{2}n b -为等比数列,公比为12- ----------------------6分(Ⅲ)设数列{2}n b -的前n 项和为n S12321222212(1())22log log log 2112log 2n n n n n S b b b b n a a a n T n---==++++-=++-+=- -----------------------8分 ∴241log [()1]232n n T n =--+, -----------------------10分 ∴41[()1]2322n n n T --+= -----------------------12分 21.(本小题满分13分)解:(Ⅰ)∵抛物线的准线方程为1x =- ∴1,22p p == -----------------------1分 ∴抛物线的方程为24y x = -----------------------2分 显然,直线l 与坐标轴不平行∴设直线l 的方程为1x my =-,221212(,)(,)44y y A y B y -----------------------3分 联立直线与抛物线的方程214x my y x=-⎧⎨=⎩,得2440y my -+=-----------------------4分 2=16160m ∆->,解得1m <-或1m > -----------------------5分 ∵点A 为MB 中点,∴2102y y +=,即212y y = ∴212124,y y y ==解得1y = -----------------------6分124y y m +=,∴4m =4m =∴m = -----------------------7分直线方程为440x -+=或440x ++=. -----------------------8分(Ⅱ)焦点(1,0)F ,221212(1,),(1,)44y y FA y FB y =-=- ∵AF BF ⊥22221212122222121212212144441164()804y y y y FA FB y y y y y y y y y y ⋅=⋅--+++=-+++=-= ∴212()=32y y + -----------------------11分212111||||||||22||||4ABF MBF AMF S S S MF y MF y y y ∆∆∆=-=⋅-⋅=-== -----------------------13分22.(本小题满分13分)解:(Ⅰ)|212PF |+|PF |a ==a = -----------------------1分2c e a ==,∴12c ==, -----------------------2分 ∴222211b a c =-=-= -----------------------3分 椭圆的标准方程为2212x y += -----------------------4分 (Ⅱ)已知2(1,0)F ,设直线的方程为(1)y k x =-,1122(,)(,)A x y B x y ----------5分 联立直线与椭圆的方程22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,化简得:2222(12)4220k x k x k +-+-= -----------------------6分 ∴2122412k x x k +=+,121222()212k y y k x x k k -+=+-=+ ∴AB 的中点坐标为2222(,)1212k k k k-++ -----------------------8分 ①当0k ≠时,AB 的中垂线方程为22212()1212k k y x k k k --=--++ --------------9分 ∵||||MA MB =,∴点M 在AB 的中垂线上,将点M 的坐标代入直线方程得:22271212k k k k+=++,即270k -+=解得k =6k = -----------------------11分 ②当0k =时,AB 的中垂线方程为0x =,满足题意. -----------------------12分∴斜率k 的取值为0, -----------------------13分。
湖北中职对口招生考试数学模拟试题:选择题04
对口招生考试数学模拟试题选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若角α的终边经过点(1,2)P -,则tan α的值为( A )A. 2-B. 2C. 12-D. 12 2. (592P A -)设a >0,将322a a a ⋅表示成分数指数幂,其结果是( D ) A. 21a B. 23a C. 65a D. 67a3. (293P A -)若76πα=,则计算21sin(2)sin()2cos ()αππαα+-⋅+--所得的结果为( A ) A. 34-B. 14- C. 0 D. 54 4. 函数f (x ) = x 2 + ln x -4的零点所在的区间是( B ) A.(0,1) B.(1,2) C.(2,3) D.(3,4)5. (119(3)1P B -)已知OA a =,OB b =,OC c =,OD d =,且四边形ABCD 为平行四边形,则( B )A.0a b c d +++=B. 0a b c d -+-=C. 0a b c d +--=D. 0a b c d --+=6. (751P B -)若3log 41x =,则44x x -+=( D ) A. 1 B. 2 C. 83 D. 1037. (原创)已知函数π()cos()(00)2f x A x x >ωθωθ=+∈R ,,≤≤的图象如图所示,则()4f π=( B ) A. 0 B. 1- C. 3- D. 2-8. (119(6)1P B -)若向量,,a b c 两两所成的角相等,且1,1,3a b c ===,则a b c ++等于( C )A. 2B. 5C. 2或5D.2或5 9.