不锈钢的可持续性-InternationalStainlessSteelForum

合集下载

STAINLESS STEEL(不锈钢)

STAINLESS STEEL(不锈钢)

STAINLESS STEEL(不锈钢)种类不锈钢常按组织状态分为:马氏体钢、铁素体钢、奥氏体钢等。

另外,可按成分分为:铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等。

1、铁素体不锈钢:含铬12%~30%。

其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。

属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。

铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。

这类钢能抵抗大气、硝酸及盐水溶液的腐蚀,并具有高温抗氧化性能好、热膨胀系数小等特点,用于硝酸及食品工厂设备,也可制作在高温下工作的零件,如燃气轮机零件等。

2、奥氏体不锈钢:含铬大于18%,还含有 8%左右的镍及少量钼、钛、氮等元素。

综合性能好,可耐多种介质腐蚀。

奥氏体不锈钢的常用牌号有1Cr18Ni9、0Cr19Ni9等。

0Cr19Ni9钢的wC<0.08%,钢号中标记为“0”。

这类钢中含有大量的Ni和Cr,使钢在室温下呈奥氏体状态。

这类钢具有良好的塑性、韧性、焊接性和耐蚀性能,在氧化性和还原性介质中耐蚀性均较好,用来制作耐酸设备,如耐蚀容器及设备衬里、输送管道、耐硝酸的设备零件等。

奥氏体不锈钢一般采用固溶处理,即将钢加热至1050~1150℃,然后水冷,以获得单相奥氏体组织。

3、奥氏体 - 铁素体双相不锈钢:兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。

奥氏体和铁素体组织各约占一半的不锈钢。

在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。

有些钢还含有Mo、Cu、Si、Nb、Ti,N等合金元素。

该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。

与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。

奥氏体不锈钢点蚀研究

奥氏体不锈钢点蚀研究

奥氏体不锈钢点蚀研究现状不锈钢从其诞生以来,一直广泛的应用在工业领域,随着工业技术的发展各种成分的不锈钢应运而生。

不锈钢的耐腐蚀性主要取决于其合金成分和组织结构。

不锈钢的合金成分主要包括铬、镍、钛、硅、铝等元素,其中铬含量要达到12%以上,以实现其特有的耐腐蚀性能。

不锈钢按其显微组织可分为奥氏体(γ相) 、铁素体(α相) 、马氏体( M相)、双相(γ+α、γ+ M等)和沉淀硬化(M +沉淀析出相) 等类型。

其中奥氏体不锈钢是工业上应用最广泛的不锈钢,最常见的是铬含量为18%、镍含量为8%的所谓18-8 不锈钢。

奥氏体不锈钢具有良好的耐腐蚀性能和综合力学性能,其室温及低温韧性、塑性及焊接性大大高于铁素体不锈钢,在氧化性、中性及弱氧化性介质中具有优良的耐蚀性。

然而,奥氏体不锈钢也存在两种主要的腐蚀:晶间腐蚀、点蚀。

点蚀是一种典型的局部腐蚀,广泛存在于钢铁中,特别是在某些介质(CL离子、氧)条件下,点蚀是主要的腐蚀形式。

对于点蚀的形成,至今也无法得到统一的定论。

一般认为,点蚀是由于钢中的杂质引起的,不锈钢中无法避免会有杂质,点蚀就形成于夹杂处。

目前,研究不锈钢点蚀的主要方法是采用电化学方法以及不锈钢材料表征。

采用动电位扫描可以得到不锈钢的击穿点位EB,该电位是研究不锈钢材料耐点蚀的重要方法;通过材料的表征,能够得到材料表面的宏观状况,可以得到点蚀的程度,蚀坑的大小及深浅。

长期以来点蚀一直是不锈钢材料面临的最大问题之一。

研究表明:金属材料对点蚀的敏感性主要取决于钝化膜的好坏。

奥氏体不锈钢中含有铬、钼、镍等元素。

铬是构成钝化膜的主要元素,添加铬能够促成钝化膜的形成,提高击穿电位E;钼能够促进钝化b,并延长了点蚀的孕育期。

膜形成稳定的结构,不仅提高击穿电位Eb现阶段的奥氏体不锈钢的发展已经不仅仅局限在这几种元素的添加,随着不同的需求,氮、铌等元素也添加到奥氏体不锈钢里。

不锈钢钟含0.1~0.3%氮能够明显提高材料的耐点蚀性能,但是少量的氮却会降低抗晶间腐蚀的性能;铌的添加能够提高抗晶间腐蚀却会降低抗点蚀性能。

含铬不锈钢渣

含铬不锈钢渣

The End
该法以鼓风炉渣治理废渣,充分利用了鼓风炉废渣中的显热, 工艺流程简单,易于实现工业化,但是在一定程度上污染了鼓 风炉渣,可能会影响鼓风炉渣的资源化利用。
[2] 王明玉,李辽沙,张力,等.用鼓风炉渣消除铬渣毒性的研究[J].环境工程,2005, 23(4):65~66.
建筑材料
➢ Outokumpu公司[3]应用快速水冷工艺,实现了不锈钢熔融钢渣快 速固化(约10min),提高渣块强度的同时,降低了铬的浸出,通 过分选工艺,最终得到0~8、0~32、0~56mm粒度不等的产品, 实现了金属回收及尾渣应用于建筑、路基材料等领域。
处理炼铜熔渣
将不锈钢渣粉按照一定比例加入刚出炉的鼓风炉熔渣中,渣中 的Cr6+被FeO还原成Cr3+并以Cr2O3的形式与MgO、CaO、FeO等 物质形成一系列铬的尖晶石相[2],从而使低价铬稳定地存在于终 渣中,最大程度地抑制了Cr3&+6FeO= 3Fe2O3+ Cr2O3 CaO+Cr2O3=CaO•Cr2O3 MgO+Cr2O3=MgO•Cr2O3 FeO+Cr2O3=FeO•Cr2O3
➢ CaCrO4具有强氧化性,很容易被单质铁还原。扒渣时,氧化时间有限,同时 熔渣中的金属液滴也限制CaCr2O4的氧化。
➢ 有研究指出[1],当碱度<2.0时,通过向熔渣中添加石灰促使碱度升至2.0以上, Cr2O3开始向CaCr2O4转化。在MgO、Cr2O3正常含量的情况下,当碱度≥2时, 在渣相中MgO·Cr2O3已基本不存在。
✓ 存在缺点:首先,钢渣的消耗量太小(4%以下),相对于钢渣的 产量微不足道;其次钢渣的配入导致有害元素S、P的富集,尤 其是P的富集,影响铁水质量和增加后续工序的负担。

316L奥氏体不锈钢疲劳特性分析

316L奥氏体不锈钢疲劳特性分析

316L奥氏体不锈钢疲劳特性分析摘要:本文针对316L奥氏体不锈钢的疲劳特性进行分析,总结了材料棘轮效应在不同应力幅、不同平均应力、不同加载历史下的变化规律,结果表明,随着平均应力和应力幅的升高,材料的初始棘轮应变累积水平快速升高。

