中考数学压轴题----《反比例函数综合》例题讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学压轴题----《反比例函数综合》例题讲解
【例1】(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图像上.若BD∥y轴,点D的横坐标为3,则k1+k2=()
A.36B.18C.12D.9
【答案】B
【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:
∵四边形ABCD是正方形,
∴AE=BE=CE=DE,
设AE=BE=CE=DE=m,D(3,a),
∵BD∥y轴,
∴B(3,a+2m),A(3+m,a+m),
∵A,B都在反比例函数y=(k1>0)的图像上,
∴k1=3(a+2m)=(3+m)(a+m),
∵m≠0,
∴m=3﹣a,
∴B(3,6﹣a),
∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,
∴k1=3(6﹣a)=18﹣3a,k2=3a,
∴k1+k2=18﹣3a+3a=18;
故选:B
【变式1-1】(2021•鄂州)如图,点A是反比例函数y=(x>0)的图像上一点,过点A作AC⊥x轴于点C,AC交反比例函数y=(x>0)的图像于点B,点P是y轴正半轴上一点.若△PAB的面积为2,则k的值为.
【答案】8
【解答】
解:连接OA、OB,
∵AC⊥x轴,
∴AC∥y轴,
∴S△AOB=S△APB,
∵S△APB=2,
∴S△AOB=2,
由反比例函数系数k的几何意义可得:
S△AOC=6,S△BOC=,
∴6﹣=2,
解得:k=8,
故答案为8.
【变式2-2】(2021•荆州)如图,过反比例函数y=(k>0,x>0)图像上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为.
【答案】S1=4S4
【解答】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,OA1=A1A2=A2A3=A3A4,
∴S1=k,S2=k,S3=k,S4=k,
∴S1=4S4.
故答案为:S1=4S4.
【变式1-3】(2022•毕节市)如图,在平面直角坐标系中,正方形ABCD的顶点A,B分别在x轴、y轴上,对角线交于点E,反比例函数y=(x>0,k >0)的图像经过点C,E.若点A(3,0),则k的值是.
【答案】4
【解答】解:设C(m,),
∵四边形ABCD是正方形,
∴点E为AC的中点,
∴E(,),
∵点E在反比例函数y=上,
∴,
∴m=1,
作CH⊥y轴于H,
∴CH=1,
∵四边形ABCD是正方形,
∴BA=BC,∠ABC=90°,
∴∠OBA=∠HCB,
∵∠AOB=∠BHC,
∴△AOB≌△BHC(AAS),
∴BH=OA=3,OB=CH=1,
∴C(1,4),
∴k=4,
故答案为:4.
【变式1-4】(2022•雁塔区校级模拟)如图,正方形ACBE的边长是,点B,C分别在x轴和y轴正半轴上,BO=2,ED⊥x轴于点D,ED的中点F在反比例函数y=(x>0)的图像上,则k=.
【答案】3
【解答】解:∵正方形ACBE的边长是,BO=2,∴BC=BE=,
∴OC===1,
∵∠ABC=90°,
∴∠OBC+∠EBD=90°,
∵∠OBC+∠OCB=90°,
∴∠OCB=∠EBD,
在△OBC和△DEB中,
,
∴△OBC≌△DEB(AAS),
∴BD=OC=1,DE=OB=2,
∴OD=3,
∴E(3,2),
∵点F是ED的中点,
∴F(3,1),
∵点F在反比例函数y=(x>0)的图像上,
∴k=3×1=3,
故答案为3.
【变式1-5】(2021•广元)如图,点A(﹣2,2)在反比例函数y=的图像上,点M在x轴的正半轴上,点N在y轴的负半轴上,且OM=ON=5.点P (x,y)是线段MN上一动点,过点A和P分别作x轴的垂线,垂足为点D 和E,连接OA、OP.当S△OAD<S△OPE时,x的取值范围是.
【答案】1<x<4
【解答】解:过点B作BF⊥ON于F,连接OB,过点C作CG⊥OM于点G,连接OC,如图,
∵点A(﹣2,2)在反比例函数y=的图像上,
∴k=﹣4.
∴y=.
∵点A(﹣2,2),
∴AD=OD=2.
∴.
设B(a,b),则ab=﹣4,OF=﹣b,BF=a.
∴==2.
同理:S△OCG=2.
从图中可以看出当点P在线段BC上时,S△OPE>S△OBF,即当点P在线段BC上时,满足S△OAD<S△OPE.
∵OM=ON=5,
∴N(0,﹣5),M(5,0).
设直线MN的解析式为y=mx+n,则:
,
解得:.
∴直线MN的解析式为y=x﹣5.
∴,
解得:,.
∴B(1,﹣4),C(4,﹣1).
∴x的取值范围为1<x<4.
【变式1-6】(2021•荆门)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A 的对应点C恰好在函数y=(k≠0)的图像上,若在y=的图像上另有一点M使得∠MOC=30°,则点M的坐标为.
【答案】(,1)
【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,
∵∠AOB=30°,
∴OE=AE=,
将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),∵点C在函数y=(k≠0)的图像上,
∴k=1×=,
∴y=,
∵∠COD=∠AOB=30°,∠MOC=30°,
∴∠DOM=60°,
∴∠MOF=30°,
∴OF=MF,
设MF=n,则OF=n,
∴M(n,n),
∵点M在函数y=的图像上,
∴n=,
∴n=1(负数舍去),
∴M(,1),
故答案为(,1).
【变式1-7】(2021•达州)如图,将一把矩形直尺ABCD和一块等腰直角三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,EF交BC于点M,反比例函数y=(x<0)的图像恰好经过点F,M,若直尺的宽CD=1,三角板的斜边FG=4,则k=.
【答案】﹣12
【解答】解:过点M作MN⊥AD,垂足为N,则MN=CD=1,
在Rt△FMN中,∠MFN=45°,
∴FN=MN=1
又∵FG=4,
∴NA=MB=FG﹣FN=4﹣1=3,
设OA=a,则OB=a+1,
∴点F(﹣a,4),M(﹣a﹣1,3),
又∵反比例函数y=(x<0)的图像恰好经过点F,M,∴k=﹣4a=3(﹣a﹣1),
解得,a=3,
∴k=﹣4a=﹣12,
故答案为:﹣12.
a
11。