加减消元法解二元一次方程组教案(二)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2加减消元法解二元一次方程(二)
目标:
1、会用加减法解比较复杂的二元一次方程组;
2、进一步理解解方程组的消元思想。

重点:
选择适当的方法把方程组变形后用加减法消元。

难点:
观察方程组并根据方程组的特点选择适当的变形方法。

过程:
一、自学教材完成下列练习
运用加减消元法解方程组①
843②134{=+-=+y x y x ,
若先求x 的值,应先将两个方程中y 的系数的绝对值化为一样,3和2的最小公倍数为6,所以①× 得 ③,②× 得 ④;
若先求y 的值,应先将两个方程中x 的系数的绝对值化为一样,2和5的最小公倍数为10,所以①× 得 ③,②× 得 ④。

二、例题讲解
例1、解方程组:①843②134{=+-=+y x y x 。

分析:根据等式的性质,①×4式和②×3所得仍为等式,这个时候y 的系数的绝对值相等,可以运用加减消元法解方程组。

解:①×4得:③321612=+y x
②×3得:④3912-=+y x
③-④357=y 解得:5=y
把5=y 代入①得:8543=⨯+x
解得:4-=x
所以方程组的解是45-==x y {
例2、解方程:①225②432=-=+n m n m {
分析:要消去m ,必须使①式和②式中m 的系数的绝对值相同,因此①式要乘以10,再两式相减。

解:①×10得:2052=-n m ③
把②—③得:20
4)52(32-=--+n m n m
168-=n 解得:2-
=n 把2-=n 代入②得:4232=-⨯+)(m 解得:5=m
所以方程组的解是5
2=-=m n {
三、巩固提升 解下列方程组:
①432123=-=+y x y x { ②15232345=-=-y x y x {
③1
3121023=+-=+y x
y x { ④32526=--=+y x y x {
四、作业
P13 T2
五、课后反思。

相关文档
最新文档