分析材料循环特性的幅值依赖特性、温度相关特性、加载历史特性。

各研究表明,材料的循环硬化程度随应变幅值的升高而升高,循环软化程度则呈减小趋势,温度的升高会降低材料的峰值应力水平。

关键词:316L不锈钢;棘轮效应;循环特性;疲劳断裂;GUO Chaoyue, SUN Mengying, LIU Zhuang, LI Zhuoqun,(Shenyang University of Chemical Technology,School of Mechanical and Power Engineering, 110142 Shenyang, China)Abstract: This paper analyzes the fatigue characteristics of 316L austenitic stainless steel, summarizes the variation of the ratchet effect under different stress amplitudes, different average stresses and different loading history, and shows that the initial ratchet strain accumulation level of the material increases rapidly with the increase of average stress and stress amplitude. Analyze the amplitude-dependent characteristics, temperature-dependent characteristics, and loading history characteristics of material cycling properties. The results show that the degree of cyclic hardening of the material increases with the increase of the strain amplitude, the degree of cyclic softening tends to decrease, and the increase of temperature will reduce the peak stress level of the material.Keywords: 316L stainless steel; ratchet effect; cycling characteristics; fatigue fracture;0 引言316L不锈钢是典型的奥氏体不锈钢,因其具有良好的韧性、塑性、焊接性以及耐腐蚀性能等,广泛应用于化工、石油、核电等领域中的设备中[1]。

stainless steel 翻译

stainless steel 翻译

stainless steel 翻译stainless steel是一种耐腐蚀的合金材料,由铁、铬、镍和其他合金元素组成。

它的特点是具有很高的抗腐蚀性能、耐高温性、耐磨性和机械强度。

由于这些优点,不锈钢广泛应用于各种工业领域和日常生活中。

以下是一些常见的不锈钢用法和中英文对照例句:1. 不锈钢厨具 - stainless steel kitchenwareExample: I prefer using stainless steel kitchenware because it is durable and easy to clean. (我更喜欢使用不锈钢厨具,因为它耐用且容易清洁。

)2. 不锈钢水槽 - stainless steel sinkExample: The stainless steel sink in my kitchen is resistant to stains and scratches. (我厨房里的不锈钢水槽不易沾污和刮花。

)3. 不锈钢管道 - stainless steel pipesExample: The industrial plant uses stainless steel pipes for their chemical resistance and durability. (工业厂房使用不锈钢管道,具有耐化学性和耐用性。

)4. 不锈钢手表 - stainless steel watchExample: He bought a new stainless steel watch that is bothstylish and resistant to corrosion. (他买了一只新的不锈钢手表,既时尚又耐腐蚀。

)5. 不锈钢建筑结构 - stainless steel architectural structuresExample: The modern skyscraper is constructed with stainless steel architectural structures for their strength and aesthetic appeal. (现代摩天大楼采用不锈钢建筑结构,以其强度和美观吸引人。

ss是什么材料

ss是什么材料

ss是什么材料
SS是一种不锈钢材料,其英文全称为Stainless Steel,又称不
锈钢。

不锈钢是一种坚固耐用、具有优良耐腐蚀性和美观性的合金材料,具有广泛的应用领域和用途。

SS材料的主要成分是铁、铬、镍和少量的碳等元素。

其中铬
是不锈钢材料的关键元素,它能与氧气发生化学反应形成一种致密的氧化铬层,从而防止氧气的进一步进入,减少钢材的腐蚀。

镍的添加可使不锈钢具有较好的塑性和延展性,而碳的含量决定了不锈钢的硬度和强度。

SS材料具有许多显著的特点和优点。

首先,它具有极高的抗
腐蚀性能,能够抵抗大多数酸、碱、盐等腐蚀介质的侵蚀。

其次,SS材料具有良好的机械性能和耐高温性能,可用于制造
各种机械设备和热处理设备。

此外,SS材料还具有良好的美
观性和卫生性能,广泛应用于建筑、家居、食品加工、医疗器械等领域。

SS材料由于其广泛的应用领域,可分为多个不同的系列。


见的有Austenitic不锈钢、Ferritic不锈钢、Martensitic不锈钢
和Duplex不锈钢等。

每个系列的SS材料都具有不同的成分和性能,适用于不同的使用环境和要求。

总之,SS材料是一种具有卓越性能和广泛应用的合金材料。

其具有抗腐蚀、高强度、耐高温、美观等特点,广泛应用于建筑、家居、食品加工、医疗器械等领域。

在现代工业和生活中,
SS材料扮演着重要的角色,对于提高产品质量、延长使用寿命和保护环境起到了积极的作用。

stainless steel 翻译

stainless steel 翻译

stainless steel 翻译stainless steel是不锈钢的英文表达。

不锈钢是一种合金材料,由铁、铬、镍和其他元素组成。

它具有耐腐蚀、抗氧化和耐高温的特性,因此在许多领域得到广泛应用。

不锈钢的主要用途包括以下几个方面:1. 建筑和装饰:不锈钢在建筑和装饰领域中常用于制作门窗、栏杆、楼梯扶手等。

它的亮丽表面和耐候性使其成为室内外装饰的理想选择。

例句:The staircase railing in the modern building is made of stainless steel.(现代建筑中的楼梯扶手是由不锈钢制成的。

)2. 厨房用具:不锈钢是制作厨房用具的常见材料,如锅、刀具、炉灶等。

由于其耐腐蚀性和易清洁的特点,不锈钢厨具广受欢迎。

例句:She cooked dinner using a stainless steel frying pan.(她使用不锈钢煎锅烹饪晚餐。

)3. 医疗器械:不锈钢在医疗领域中被广泛应用于制作手术器械、手术台、器械搁架等。

其无菌性和耐腐蚀性使其成为医疗器械的理想选择。

例句:The doctor used a stainless steel scalpel for the surgery.(医生在手术中使用了不锈钢手术刀。

)4. 汽车制造:不锈钢在汽车制造中被用于制作排气管、车身零部件、内饰等。

其强度和耐腐蚀性能能够满足汽车的要求。

例句:The exhaust system of the car is made of stainless steel.(汽车的排气系统是由不锈钢制成的。

)不锈钢作为一种多功能材料,在各个领域都有广泛的应用。

无论是在建筑、厨房、医疗还是汽车制造等行业,不锈钢都展现出其独特的优势和价值。

ASTM A815A815M-2001可锻铁素体、铁素体 奥氏体和马氏体不锈钢管道管配件(中文版)

ASTM A815A815M-2001可锻铁素体、铁素体 奥氏体和马氏体不锈钢管道管配件(中文版)