函数1sin ()lg cos x f x x+=的图象( C ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称 D .关于直线y =x 对称10. 对于任意不全为0的实数b a ,,关于x 的方程0)(232=+-+b a bx ax 在区间()1,0内(C )A.无实根B.恰有一实根C.至少有一实根D.至多有一实根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题一、选择题:(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一个选项是符合题目要求的.) 1、已知全集U= {}1,2,3,4,5,集合A= {}3,4,B= {}1,2,3,则()U C A B 等于( )A .{}3B .{}1,3C .{}1,2D .{}1,2,3 2、已知a 是实数,iia -+1是纯虚数,则a 等于( ) A .1- B .1 C .2 D .2-3、已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .13cmB .23cmC .33cmD .63cm4、已知{}n a 是各项为正数的等比数列,12341,4,a a a a +=+=则5678a a a a +++=( )A .80B .20C .32D .25535、若a= 3(,sin )2α,b= 1(cos ,)3α,且a // b ,则锐角α=( )A .015B .030C .045D .060 6、已知 1.224log 3,log ,0.7x y z π-===,则( )A .x y z <<B .z y x <<C .y z x <<D . y x z << 7、设函数()sin()(0,)2f x x πωϕωϕ=+><的图象关于直线23x π=对称,且它的最小正周期为π,则 ( )A. ()f x 在区间53,124ππ⎡⎤⎢⎥⎣⎦上是减函数 B. ()f x 的图象经过点30,2⎛ ⎝⎭C.()f x 的图象沿着x 轴向右平移6π个单位后所得图象关于y 轴对称 D. ()f x 在30,4π⎡⎤⎢⎥⎣⎦上的最小值为1-8、已知直二面角l αβ--,点A ∈α,B ∈β,A 、B 到棱l 的距离相等,直线AB 与平面β所成的角为030,则AB 与棱l 所成的角的余弦是( )A .2 B .2 C .12D .49、已知点(,0)(0)F c c >是双曲线12222=-by a x 的右焦点,F 关于直线3y x =的对称点A 恰在该双曲线的右支上,则该双曲线的离心率是( )A 1B 1 D .251+ 10、已知()ln 2f x x x =+-,()ln 2g x x x x =+-在()1,+∞上都有且只有一个零点,()f x 的零点为1x ,()g x 的零点为2x ,则( )A .2112x x <<<B .1212x x <<<C .1212x x <<<D .212x x << 二、填空题:(本大题共7小题,每小题5分,共35分) 11.若4cos()5πα+=,则sin(2)2πα-=__________.12.不等式lg(1)0x +≤的解集是__________. 13.已知a 、b 为实数,0a >,则ba b b a++的最小值为__________. 14.ABC ∆中,过点A 作AH BC ⊥,垂足为H ,3,2BH HC ==,则()32AB ACBC +=__________. 15.由直线2y x =+上的点向圆22(4)(2)1x y -++=引切线,则切线长的最小值为__________.16.某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按40个工时计算)生产空调器、彩电、冰箱共120台、且冰箱至少生产20台。
已__________17.集合A= {}222(1),0x x a x a -<>,(1)判断1与集合A 的关系:1___ A(填∈或∉);(2)若AZ 中有且只有两个元素(Z 为整数集),则a 的取值范围是B 1BD __________. 三、解答题:(本大题共5小题,共65分,解题应写出文字说明、证明过程或演算步骤)18、(本题满分12分)已知函数()xx x x f sin sin cos 2cos sin 22-+=ϕϕ(πϕ<<0)在π=x 处取最小值.(1)求ϕ的值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,已知a =1,b =2,f (A )=32,求角C .19、(本题满分13分)已知四边形ABCD是矩形,AB=1,ABC ∆沿着对角线AC 折起来得到1AB C ∆且顶点1B 在平面ACD 上射影O 恰落在边AD 上,如图所示.(1)求证:平面1AB C ⊥平面1B CD ; (2)求三棱锥1B ABC -的体积1B ABC V -.20、(本题满分13分)已知数列{}n a 满足1123n n n a a -+=,1,2,3n =⋅⋅⋅,11a =, (1)求证:2n ≥ 时,总有113n n a a +-=; (2)数列{}n b 满足⎩⎨⎧=为偶数,为奇数,n a log n 3n a b n n ,求{}n b 的前2n 项和2n S .21、(本题满分13分)已知函数322()13f x x x ax =+++在()1,0-上有两个极值点12,x x ,且12x x <(1)求实数a 的取值范围;(2)证明:211()12f x >.22、(本题满分14分)已知曲线C :221(0)3y x x -=>,A (1,0)-,F (2,0) (1) 设M 为曲线C 上x 轴上方任一点,求证:2MFA MAF ∠=∠;(2) 若曲线C 上存在两点C ,D 关于直线l :12y x b =-+对称,求实数b 的取值范围;(3) 在(2)的条件下,是否存在过C 、A 、D 、F 的圆,且该圆的半径为32.