计算机辅助故障树分析方法对高可靠和安全设计

合集下载

国军标五项技术的几个问题

国军标五项技术的几个问题

“工厂不承担产品设计,故不开展可 靠性、维修性和综合保障技术应用”
(生产过程的可靠性、维修性、综合 保障工作: · 进行元器件筛选、产品老化; · 可靠性、维修性验收试验; · 按规定品种、规格、技术及工艺生 产; · 采用标准化措施; · 提供产品技术文件、配套工具、备 件等。)
“体系文件发布后,没有设计新的 产品,故未开展可靠性、维修性 和综合保障技术” “根据公司的实际情况(〷弹引 信生产和服务),对五项技术提 出删减” “该厂删减了7.3设计和开发,故 未应用五项技术”
▲ 还应当关注采购和外包过程以 及顾客提供的产品是否与分配给 该产品的可靠性、维修性、综合 保障要求相符合。 ▲ 对可靠性、维修性、综合保障技 术应用情况的审核主要依据 GJB9001A 7.3.1,同时兼顾其它条 款,统一进行。
统一的含义:
▲对可靠性、维修性、综合保障 技术应用情况的审核应尽可能将 三者结合起来。 ▲对可靠性、维修性、综合保障 技术应用情况的审核应同考虑产 品的其它质量特性一起,融于对 组织有关部门或过程的审核之中。
——装备越来越复杂,所含元器件、 零部件数量激增本身就是对系统可靠 性的挑战。单个元器件、零部件失效 率的降低可能被其总量的增加所抵消。 要求产品不仅具有规定的功能,而且 有功能的持续能力(可靠性)和功能 的恢复能力(维修性)。
——为适应现代战争的需要,在保证 主战装备质量的同时,必须保证电 子信息系统和保障系统的质量,才 能实现系统互连、互通、互用。 因此,主战装备和保障系统要 同步建设,使装备交付部队后尽快 形成战斗力,充分发挥其效能 要求装备有良好的保障性。
在设计特性方面的定量要求通常以 装备战备完好性相关的指标提出 (如使 用可用度,出动率,再次出动准备时 间等 ) 。这一指标可分解或转化为装 备设计研制的可靠性、维修性以及其 他定量要求。 从战备完好性要求可分解或转化为 设计研制的可靠性、维修性指标意义 上说:装备保障性要求包括了可靠性、 维修性要求。例如: 使用可用度的一种表示方法:

(完整版)故障树分析法

(完整版)故障树分析法

什么是故障树分析法故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路清晰,逻辑性强,可以做定性分析,也可以做定量分析。

体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。

一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。

1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。

什么是故障树图(FTD)故障树图 ( 或者负分析树)是一种逻辑因果关系图,它根据元部件状态(基本事件)来显示系统的状态(顶事件)。

就像可靠性框图(RBDs),故障树图也是一种图形化设计方法,并且作为可靠性框图的一种可替代的方法。

一个故障树图是从上到下逐级建树并且根据事件而联系,它用图形化"模型"路径的方法,使一个系统能导致一个可预知的,不可预知的故障事件(失效),路径的交叉处的事件和状态,用标准的逻辑符号(与,或等等)表示。

在故障树图中最基础的构造单元为门和事件,这些事件与在可靠性框图中有相同的意义并且门是条件。

故障树和可靠性框图(RBD)FTD和RBD最基本的区别在于RBD工作在"成功的空间",从而系统看上去是成功的集合,然而,故障树图工作在"故障空间"并且系统看起来是故障的集合。

传统上,故障树已经习惯使用固定概率(也就是,组成树的每一个事件都有一个发生的固定概率)然而可靠性框图对于成功(可靠度公式)来说可以包括以时间而变化的分布,并且其他特点。

故障树分析中常用符号故障树分析中常用符号见下表:故障树分析法的数学基础1.数学基础(1)基本概念集:从最普遍的意义上说,集就是具有某种共同可识别特点的项(事件)的集合。