5. 制造工艺
5.1 成型一锻造或成型操作可以采用下列方法:锤锻、压锻、穿孔、挤压、顶锻、轧制、 弯曲、熔焊、机械加工或者同时采用两种或几种方法。成型过程中应能保证在管配件表面不 产生深度大于规定公称壁厚 5%的间断点。 5.2 所有等级的管配件,都应按照第 6 节规定进行热处理。 5.3 所订购的 WP-S 级管配件,应是无缝结构的,并应满足 A 960 的全部要求。 5.4 所订购的 WP-W 级管配件应满足 A 960 标准的规定要求和(1) 应具有管配件生产厂施 焊的所有焊缝和用填充金属焊接的所有钢管焊缝,焊缝按照 ASME{锅炉和压力容器规范} 第 1 部分,第 8 章、UW-51 节的规定进行全长的射线照相检验;(2) 如果钢管不用填充金属 焊接,原钢管焊缝不需要进行射线照相检验。管配件生产厂焊接的焊缝可以按照第 5.6 条的 要求进行超声波检验,代替射线照相检验。 5.5 所订购的 WP-WX 级管衡件,应满足 A 960 标准的要求,并且不管是管配件生产厂焊 接的还是原料生产厂焊接的所有焊缝;均应按照,ASME《锅炉与压力容器规范》第 1 部分、 第 8 章的 UW-51 节的规定用射线照相检验整个焊缝。这个级别的管配件可以在成型之前或 在成型之后进行射线照相检验,这由生产厂来决定。 5.6 所订购的 WP-WU 级管配件应满足 A 960 标准的要求,并且不管是管配件生产厂焊接的 还是原料生产厂焊接的焊缝,均应按照 ASME《锅炉与压力容器规范》第 1 部分、第 8 章附 录 12 的规定用超声波检验整个焊缝。 5.7 该级管配件的焊缝是用射线照相检验还是用超声波检验,在成型之前还是在成型之后 进行,可由生产厂决定。 5.8 无损检验人员应按照 SNT-TC-lA 标准考核合格。 5.9 A 960 标准中的 CR 级别管配件应符合 A 960 标准的要求;但不需要做无损检验。 5.10 所有焊接的管配件应该使用按照 A 960 规定鉴定合格的焊工、自动焊工和焊接方法进 行焊接,但不用填充金属焊接的焊缝不要求对焊工和焊接方法做这样的鉴定。 5.11 所有的焊缝应按照 ASME《锅炉与压力容器规范》第 1 部分,第 8 章第 UW-35(a)节的 要求进行精加工。 5.12 用棒材机械加工制成的管件,其公称尺寸应限制在 NPS4 或小于 NPS4。 5.12.1 所有用棒材加工制成的管帽应按照 E165 的规定进行液体渗漏检验。

不锈钢品种手册

不锈钢品种手册

以下是一份不锈钢品种手册的简要示例,列举了常见的不锈钢材料品种及其特性:
1. Austenitic Stainless Steels(奥氏体不锈钢):
-304(UNS S30400): 最常用的不锈钢材料之一,具有良好的耐腐蚀性和可焊性。

-316(UNS S31600): 具有更高的耐腐蚀性能,特别适用于酸性环境。

2. Ferritic Stainless Steels(铁素体不锈钢):
-430(UNS S43000): 具有较高的强度和抗磨损性能,适合用于压力容器等应用。

3. Martensitic Stainless Steels(马氏体不锈钢):
- 410(UNS S41000): 具有较高的硬度和机械性能,适用于刀具、轴承等高强度要求的应用。

4. Duplex Stainless Steels(双相不锈钢):
- 2205(UNS S31803): 具有良好的耐腐蚀性和强度,广泛应用于化工、海洋等领域。

5. Precipitation Hardening Stainless Steels(沉淀硬化不锈钢):
- 17-4 PH(UNS S17400): 可通过热处理获得高强度和优异的耐腐蚀性能。

6. High-Temperature Stainless Steels(高温不锈钢):
-310(UNS S31000): 具有良好的耐高温、抗氧化和耐腐蚀性,适用于高温环境下的应用。

请注意,这仅是一份简要示例,不锈钢材料品种繁多,每个品种都有其特定的化学成分、机械性能和应用领域。

对于具体的应用需求,建议参考相关的技术文献和专业资料,以获取更详细和准确的信息。

不锈钢国际标准标准

不锈钢国际标准标准

不锈钢国际标准标准标准标准名GB 中华人民共和国国家标准(国家技术监督局)KS 韩国工业标准协会规格Korean StandardAISI 美国钢铁协会规格America Iron and Steel InstituteSAE 美国汽车技术者协会规格Society of Automative EngineersASTM 美国材料试验协会规格American Society for Testing and MaterialAWS 美国焊接协会规格American Welding SocietyASME 美国机械技术者协会规格American Society of Mechanical EngineersBS 英国标准规格British StandardDIN 德国标准规格Deutsch Industria NormenCAS 加拿大标准规格Canadian Standard AssociatoinAPI 美国石油协会规格American Petroleum AssociationKR 韩国船舶协会规格Korean Resister of ShippingNK 日本省事协会规格Hihon Kanji KokiLR 英国船舶协会规格Llouds Register of ShippingAB 美国舰艇协会规格American Bureau of ShippingJIS 日本工业标准协会规格Japanese Standard316和316L不锈钢316和317不锈钢(317不锈钢的性能见后)是含钼不锈钢种。

317不锈钢中的钼含量略高明于316不锈钢.由于钢中钼,该钢种总的性能优于310和304不锈钢,高温条件下,当硫酸的浓度低于15%和高于85%时,316不锈钢具有广泛的用途。

316不锈钢还具有良好的而氯化物侵蚀的性能,所以通常用于海洋环境。

316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退火和需要最大耐腐蚀性的用途中。

不锈钢是不是真的不生锈?

不锈钢是不是真的不生锈?

不锈钢永久不生锈?Stainless steel does not rust?众所周知,不锈钢具有良好的耐腐蚀性,外表美观等优点,在我们生活中的应用十分广泛,那么不锈钢是不是真的就不生锈呢?As we all know, stainless steel has good corrosion resistance, beautiful appearance, etc., it is widely used in our life, so stainless steel really does not rust?当不锈钢表面出现褐色锈斑(点)的时候,人们大感惊奇:认为“不锈钢是不生锈的,生锈就不是不锈钢了,可能是钢质出现了问题”。

其实,这是对不锈钢的缺乏了解。

不锈钢在一定的条件下也会生锈的。

When the stainless steel surface of brown rust (point), people great surprise: that "Stainless steel is not rust, the rust is not stainless steel, May be there was a problem in steel." In fact, this is a lack of understanding for stainless steel. Stainless steel will rust under certain conditions.不锈钢是靠其表面形成的一层极薄而坚固细密的稳定的氧化膜(防护膜),防止氧原子的继续渗入、继续氧化,而获得抗锈蚀的能力。

但其抗腐蚀能力的大小是随其钢质本身化学组成、加互状态、使用条件及环境介质而改变的。

如在干燥的室内环境中使用430不锈钢效果相当好,它具有绝对优良的抗锈蚀能力,但将它移到海滨地区,在含有大量盐份的海雾中,很快就会生锈了;而316不锈钢则表现良好。

金属材料及热处理工艺常用基础英语词汇翻译对照

金属材料及热处理工艺常用基础英语词汇翻译对照
不锈钢材及耐热钢材标准对照表 StainlessHeat-Resisting Steels
不锈钢的磁性 Magnetic Property & Stainless Steel
不锈钢的定义 Definition of Stainless Steel
不锈钢基层金属 Stainless Steel as Base Metal
纯铁体 Ferrite
磁场 Magnetic Field
磁畴 Magnetic domain
磁粉探伤法 Magnetic particle inspection
磁化率 Magnetic Susceptibility (Xm)
磁矩 magnetic moment
磁力 Magnetic
镀铝(硅)钢片 – 日工标准(JIS G3314) Hot-aluminum-coated sheetscoils to JIS G 3314
镀铝(硅)钢片及其它种类钢片的抗腐蚀性能比较 Comparsion of various resistance of aluminized steel & other kinds of steel
比较抗磁体、顺磁体及铁磁体 Comparison of Diamagnetism, Paramagnetic & Ferromagnetism
比热 Specific Heat
比重 Specific gravity & specific density
边缘处理 Edge Finish
电器用的硅 [硅] 钢片之分类 Classification of Silicon Steel Sheet for Electrical Use

stainless steel

stainless steel


很好
一般情況沒有;拉 伸後也不明 顯
一般
食物貯存,工 程零件
不锈钢Stainless Steel
不锈钢Stainless Steel
編號
名稱
延展性
抗侵蝕
可磁性
硬度
應用
420 高碳不銹鋼(鐵)
一般
一般
明顯
较高(热处理) 刀具, 剪刀
18-0
430 低碳不銹鋼(鐵)
一般
一般
明顯
稍高
叉,匙,雪糕 , , 鏟
18-8
304 不鏽鋼