如果存在,求出这个圆的方程;如果不存在,说明理由.参考答案选择题:1.C 2.B 3.A 4.A 5.C 6.A 7.D 8.B 9.A 10.A 二、填空题:11.725 12.(]1,0- 13.1 14.0 15 16.20 17.∈;12,23⎛⎤ ⎥⎝⎦三、解答题:18、(1)2()sin (2cos1)cos sin sin cos cos sin 2f x x x x x ϕϕϕϕ=-+=+sin()x ϕ=+x π=处取得最小值,322x k πϕπ∴+=+,22k πϕπ∴=+ 又()0,ϕπ∈,2πϕ∴=..........................................(6分)(2)()cos ,()22f x x f A A ===,由于()0,A π∈,所以6A π=在ABC ∆中由正弦定理得sin sin a bA B=,即10.5sin B =,sin 2B ∴=,.......(9分) ()0,B π∈,4B π∴=或34B π=,当4B π=时,712C π=;当34B π=时,12C π= ∴7,12C π=或12C π= ...........................................(12分) 19、(1)1B O ⊥平面ABCD ,CD ⊂平面ABCD ,∴1B O CD ⊥,又CD ⊥AD ,AD1B O =O∴CD ⊥平面1AB D ,又1AB ⊂平面1AB D ∴1AB CD ⊥,又11AB B C ⊥,且1B CCD C =1AB ∴⊥平面1B CD ,又1AB ⊂平面1AB C∴ 平面1AB C ⊥平面1B CD ................................(7分)(2)由于1AB ⊥平面1B CD ,1B D ⊂平面ABCD ,所以11AB B D ⊥在1Rt AB D ∆中,1B D ==,又由111B O AD AB B D ⋅=⋅得111AB B DB O AD⋅=3=,所以11111133236B ABC ABC V S B O -∆=⋅=⨯⨯=....................................................(13分)20、(1)由1123n n n a a -+⋅=⋅ (1) 对一切正整数n 都成立,得 212,23n n n n a a --≥⋅=⋅ (2)(1)除以(2)得2n ≥,13n na a += .............................(6分) (2)由(1)中的结论知{}n a 的奇数项和偶数项分别从小到大构成公比为3的等比数列,其中1121213,23n n n n a a ---=⋅=⋅由已知有,21121322log 1,23n a n n n n b n b a ---==-==⋅∴{}n b 的前2n 项和21321242()()n n n S b b b b b b -=++⋅⋅⋅++++⋅⋅⋅+=01132213n n n +--⨯+⋅-(1)312nn n -=+- ...............................(13分) 21、(1)2()22f x x x a '=++,由题意知方程2220x x a ++=在()1,0-上有两不等实根,设2()22g x x x a =++,其图象的对称轴为直线12x =-,故有 (1)0(0)011()(1)022g a g a g a ⎧⎪-=>⎪=>⎨⎪⎪-=+-+<⎩,解得102a <<...............................(6分) (222a x x =-- 构造2()22g x x x =--利用图象解照样给分)(2)由题意知2x 是方程2220x x a ++=的大根,从而21,02x ⎛⎫∈-⎪⎝⎭且有222220x x a ++=,即22222a x x =--,这样3222222()13f x x x ax =+++ 32232222222224(22)1133x x x x x x x =++--+=--+ 设324()13x x x ϕ=--+,2()42x x x ϕ'=--=0,解得121,02x x =-=,由1,2x ⎛⎫∈-∞- ⎪⎝⎭,()0x ϕ'<;1,02x ⎛⎫∈- ⎪⎝⎭,()0x ϕ'>;()0,x ∈+∞,()0x ϕ'<知,324()13x x x ϕ=--+在1(,0)2-单调递增,又2102x -<<,从而2111()()212x ϕϕ>-=, 即211()12f x >成立。
...............................(13分) (2)另解:由题意知2x 是方程2220x x a ++=的大根,从而21,02x ⎛⎫∈-⎪⎝⎭,由于102a <<2212ax x >,32322222222221()11332f x x x ax x x x =+++>+++, 设3221()132h x x x x =+++,1,02x ⎛⎫∈- ⎪⎝⎭,2211()2212()022h x x x x '=++=++> h(x)在1,02⎛⎫-⎪⎝⎭递增,111()()212h x h >-=,即211()12f x >成立。