这些共同特点使之能够区别于他类事物。

并集:把集合A的元素和集合B的元素合并在一起,这些元素的全体构成的集合叫做A与B的并集,记为A∪B或A+B。

故障树分析及应用综述

故障树分析及应用综述

故障树分析法及其应用方玉茹(上海大学机电工程与自动化学院,上海200072)摘要:本文研究了故障树分析法(FTA)的基本原理,介绍了从选择顶事件,建立故障树,利用结构函数进行简化,再对故障树模型进行定性和定量分析的具体实施过程。

然后展示了FTA目前在各行业故障诊断的应用现状,并结合制粉系统磨煤机故障、外国长壁采煤机系统故障及自身课题研究相关的实例,阐述了FTA在机械故障诊断中的实际应用。

最后简单介绍了由故障树形成专家系统知识库的过程。

基于故障树的诊断方法有快速、易修改等优点,也存在人为因素大、不能处理模糊概率等缺点,故今后的研究应当尽量改善FTA的缺点使其适用性更强。

关键词:故障树分析法;故障诊断;机械;专家系统Fault Tree Analysis Method and ApplicationFANG Yu-ru(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)Abstract: In this paper, the basic principle of the fault tree analysis (FTA) is studied, and the specific implementation process from selecting top event, establishing the fault tree , simplifying the tree using structure function, to qualitative and quantitative analysis of fault tree model. Then the application status of FTA in fault diagnosis of various industries is shown, and actual application of FTA on mechanical fault diagnosis is expounded with instances of ball pulverizer failure, foreign longwall shearer system failure and program related instances. Finally, a brief introduction to the process of the formation of the expert system knowledge base by the fault tree is given. The diagnosis based on FTA is both quick and easy to modify, etc., but shortcomings are the human factors is big and it can not deal with the fuzzy probability. So future research should try to improve the shortcomings to make it more applicable.Key words: FTA;fault diagnosis;mechanical;expert system随着科学技术发展,系统的能力和现代化水平日益提高,系统规模越来越大,复杂性也越来越高.这类系统一旦发生故障,便会造成巨大损失。