一般情況沒有;拉 伸後有弱磁
一般
叉,匙,廚櫃
18-10
316 不鏽鋼
不锈钢Stainless Steel
马氏体不锈钢。(Martensitic stainless steel)
它和铁素体不锈钢的级别很相似,但含碳量高。常用的有“410”和“420” 这种不锈钢通过热处理变成强度高,硬度大和防磨损。 (剃须刀片和耐腐蚀轴承是用马氏体不锈钢造成) 缺点:脆性大,难以成型和焊接(有磁性)
淀积(脱溶)硬化不锈钢通过添加铜等元素能够使用热处理达到高刚度和强度。 其耐腐蚀性能比马氏体不锈钢强,不如304。 “630”-水泵轴蕊,齿轮和日益需求的太空工业,一般用于航天和国防工业, 17-4PH是典型钢种。
不锈钢Stainless Steel
抛光(打磨)于不锈钢是很普遍的。 抛光处理的效果有: ---镜光 ---沙光 ---喷沙,刷纹,电解抛光。 用途广泛:
不锈钢Stainless Steel 不锈钢有众多不同级别,绝不少于100种。各级别都有不同合成物。这 些合成物决定了防腐蚀和其他特性如强度。 最为通用的级别如下:

Stainless Steel不锈钢基础知识

Stainless Steel不锈钢基础知识

Type 301(UNS Designation S30100)301S3010017Cr7Ni 6ASTM301ASTM A167A666301188CrNi304304L3011550°F840°C 1600°F 871°C100010mg /cm 1600°F2Melting Range 2550-2590°F (1399-1421°C)Density0.29Ib/in 3(8.03g/cm 3)Specific Gravity 8.03Modulus of Elasticity in Tension28x 106psi (193GPa)**In the cold worked condition,the modulus is lowered.Electrical Resistivity28.026.024.022.020.018.016.014.012.010.08.06.04.02.001020304050607080Figure1-Magnetic Permeability%COLD REDUCTIONABSince the expansion coefficient is higher than thatof many other metals and alloys,this characteristicshould be considered in the design of equipmentinvolving Type301and other materials of construction.301200H 1.021ASTM A167301ASTM A167A66610203040506070Figure 2-Cold Rolled Properties%COLD REDUCTION240220200180160140120100806040201008060402000.001.002.003.004.005Figure 3-Stress Strain CurvesSTRAIN,IN/IN.80706050403020100.001.002.003.004.005.006.007ANNEALED1/4HARD230131/43013017001000°F371538°C5530123301700800°F30118845301301800900100011001200130014001500160017001800Figure 4-Stress Rupture StrengthTEMPERATURE °F3632282420161284010,000HR.1,000HR.100,000HR.Stress Rupture StrengthAnnealed 18-8Chromium-Nickel SteelsCreep Strength Annealed 18-8Chromium-NickelSteels800900100011001200130014001500160017001800Figure 5-Creep StrengthTEMPERATURE °F363228242016128400.0001PERCENTPER HR.0.00001PERCENT PER HR.453013013045301:20002200°F(10931204°C):1700°F(927°C)18502050°F(10101121°C)3016001500°F427816°CäTypes 302(S30200),304(S30400),304L (S30403),305(S30500)188Cr-Ni1234567891/3304304L302305188304304L302304AOD C304L305ASTM A240he ASTM SA240*Autogenous weld on base metal sample.**Types 302and 305exhibit similar performance.ASME 198********°F816°C304L 850°F454°C30230518Cr 8Ni1884C304LC800°F427°C1500°F4816°CCCCC304LDensity:0.285lb/in 3(7.90g/cm 3)Modulus of Elasticity in Tension:29x 106psi (200GPa)Linear Coefficient of Thermal Expansion:Thermal Conductivity:The overall heat transfer coefficient of metals is determined by factors in addition to the thermal conductivity of the metal.The ability of the 18-8stainless grades to maintain clean surfaces often allows better heat transfer than other metals having higher thermal conductivity.Consult the Allegheny Ludlum Technical Center (724-226-6300)for further information.Specific Heat:The 18-8alloys are generally non-magnetic in the annealed condition with magnetic permeability values typically less than 1.02at 200H.As illustrated below,permeability values will vary with composition and will increase with cold work.Type 305with the highest nickel content is the most stable of these austenitic alloys and will have the lowest permeability when cold worked.The following data are illustrative:305302304304L100035302304304L30512CC304C302304304L30518502050°F10101121°C8001500°F427816°C12D#2B#2D2D1# 2D2BA#In Section II,Part D of the ASME Boiler and Pressure Vessel Code,Type304is assigned allowable stresses for a variety of product forms to maximum use tem-peratures of1500°F(816°C).Type304L coverage includes fewer product forms with lower allowable stresses to maximum use temperature of800°F (426°C)while Types302and305have very limited coverage.Types 316(S31600),316L (S31603),317(S31700),317L (S31703)Cr-Ni30431631731734Mo316317316317Mo Cr-Ni188MoMoCr-Ni316317Cr-Ni 120°F49°C3163175100°F(38°C)Mo1General Corrosion in Boiling SolutionsMo 316317317CrMo3163177/1611.1mm316L317L316317CC 0.038001500°F427816°C 316L317L C3163178001500°F427816°C11001500°F593816°FIndicesPitting and Crevice CorrosionMelting Range:2540-2630°F (1390-1440°C)Density:0.29lb/in 3(8.027g/cm 3)Modulus of Elasticity in Tension:29x 106psi (200Gpa)Modulus of Shear:11.9x 106psi (82Gpa)Cr-Ni-Mo 16001650°F871899°CMo Cr-Ni 316317316L317L200H1.02316317C Cr Ni Mo810027.655.282.7110.3137.9165.5193.1220.6248.2Temperature,o F538982Temperature,o CCREEP STRENGTH10001200140016000Temperature,o F649760872982RUPTURE STRENGTHTemperature,o C27.655.282.7110.3137.9165.5193.1220.6248.2180048121620242832365380T316T316316317Cr-Ni931631719752150°F10801175°C1975°F1080°C2150°F1175°C 33163178001500°F427816°C31631735316317Cr-Ni3163173510410420425440ACrC Cr18001950°F982 1066°C/C4100.15440A0.60-0.75/Cr CCrCr C410420C410HC420HC Types410,420, 425Mod,and440A 440A440C*A higher carbon version of Type410is also available called Type410HC(nominal0.21%C). **A higher carbon version of Type420is also available called Type420HC(nominal0.44%C).Typical compositions,annealed mechanical propertiesand hardening response for the various AlleghenyLudlum martensitic stainless steels are presentedbelow.*Fine blanking quality**HC means higher carbon version of standard gradeData shown below give typical mechanical properties of martensitic stainless steels obtained with various drawing temperatures after austenitizing at 1800-1950°F (982-1066°C)followed by an oil quench and a two hour temper.Heat-to-heat variations can be anticipated.Typical Mechanical Properties of Heat Treated Martensitic Stainless SteelsModulus of Elasticity29x 106psi (200GPa)*See Heat Treatment section for annealing information4101800°F982°C420425440A 1099°F1038°C60400°F204°C 1200°F649°C2900°F 482°CPhysical propertiesCorrosion resistance410420425440A*Hardened martensitic grades were tested after tempering at400°F(204°C).*Hardened Martensitic grades were tested after tempering at400°F(204°C).Test samples had ground surfaces.430409425 440A430CrCr MoFabricating propertiesmachining608018.3 24.4m/min.1020410420425440A440A C Cr(Surface preparation)Structure[18001950°F(982-1066°C)]C C440A410CCr41042042520002200°F1093 1204°C440A1900 2200°F10381204°C420425440A15501650°F843 899°C4101500 1550°F815842°C11410126 192HB C420425440A4101800°F982°C420 425440A1850 1950°F10101066°C100°F73°C 400500°F204206°C300600°F149 316°F。

