超声波局部放电检测法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2超声传感器
2.1超声传感器(ultrasonic sensor)的简介与原理
定义:利用超声波检测技术,将感受的被测量转换成可用输出信号的传感器。
简介:超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
因此超声波检测广泛应用在工业、国防、生物医学等方面。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。
超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。
超声波传感器的主要性能指标包括:
(1)工作频率。
工作频率就是压电晶片的共振频率。
当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。
(2)工作温度。
由于压电材料的居里点一般比较高,特别时诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不产生失效。
医疗用的超声探头的温度比较高,需要单独的制冷设备。
(3)灵敏度。
主要取决于制造晶片本身。
机电耦合系数大,灵敏度高;反之,灵敏度低。
结构与工作原理
人们能听到声音是由于物体振动产生的,它的频率在20HZ-20KHZ 范围内,超过20KHZ 称为超声波,低于20HZ的称为次声波。
常用的超声波频率为几十KHZ-几十MHZ。
超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。
在工业中应用主要采用纵向振荡。
超声波可以在气体、液体及固体中传播,其传播速度不同。
另外,它也有折射和反射现象,并且在传播过程中有衰减。
在空气中传播超声波,其频率较低,,一般为几十KHZ,而在固体、液体中则频率可用得较高。
在空气中衰减较快,而在液体及固体中传播,衰减较小,传播较远。
利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在通迅,医疗家电等各方面得到广泛应用。
超声传感器
超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。
电致伸缩的材料有锆钛酸铅(PZT)等。
压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。
有的超声波传感器既作发送,也能作接收。
这里仅介绍小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23-25KHZ及40-45KHZ。
这类传感器适用于测距、遥控、防盗等用途。
该种有T/R-40-60,T/R-40-12等(其中T表示发送,R表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计)。
另有一种密封式超声波传感器(MA40EI型)。
它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好。
超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。
由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。
发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测.而实际使用中,用发送传感器的陶瓷振子的也可以用做接收器传感器社的陶瓷振子。
控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
当电压作用于压电陶瓷时,就会随电压和频率的变化产生机械变形。
另一方面,当振动压电陶瓷时,则会产生一个电荷。
利用这一原理,当给由两片压电陶瓷或一片压电陶瓷和一个金属片构成的振动器,所谓叫双压电晶片元件,施加一个电信号时,就会因弯曲振动发射出超声波。
相反,当向双压电晶片元件施加超声振动时,就会产生一个电信号。
基于以上作用,便可以将压电陶瓷用作超声波传感器。
如超声波传感器,一个复合式振动器被灵活地固定在底座上。
该复合式振动器是谐振器以及,由一个金属片和一个压电陶瓷片组成的双压电晶片元件振动器的一个结合体。
谐振器呈喇叭形,目的是能有效地辐射由于振动而产生的超声波,并且可以有效地使超声波聚集在振动器的中央部位。
室外用途的超声波传感器必须具有良好的密封性,以便防止露水、雨水和灰尘的侵入。
压电陶瓷被固定在金属盒体的顶部内侧。
底座固定在盒体的开口端,并且使用树脂进行覆盖。
对应用于工业机器人的超声波传感器而言,要求其精确度要达到1mm,并且具有较强的超声波辐射。
利用常规双压电晶片元件振动器的弯曲振动,在频率高于70kHz的情况下,是不可能达到此目的的。
所以,在高频率探测中,必须使用垂直厚度振动模式的压电陶瓷。
在这种情况下,压电陶瓷的声阻抗与空气的匹配就变得十分重要。
压电陶瓷的声阻抗为
2.6×107kg/m2s,而空气的声阻抗为4.3×102kg/m2s。
5个幂的差异会导致在压电陶瓷振动辐射表面上的大量损失。
一种特殊材料粘附在压电陶瓷上,作为声匹配层,可实现与空气的声阻抗相匹配。
这种结构可以使超声波传感器在高达数百kHz频率的情况下,仍然能够正常工作。
超声波距离传感器技术原理与应用
超声波距离传感器可以广泛应用在物位(液位)监测,机器人防撞,各种超声波接近开关,以及防盗报警等相关领域,工作可靠,安装方便,防水型,发射夹角较小,灵敏度高,方便与工业显示仪表连接,也提供发射夹角较大的探头。
1、超声波测距仪:
超高能声波测距技术使超声波测距技术有了重大的突破,它不仅拓宽了超声波测距技术的应用场合(适用极恶劣的工作环境),而且使用智能调节技术,大大提高了超声波产品的可靠性及性能指标,让用户无后顾忧。
优秀的回波处理技术,5-50KHZ的超高强波频率使物位计最大量程可达到120米,适用介质温度为–20℃— +175℃。
智能的全自动调节发波频率,自动的温差补偿功能使其工作更加稳定可靠。
HpAWK系列产品还拥有灵活多变的工作方式(供电电源可为12VDC、24VDC、110VAC、 220VAC;二/三/四线制同一仪表中可随意组合。
它还拥有先进的远程GSM、CDMA、互联网调试功能,使得用户随时可以得到技术支持。
2.2超声波传感器在局部放电故障监测中的应用
目前对电气设备进行状态检测和故障诊断通常采用电气量测量法。
由于电气量所包含的故障信息一般性不明显、难以检测且无先兆性,使得准确地故障诊断十分困难。
实际上在电气设备故障前,尽管电气量还没有明显改变,设备尚能工作,但有些非电气量的变化信息(如各种气体的含量、温度、压力和机械变形等或者伴随故障出现的发声、发光、发热等)却包含了故障将要发生或者已经发生的信息。
因此,与电气量测量法相比,利用非电气量检测法对电气设备进行故障诊断更为有效。
结合长期从事电气设备故障诊断的研究,介绍了超声传感技术在电力系统电气设备故障诊断中的主要应用成果[4] 。
超声传感器结构及原理简介
超声检测技术涉及到超声波的发射和接收,这一功能主要由超声传感器来实现。
超声传感器主要由传感器外壳、压电晶片、前置电路、吸附用磁铁以及输出端子等组成,其结构如图1所示。
超声传感器结构
传感器的核心元件是压电晶片,一般采用锆钛酸铅压电陶瓷(PZT-5)。
这种压电晶片具有较高的机电耦合常数,能有效地发射和接收超声波。
超声传感器的原理是基于压电晶片的逆压电效应(承受电场时产生应力和应变)和压电效应(受到应力在材料中产生电场)。
用适当的发射电路可以将电能施加到压电晶片上使其作机械振动而发射超声波(逆压电效应);反之,超声波作用于传感器的压电晶片,由压电晶片将其转换成电信号(压电效应),再经前置电路中的带通滤波器滤波和放大器放大,对压电晶片输出的微弱电信号就近进行放大处理,以提高超声传感器的信噪比,同时有效地解决超声传感器与检测仪器信号匹配的问题。