故障树分析法基础

故障树分析法基础

故障树分析法基础故障树分析法(Fault Tree Analysis,FTA)是一种系统的、定性的安全分析方法,用于识别系统故障的可能原因和潜在影响。

故障树分析法可以帮助工程师和专业人员理解系统中单个组件或事件的失败模式,并评估可能导致系统故障的各种故障路径。

故障树分析法的基本原理是将系统的故障问题转化为一个具有层次结构的逻辑树结构。

这个逻辑树结构称为故障树。

在故障树中,根节点代表系统的总体故障状态,而叶节点表示导致系统故障的基本事件或故障模式。

通过对故障树的构建和分析,可以确定导致系统故障的关键因素。

在进行故障树分析时,需要进行以下步骤:1.确定系统的故障目标:确定需要进行故障树分析的系统,并明确系统的故障目标,即要研究的系统故障模式。

2.确定故障树的逻辑演算符:根据系统的故障模式,确定逻辑演算符,包括与门、或门和非门。

与门表示多个事件同时发生,或门表示多个事件之一发生,非门表示事件不发生。

3.确定故障树的基本事件:确定导致系统故障的基本事件或故障模式,并将其表示为叶节点。

4.构建故障树的逻辑结构:根据故障树的目标和基本事件,使用逻辑演算符构建故障树的逻辑结构。

通过层级结构和逻辑关系,将基本事件与根节点连接起来。

5.进行故障树的分析:对故障树进行分析,评估可能导致系统故障的各种故障路径,并确定可能的故障原因。

通过故障树分析法,可以帮助工程师理解系统故障的潜在原因,评估系统的可靠性和安全性,并提供改进系统设计和维护的依据。

此外,故障树分析法还可以用于风险评估、故障预测和安全管理等领域。

虽然故障树分析法在系统安全分析中起到了重要作用,但它也存在一些局限性。

首先,故障树分析法只能提供定性的分析结果,无法量化故障概率和风险水平。

其次,故障树分析法的建模和分析过程比较繁琐,需要专业的知识和经验。

此外,故障树分析法对于系统中复杂的相互关联的事件和组件之间的关系处理较为困难。

总的来说,故障树分析法是一种有效的系统故障分析方法,可以帮助工程师和专业人员识别和评估系统故障的可能原因和潜在影响。

《故障树分析》课件

《故障树分析》课件

编制方法
02
03
编制注意事项
采用演绎法,从上至下逐层展开 ,将上一级故障与下一级故障之 间用逻辑门连接。
确保故障树完整、准确,避免遗 漏重要故障路径,同时简化不必 要的细节。
故障树的规范化
规范化目的
为了便于分析和比较不同系统的故障树,需要 将故障树规范化。
规范化方法
采用统一的符号和格式表示各级故障事件和逻 辑门,制定规范化的故障树绘制标准。
详细描述
航天器故障分析涉及多个子系统,如推进系统、控制系统、通信系统等,每个子系统又包含多个部件。通过故障 树分析,可以识别出导致航天器故障的关键因素,进而采取相应的预防措施,提高航天器的可靠性。
案例二:核电站故障分析
总结词
严重后果、安全重要性
详细描述
核电站的故障可能导致放射性物质泄漏、环境污染等严重后果。通过故障树分析,可以识别出导致核 电站故障的潜在因素,如设备故障、人为操作失误等,并制定相应的预防措施,确保核电站的安全运 行。
故障树软件的优势与局限性
01
需要一定的学习成本,需要用户具备一定的故障树分
析基础;
02
对于大型和复杂的故障树,可能需要较长时间进行建
模和分析;
03
对于某些特定领域或复杂系统,可能需要定制化的故
障树软件或结合其他工具进行综合分析。
05
故障树分析案例
案例一:航天器故障分析
总结词
复杂系统、高可靠性要求
规范化要求
确保规范化后的故障树结构清晰、易于理解,同时保持原有的逻辑关系。
故障树的简化
简化目的
为了提高故障树分析的效率和实用性,需要对过于复杂的故障树进 行简化。
简化方法
合并重复或相似的基本事件,去除对顶事件影响微弱的基本事件, 简化复杂的逻辑关系。

计算机辅助事故树分析

计算机辅助事故树分析

计算机辅助事故树分析(FTA)事故树分析法简称FTA,是系统可靠性分析中的一种重要方法。

它是评价系统可靠性和安全性的手段,用来预测和诊断故障、分析系统薄弱环节、指导运行和维修,及系统优化设计。

一、目前国际和国内对FTA的研究已经取得了丰硕成果,通过查阅资料显示使用最多的两种建树方法:一演绎建树法,二是合成建树法。

本次设计使用演绎建树法,这种方法是先选定系统中不希望发生的故障事件为顶上事件,其后第一步是找出直接导致顶上事件发生的各种可能因素(底事件)或因素组合,如硬件故障、软件故障、环境因素、人为因素。

第二步再找出第一步中各因素的直接原因(中间事件)。

依次循环向下演绎,直到找到所有不可能再往下分析的因素(底事件)为止。

最后把各级事件用相应的符号和适合它们之间的逻辑关系和逻辑门与顶事件相连,这样就建立了顶事件与各级事件及各种底事件的倒置事故树。

建树步骤(事故树设计)JAVA:目前国内软件所设计的FTA软件主要有以下功能:见下图事故树定性分析:定性分析的目的在于找出导致顶事件发生的所有可能的故障模式,即弄清系统(或设备)出现某种最不希望发生的事件时,其成因有多少种可能的组合,以便进行故障诊断,发现系统的最薄弱环节。

它可以帮助判明潜在的故障,以便改进设计,可以用于指导故障诊断,改进运行和维修方案。

最小割集和最小径集在FTA中起着及其重要的作用。

其中,尤以最小割集最突出,透彻掌握和灵活运用最小割集和最小径集能使事故树分析达到事半功倍的效果,并为有效的控制事故的发生提供重要依据。

最小割集的计算方法:求最小割集的方法有很多,目前常用的方法有下行法(Fussel-Vesely 算法{福赛尔法})和上行法(Semanderes 算法)本次设计使用下行法(安全人机P284)。