不锈钢基础知识(英文)

不锈钢基础知识(英文)

WHAT IS STAINLESS STEEL? Stainless steel is a generic term for a group of corrosion resistant steels containing a minimum of 10.5% of chromium. Varying additions of nickel, molybdenum, titanium, niobium and other elements may also be present.Corrosion resistanceAll stainless steels have a high resistance to corrosion. This remarkable resistance to attack is due to the naturally occurring chromium-rich oxide film present on the surface of the steel. Although extremely thin, this invisible, inert and therefore passive film is tightly adherent to the metal and extremely protective in a wide range of corrosion media. The film is rapidly self-repairing in the presence of oxygen and damage by abrasion, cutting or machining is instantaneously repaired (see Figures 1, 2and 3).Types of stainless steelThere are five basic categories of stainless steel: austenitic, ferritic, duplex, martensitic and precipitation hardening. The austeniticgrades are non-magnetic and in addition tochromium, typically at the 18% level,contain nickel (which improves fabricationand corrosion resistance) and are the mostwidely used group of stainless steels. Theferritic grades are magnetic, have a lowcarbon content and contain chromium asthe main alloying element, typically at the13% and 17% levels. Duplex stainless steelshave a mixed ferritic/ austenitic structure.Chromium content varies from 18-28% andnickel from 4.5-8%. Duplex grades findapplication particularly where chlorides arepresent. The martensitic grades are magneticcontaining typically 12% chromium and amoderate carbon content; they arehardenable by quenching and tempering likeplain carbon steels and find applicationmainly in cutlery manufacture, aerospaceand general engineering. Precipitationhardening steels have chromium content at17% typically with additions of nickel,copper and niobium. Precipitation hardeningstainless steels have a minimum of 17%chromium and contain other elements thatcan provide strengthening through aSTAINLESS STEEL NAMING SYSTEMSOver the years various Standards Associations have introduced naming systems for stainless steels. Although the types of steels are basically the same in each standard, minor variations can occur so that compliance with one Standard may not give an exact complaince with another. For this reason equivalents quoted for a particular grade of steel may be only approximate and readers must refer to the original Standard for confirmation of any equivalent steels.These training notes are generally based on the common or, for proprietary grades, the supplier’s name. Here is a list of the more common Standards used to identify stainless steel types:China GB 1220, GB1221Euronorm EN10088ISO TR 15510Japan JIS G4304Korea KSD3698USA ASTM A240This list is only indicative - there are many related Standards for various product forms.capable of achieving very high strengths with proof stresses ranging in the 1,000-1,500MPa range depending on the type and the actual heat treatment.Austenitic and ferritic grades account for approximately 95% of stainless steel applications (see Figure 4).Other propertiesThere is a wide range of stainless steels with other attractive properties to complement their corrosion resistance – the austenitic steels provide an example.Most austenitic grades have excellent formability and impact strength. High creep strength and scaling resistance are also reasons for choosing this type of steel. The common grades can be used up to around 600°C or slightly higher if scaling resistance is the only consideration. More highly alloyed grades can raise this temperature appreciably with many furnaces using higher chromium and nickel grades up to 1,100°C. They perform well at cryogenic temperatures, retaining excellent ductility and impact properties. Cold working and forming processes considerably increase the strength and hardness of austenitic grades, a property exploited in springs and structural components. The addition of nitrogen to austenitic and duplex grades increases strength and hardness which are retained after welding or heat treatment. Selection of the correct grade is thus important to give the best combination of properties for the application.AUSTENITIC STAINLESS STEELSWhen nickel (Ni) is added to stainless steelin sufficient quantities the crystal structure ischanged from ferrite to austenite, hence theterm austenitic stainless steels. The basiccomposition of the austenitic stainless steelsis 18% Cr and 8% Ni. This is Grade 304,sometimes loosely referred to as 18/8 or18/10. If additional corrosion resistance isrequired 2-3% molybdenum (Mo) is added,termed Grade 316. The carbon content ofalmost all stainless steels is low (often 0.08%C max.). There are also ‘low carbon’or ‘L’grades (0.03% C max) and stabilised gradesalloyed with titanium (Ti) or niobium (Nb) toprevent a form of corrosion occurring in theregion next to the weld in welded structures.Note, stainless steel “grades” tend to bereferred to as generic types, based on theAmerican AISI numbering system. Thesegrades, or more accurately, “types”, are lessspecific than the European grade numbers,but are useful in identifying the steels. Forexample the 316 “type” covers threeEuropean grade numbers, 1.4401, 1.4436and 1.4435 and the 304L type covers both1.4306 and 1.4307 grade numbers.The common grade designations include304, 304L, 321, 316, 316L, 316Ti, CF3M,CF8M, N08904 and S31254.Basic properties of austenitic stainless steelsinclude:•excellent corrosion resistance•excellent cleanability and hygiene factor•fabricated and formed with ease•excellent weldability•hardened by cold work, not by heattreatment•usually used in the fully annealedcondition in which they are essentiallynon-magnetic•the ability to handle both extremely low(cryogenic) temperatures and, dependingon the load and permissible distortion,higher service temperatures of around600°C – or even higher if scalingresistance is the only consideration.Common uses and applications cover anextremely wide scope such as holloware,builders hardware, architectural applications,abattoir, beer and beverage production andfood processing equipment (which requirethe cleanability and hygienic corrosionresistance properties). They are used at verylow (cryogenic) temperatures for the storageof liquefied gases and at high temperaturesfor heat exchangers, pollution controlwet (aqueous) corrosion resistance andweldability make them ideal for fabricatedcomponents such as pipework, tanks, processand pressure vessels in the chemical,petrochemical, petroleum, mineral extraction,pulp and paper industries, railway carriagesand goods wagons.Austenitic stainless steels are available asplates, sheet and coil, tube and pipe (bothseamless and welded), fittings, flanges,fasteners, bar, rod, wire, forgings andcastings. Common austenitic stainless gradesare listed in Table 1, p1.LimitationsAustenitic stainless steels have somelimitations:•They are only suitable for lowconcentrations of reducing acids orreducing acid mixtures at lowertemperatures. Reducing acids break downthe oxide film and this leads to thegeneral corrosion of these steels. (SeeSuper Austenitic Stainless Steels sectionbelow.)•Halide ions, especially the chloride ion(Cl-), have the ability to break down thepassive film on austenitic stainless steels.This is often a highly localised form ofattack and leads to pitting corrosion withvery little or negligible overall metal loss.Another form of chloride inducedcorrosion is stress corrosion cracking(SCC) which may occur above 60°C.Due to these limitations, other stainlesssteels have been developed with greaterresistance to the above corrosive conditions.Heat resisting austeniticstainless steelsHigh temperature alloys are largely based onalloys containing chromium because of theresistance the chromium oxide film provides.The basic high temperature alloys are simpleiron-chromium alloys but the possibility ofmetallurgical changes giving undesirablestructures requires the addition of otherelements – the principal one of these beingnickel with some reaching up to 80% nickel.This range of high nickel-chromium alloyscan give oxidation resistance service underappreciable loading but at a relatively highcost. Cost savings are introduced byreplacing some of the nickel with iron – thisgroup of alloys, at the lower limit of alloycontent includes the stainless steels. Theselection of which alloy to use – a stainlesssteel or a high nickel alloy – depends on theFigure 4:Categories of stainless steelThe most common heat resisting stainless steel is the 310 group of alloys with around 25% chromium and 20% nickel. These resist scaling up to around 1,100°C and are frequently used for the less demanding zones of high temperature furnaces.Basic properties include:•resistance to oxidation (scaling) at hightemperatures•good high temperature strength•S30815 has high resistance to sigmaphase precipitationCommon uses include applications attemperatures up to 950°-1,150°C, such asfurnace parts, radiant tubes and muffle liners.Cast components can often outperformsimilar wrought grades. Common grades areHK-40 and the HP-modified range.All grades optimised for high temperature applications have high carbon contents. They are likely to be sensitised during welding or service, which significantly reduces subsequent ambient temperature corrosion resistance.Super austenitic stainless alloys They are highly alloyed materials which may be considered as an extension to the austenitic stainless steels. They were developed for higher corrosion resistance, particularly to overcome the pitting and stress corrosion cracking limitations of standard austenitic stainless steels.Their basic composition is such that the alloy content exceeds approximately 50%. The alloy additions typically include chromium in the range of 20-27%, nickel in the range of 25-31%, relatively high molybdenum content of 3-6%, and a low carbon content of less than0.03%. These higher contents give these alloysa markedly increased corrosion resistance to reducing acids at higher temperatures and concentrations and a high resistance to pitting corrosion and stress corrosion cracking in warm or hot chloride media.Basic properties include:•same as standard austenitic stainless steels – non-magnetic, cryogenicproperties, high work hardening rate •readily fabricated•weldable even in thick material Common uses include applications in the chemical and petrochemical industries where more severe corrosive conditions ofconcentration, temperature and contaminantprevail, which make standard austeniticstainless steels unsuitable.They are available in forms such as thickersheet, plate, bar, tube, castings and pipe. Theyare generally available as proprietary alloys.FERRITIC STAINLESS STEELSThese are nickel-free stainless steels. Theyhave a varying chromium (Cr) content of 12-18%, but a lower carbon (C) content than themartensitics. (A special heat resistant gradecontains 26% Cr.)The common specifications are 430, 409 andweldable 12% Cr steels.Basic properties of ferritic stainless steels:•moderate to good corrosion resistancewhich increases with the chromiumcontent•magnetic, non-hardenable and alwaysused in the annealed condition•weldability is poor which generally limitstheir applications as welded componentsto thin gauge material•more difficult to form (i.e. bend, draw,etc) than the austeniticsCommon uses include builders’hardware,domestic appliances (dishwashers, clothesdryers) and architectural and automotivetrim. Thick gauge applications include liners,decking plates, spillways, chain conveyors,dust and fume extractors.Due to their predominant use as thin gaugematerial they are readily available in theform of sheet and coil. They are alsoavailable in the form of plate (mainly grade3CR12/5CR12) and in welded tube (mainlygrade 409).As a result of the poor weldability exhibitedby ferritic steels, Columbus Stainlessdeveloped 3CR12, a weldable ferritic typesteel in thickness of up to 30mm. Availableas thicker sheet, plate, some sections andwelded tube. Common ferritic stainlessgrades are listed in Table 2.Super ferritic proprietary alloys with highchromium and molybdenum contents areavailable with extremely high resistance topitting and stress corrosion cracking. Theseare generally designated by proprietarynames such as ‘E-Brite’, ‘Sea-Cure’and‘AL29-4C’.DUPLEX STAINLESS STEELSDuplex stainless steels have a structure ofapproximately equal amounts of ferrite andaustenite and, therefore, may be referred toas ferritic-austenitic stainless steels. Thechromium content varies from 18-28%. Thenickel content of 4.5-8% is insufficient todevelop a fully austenitic crystal structure.Most grades contain molybdenum in therange 2.5-4% plus a small nitrogen additionwhich enhances both strength and pittingresistance.Basic properties of the duplex stainless steels include:• a mixed ferritic-austenitic, i.e. duplex,crystal structure which results in a high resistance to stress corrosion cracking •an increased level of passivity due to higher Cr, Mo and N•good weldability and formability •higher tensile and yield strengths (compared with austenitic and ferritic stainless steels)Common uses include applications such as heat exchanger panels and tubes, materials handling equipment, tanks and vessels where high chloride concentrations are present, e.g.sea water cooling, desalination, foodpickling plants and aggressive mine waters.The forms available are sheet, plate,castings, bar, wire, tube and pipe. Duplex stainless steels are often available asproprietary alloys. Common duplex grades are listed in Table 3.MARTENSITIC STAINLESS STEELSMartensitic stainless steels are the first branch of the plain chromium stainless steels. These were the first stainless steels industrially developed (as stainless steel cutlery). They have a relatively high carbon (C) content and a chromium content of 12-18% Cr.The common specifications are 410, 420,431 and CA-6NM.Basic properties of the martensitic stainless steels include:•moderate corrosion resistance •hardenable by heat treatment and therefore high strength and hardness levels can be developed •very limited weldabilityCommon uses include applications which need strength and hardness such as knife blades, surgical instruments, fasteners,spindles, nozzles, shafts, impellers and springs.Generally, martensitic stainless steels are available in forms such as bar, strip and castings. Common martensitic stainless steels are listed in Table 4.* Compatible or equivalent grades also available in castings + Proprietary alloy names applyPRECIPITATION HARDENING STAINLESS STEELSPrecipitation hardening stainless steels have their compositions formulated so that they can be supplied in the solution treated condition, in which they are machinable. Following fabrication operations, these steels can be hardened by a single ‘ageing’treatment. This is at a fairly low temperature and can, therefore, be done without distorting the product. These grades are therefore ideal for the production of long, straight high strength shafts for pumps and also valve spindles.The most common grade is 17-4PH (S17400 or ‘630’or 1.4542) – a martensitic precipitation hardening grade. High strength wire can be produced in grade 17-7PH(S17700 or ‘631’or 1.4568).The family of precipitation hardeningstainless steels includes martensitic, semi-austenitic and austenitic types. The 17-4type, referred to above is a martensitic type.It has the approximate composition Cr: 17%;Ni: 4%; Cu: 4% and 0.3% Nb.Another reasonably common type is S66286,frequently called ‘286’or ‘A286’. Thisvariety is austenitic, although there can betransformation to martensite by usingsubzero cooling after the annealing process.The steels can be welded but this,necessarily, requires attention to the heattreatment because of possible changes thatcan occur during welding.CONCLUSIONStainless steels can be logically classifiedinto austenitic, ferritic, duplex, martensiticand precipitation hardening groups.The choice of a specific grade is determinedby the application and the conditions underwhich it will operate. Nearly all end-useapplications can be covered by austenitic orferritic types. Duplex and other stainlesssteels fulfil a necessary role where theirproperties are essential.Stainless steels are not indestructiblematerials, nor are they immune to allcorrosive attack. With careful selection andgood fabrication, however, the majority orcorrosive conditions can be handled by oneof the family of stainless steels. When otherproperties are considered, a wide variety ofother applications can be handled by theseexciting and versatile materials.Edition 1© 2002 Australian Stainless Steel Development AssociationAcknowledgment:The contribution of the Australian Stainless Steel Development Association’s Technical and Education Committees in preparing this course is acknowledged with thanks. Some material in this course originated from the Southern Africa Stainless Steel Development Association.Disclaimer:The technical data and views expressed in this publication are for the general information of interested persons and should not be relied upon in specific applications without first securing competent advice. Whilst all care is taken to ensure that the information contained herein is accurate。

nfs 不锈钢标准

nfs 不锈钢标准

nfs 不锈钢标准英文回答:NFS (National Fire Protection Association) stainless steel standards are a set of guidelines and requirementsfor the quality and performance of stainless steel materials used in various industries. These standards ensure that stainless steel products meet certain criteria in terms of composition, mechanical properties, corrosion resistance, and other factors.The NFS stainless steel standards cover a wide range of applications, including construction, food processing, pharmaceuticals, and transportation. For example, in the construction industry, stainless steel is often used for structural components, such as beams and columns, due toits high strength and corrosion resistance. In the food processing industry, stainless steel is used for equipment and utensils because it is easy to clean and does not react with food. In the pharmaceutical industry, stainless steelis used for storage tanks and piping systems to prevent contamination and ensure the integrity of the products.One of the key requirements of NFS stainless steel standards is the composition of the stainless steel alloy. The standards specify the minimum and maximum percentagesof various elements, such as chromium, nickel, and molybdenum, that should be present in the alloy. These elements are responsible for the corrosion resistance and other properties of stainless steel. For example, chromium forms a protective oxide layer on the surface of stainless steel, which helps to prevent corrosion.Another important requirement is the mechanical properties of the stainless steel. The standards specifythe minimum values for properties such as yield strength, tensile strength, and elongation. These propertiesdetermine the strength and ductility of the stainless steel, which are important for its performance in different applications. For example, in the transportation industry, stainless steel is used for vehicle components such as exhaust systems and chassis, where high strength anddurability are required.Corrosion resistance is also a critical aspect of NFS stainless steel standards. Stainless steel is known for its excellent resistance to corrosion, but the standards ensure that the material meets certain criteria for different environments. For example, stainless steel used in marine applications should have higher resistance to saltwater corrosion compared to stainless steel used in indoor applications. The standards specify the testing methods and acceptance criteria for evaluating the corrosion resistance of stainless steel.In addition to composition, mechanical properties, and corrosion resistance, NFS stainless steel standards also cover other aspects such as surface finish, dimensional tolerances, and heat treatment. These requirements ensure that the stainless steel products meet the desired quality and performance standards.中文回答:NFS(全国消防协会)不锈钢标准是一套关于不锈钢材料质量和性能的指南和要求,适用于各个行业。

不锈钢 fda测试要求

不锈钢 fda测试要求

不锈钢 FDA测试要求1. 引言不锈钢是一种广泛应用于食品加工和医疗器械领域的材料。

为了确保不锈钢材料的安全性和可靠性,FDA(美国食品药品监督管理局)制定了一系列测试要求,以评估不锈钢材料的适用性。

本文将详细探讨不锈钢FDA测试要求的相关内容。

2. 不锈钢的定义和分类不锈钢是一种具有抗腐蚀性能的合金材料,主要由铁、铬、镍等元素组成。

根据不同的成分和组织结构,不锈钢可以分为多种不同的类型,如奥氏体不锈钢、马氏体不锈钢和铁素体不锈钢等。

3. FDA对不锈钢的测试要求FDA要求不锈钢材料在接触食品或药物时必须符合一系列的测试要求,以确保材料的安全性和稳定性。

以下是FDA对不锈钢的测试要求的详细说明:3.1 生物相容性测试不锈钢材料必须通过生物相容性测试,以评估其对人体组织的刺激性和毒性。

常见的生物相容性测试方法包括细胞毒性测试、皮肤刺激性测试和致敏性测试等。

3.2 化学成分测试不锈钢材料必须通过化学成分测试,以确定其成分是否符合FDA的要求。

化学成分测试通常包括元素分析、碳含量测试和氧含量测试等。

3.3 腐蚀性测试不锈钢材料必须通过腐蚀性测试,以评估其在接触食品或药物时的耐腐蚀性能。

常见的腐蚀性测试方法包括盐雾测试、酸碱性测试和电化学腐蚀测试等。

3.4 物理性能测试不锈钢材料必须通过物理性能测试,以评估其力学性能和物理特性。

常见的物理性能测试方法包括拉伸测试、硬度测试和冲击测试等。

3.5 清洁性测试不锈钢材料必须通过清洁性测试,以评估其表面的清洁性和易清洁性。

清洁性测试通常包括表面粗糙度测试和清洁剂测试等。

4. 不锈钢的应用不锈钢材料由于其优异的耐腐蚀性能和生物相容性,广泛应用于食品加工和医疗器械领域。

以下是不锈钢在这些领域中的主要应用:4.1 食品加工不锈钢材料常用于食品加工设备的制造,如不锈钢储存罐、不锈钢管道和不锈钢搅拌器等。

其耐腐蚀性和易清洁性能使得食品加工过程更加安全和卫生。

4.2 医疗器械不锈钢材料广泛应用于医疗器械的制造,如手术器械、植入物和医用针具等。

不锈钢管壁厚度的ISO标准

不锈钢管壁厚度的ISO标准

不锈钢管壁厚度的ISO标准不锈钢管壁厚度的ISO标准对于不锈钢管道在各种领域的应用来说,壁厚是一个至关重要的参数。

合适的壁厚设计可以确保管道的强度和稳定性,同时也对使用寿命和性能产生重要影响。

为了提供统一的参考和指导,国际标准化组织(ISO)制定了不锈钢管壁厚度的标准。

ISO标准为不锈钢管道壁厚设定了范围和公差要求,旨在确保在各种工程和应用中都能满足安全和设计要求。

以下是我针对不锈钢管壁厚度的ISO标准进行的深入研究和评估。

1. ISO标准介绍(ISO 1127:1992)ISO 1127:1992是不锈钢管道尺寸、公差和标记的国际标准。

在这个标准中,不锈钢管道的壁厚定义为管道内外直径和公称壁厚的差值。

该标准涵盖了多种不锈钢管材料和尺寸的要求,包括无缝和焊接管道。

2. 壁厚公差ISO标准中规定了不同管道尺寸和壁厚等级的公差要求。

公差是指允许的壁厚偏差范围,它考虑了制造过程中的不可避免的误差和工程应用中的需求。

根据标准的要求,公差可以被视为管道壁厚的正负偏差。

3. 壁厚的选用原则在选择不锈钢管道的壁厚时,需根据工程应用和设计要求来确定。

一般来说,壁厚的选择应该满足以下几个关键原则:a. 材料选择:根据工作环境的腐蚀性和耐磨性要求,选择合适的不锈钢材料。

b. 管道直径:壁厚的选择受限于管道直径,必须考虑到管道的强度和稳定性。

c. 环境压力和温度:高压或高温环境下,壁厚需要更大,以承受额外的应力和热膨胀。

d. 长期使用要求:根据管道预期的使用寿命,选择适当的壁厚以确保管道的可靠性和持久性。

4. ISO标准的应用ISO标准适用于各种工程领域,包括化工、石油和天然气、食品和饮料、制药以及建筑等。

在这些领域中,不锈钢管道被广泛用于输送液体、气体和固体等不同介质。

5. 观点和理解在我对不锈钢管壁厚度的ISO标准进行研究后,我有以下观点和理解: a. ISO标准是确保不锈钢管道壁厚符合国际标准化要求的重要文件,对于工程和设计有着重要的指导作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11, 12, 13, 14
* 再生成分比例受到可用废钢的限制
10
不锈钢的可持续性
不锈钢再生成分比例
不锈钢的可持续性
11
不锈钢的温室气体排放
3.81 吨CO2/ 每吨不锈钢
(16)
(15)
排放分解为: • 原材料:70 % • 发电: 17 % • 炼钢:9%
(17)
注:没有考虑镍生铁生产的镍的路线,因为镍的数据可能要高三倍。 中国是目前唯一使用镍生铁的国家。
不锈钢的可持续性
3
定义
安全指标: 失时工伤:失时工伤率是指每百万工时的失时工伤数量
(1)
循环指标: 循环率是指有多少报废(EOL)材料被回收,并进入再利用缓解 (5) (而非被垃圾掩埋)。 再生成分比例的定义是,产品中在消费者使用前后的再生材料 (6) 重量占整体重量的比例。 固废负担(SWB):包括矿废、尾矿、矿渣及电厂粉煤灰
12
不锈钢的可持续性
一次能源需求
18
* * 再生成分比例受到可用废钢的限制
13
不锈钢的可持续性
金属生产从“摇篮到大门”的环境影响 19
金属 不锈钢 钢铁 铝 铜 工艺 电炉和氩氧脱碳 一体化方案(高炉与转炉) 拜耳精炼,霍尔 赫劳尔特 电解炼铝法 冶炼/转换和电精炼 堆浸SX/EW
GER (MJ/kg) GWP AP (kg (kg CO2e/kg) SO2e/kg) SWB (kg/kg)
金属
不锈钢的可持续性
5
回收前
回收之后
废料
下循环比废料好,但相对于循环经济来说,还需改进 (46,47)
回收报废 金属制造 新金属制 品是最短 的回收线 路
循环经济就是资源循环的闭环连接,模拟我们组织社会生产的自然生态 系统。
不锈钢的可持续性
6
可持续性
“可持续性关注的产品的整个周期,从原材料采集,规划、设计、 9 建设和运营,到最终报废及废物管理”。 (Rossi, B. 2012)
不锈钢的可持续性
19
不锈钢产品在报废时,大部分可以被循环利 23-25 用
主要应用领域 不锈钢产品在 制造业的应用 16% 21% 31% 6% 6% 20% 100% 平均寿命 (按年计) 50 14 25 15 15 22 用于掩埋 合计 建筑 交通 工业机械 家用电器 电子品 金属制品 合计: 8% 13% 8% 18% 40% 40% 18% 92% 87% 92% 82% 60% 60% 82% 回收利用 作为不锈钢 95% 85% 95% 95% 95% 80% 90%
不锈钢的可持续性
不锈钢板使用50年后,会变脏并有划痕。在大堂翻修 的过程中,不锈钢板被查下来清理、表面进行了再处 理,被重新利用起来。
18
不锈钢的可持续性
材料效率
再循环: 不锈钢可以被100%再循环,82%的回收废钢被再利用。 “零”浪费的不锈钢生产 炼钢的主要副产品和废物是钢渣和粉尘。例如:钢渣可以制 成沥青用于道路建设。
不锈钢的可持续性
7
不锈钢的可持续性:
1. 环境 2. 社会 3. 经济
不锈钢的可持续性
8
1. 环境 生产 使用 回收
白色家电和其他电器 金属行业与机械 交通 视频加工与厨房用品 建筑与施工
15 年 18 年 23 年 23 年 50+ 年
(10)
不锈钢的可持续性
9
温室气体排放与再生成分比例
各种金属从“摇篮到大门”的整体 能源需求量
没有循环利用
不锈钢的可持续性
15
在提供类似功能和服务的前提下,各种金属的用量 21 并不相同 例如:
三种不同的墙饰面对环境的潜在影响。
材料 高压板,如“千思”牌 一般粉刷 不锈钢0.5mm 不锈钢 0.8 mm
PED (MJ/m2) GWP (Kg CO2-eq. /m2) 报废(EOL)
建筑/土木工程发言稿
第十一章 不锈钢的可持续性
不锈钢的可持续性
1
定义
温室气体(GHG):二氧化碳当量排放吨/吨钢
(1)
全球变暖潜势(GWP ):没有对各温室气体(GHG)与二氧化碳 (7) 在大气中的单位集热能力进行比较。例如,100年期甲烷的 GWP(温室效应潜能值)是28。炼钢排放的主要温室气体是CO2. 初级能源消耗的GWP值(吉焦/吨)被称为能源强度。 生 产 一 吨 (1) 初级材料(例如钢) 的能耗 (8) 总能量需求(GER):生产一种产品需要的总能耗。 材料效率:粗钢生产中,没有做永久处理、填埋或焚烧的材料 (1) 量。
75 23 361 33 64
6.8 2.3 35.7 3.3 6.2
0.051 0.020 0.230 0.040 -
6.4 2.4 16.9 64 125
GER:总能量需求 潜在AP:酸化潜力
GWP: 全球变暖 SWB: 固废负担
不锈钢的可持续性
14
金属生产全周期“从摇篮到大门”的环境影 20 响
759.3 144.2 140.5 191.7
23.9 12.7 7.2 11.3
50% 再循环+ 50% 填埋 不能循环 RR = 95% RR = 95%
不锈钢的可持续性
16
材料效率
减少: 40%的不锈钢原材料用量,从而减少排放 再利用: 不锈钢的耐久性使其再利用非常重要。 例如:瓶子,马克杯,杯子,吸管……
不锈钢的可持续性
2
定义
生命周期清单法( LCI ):是一种结构化的、全面的、国际标 准化方法。这种方法将产品整个生命周期中相关的排放、资源 (3) 消耗,环境及健康影响,以及资源枯竭等因素进行量化。 生命周期成本法(LCC):一种评估资产整体成本效益的方法, (4) 包括购买、运营、维护及处置成本。 生命周期评估法( LCA ):一种量化辅助方法,也用于评估产 品及活动相关的环境负担及影响,包括从地球开采原材料,及 生命周期结束时的废物处置。该工具越来越多的被行业、政府 与环境机构所使用,用来辅助制定环境战略及材料选择的决策。
不锈钢的可持续性
4
指标点评:
循环指标没有考虑“下循环”
金 属在 质量不 损失前提 下可以循环利用。
非再可熔材料
纤维材料
由 于金 属键在 重新固化 后 得以 修复, 因此金属 原有的性能会得以恢复, 即 便经 过几次 循环周期 之 后。 这使得 金属在同 样 应用 中可以 不断被使 用。 相 比之 下, 大 多非金属 材 料的 性能在 循环之后 都有退化。 (45)
相关文档
最新文档