基本理论依据:与门使割集的大小(割集内所包含的基本事件的数量)增加,而不增加割集的总数量;或门使割集的总数量增加,而不增加割集的大小。

求取最小割集时,首先从顶事件开始,由上至下顺次把上一级事件置换为下一级事件。

故障树分析法(FTA)

故障树分析法(FTA)

故障树分析法(FTA)故障树分析法(Fault Tree Analysis,简称FTA),就是在系统(过程)设计过程中,通过对可能造成系统故障的各种因素(包括硬件、软件、环境、人为因素等)进行分析,画出逻辑框图(即故障树),从而确定系统故障原因的各种可能组合及其发生概率,以计算系统故障概率,采取相应的纠正措施,提高系统可靠性的一种设计分析方法。

故障树分析主要应用于1.搞清楚初期事件到事故的过程,系统地图示出种种故障与系统成功、失败的关系。

2.提供定义故障树顶未卜事件的手段。

3.可用于事故(设备维修)分析。

故障树分析的基本程序1.熟悉系统:要详细了解系统状态及各种参数,绘出工艺流程图或布置图。

2.调查事故:收集事故案例,进行事故统计,设想给定系统可能发生的事故。

3.确定顶上事件:要分析的对象即为顶上事件。

对所调查的事故进行全面分析,从中找出后果严重且较易发生的事故作为顶上事件。

4.确定目标值:根据经验教训和事故案例,经统计分析后,求解事故发生的概率(频率),以此作为要控制的事故目标值。

5.调查原因事件:调查与事故有关的所有原因事件和各种因素。

6.画出故障树:从顶上事件起,逐级找出直接原因的事件,直至所要分析的深度,按其逻辑关系,画出故障树。

7.分析:按故障树结构进行简化,确定各基本事件的结构重要度。

8.事故发生概率:确定所有事故发生概率,标在故障树上,并进而求出顶上事件(事故)的发生概率。

9.比较:比较分可维修系统和不可维修系统进行讨论,前者要进行对比,后者求出顶上事件发生概率即可。

10.分析:原则上是上述10个步骤,在分析时可视具体问题灵活掌握,如果故障树规模很大,可借助计算机进行。

目前我国故障树分析一般都考虑到第7步进行定性分析为止,也能取得较好效果附:故障树分析程序(国家标准)GB7829—87国家标准局1987—06—03批准 1988—01—01实施1 总则1.1 目的故障树分析是系统可靠性和安全性分析的工具之一。

故障树分析法(FTA)

故障树分析法(FTA)

故障树分析法(FTA)故障树分析法(FTA)故障树分析法(Fault Tree Analysis,简称FTA),就是在系统(过程)设计过程中,通过对可能造成系统故障的各种因素(包括硬件、软件、环境、⼈为因素等)进⾏分析,画出逻辑框图(即故障树),从⽽确定系统故障原因的各种可能组合及其发⽣概率,以计算系统故障概率,采取相应的纠正措施,提⾼系统可靠性的⼀种设计分析⽅法。

故障树分析主要应⽤于1.搞清楚初期事件到事故的过程,系统地图⽰出种种故障与系统成功、失败的关系。

2.提供定义故障树顶未⼘事件的⼿段。

3.可⽤于事故(设备维修)分析。

故障树分析的基本程序1.熟悉系统:要详细了解系统状态及各种参数,绘出⼯艺流程图或布置图。

2.调查事故:收集事故案例,进⾏事故统计,设想给定系统可能发⽣的事故。

3.确定顶上事件:要分析的对象即为顶上事件。

对所调查的事故进⾏全⾯分析,从中找出后果严重且较易发⽣的事故作为顶上事件。

4.确定⽬标值:根据经验教训和事故案例,经统计分析后,求解事故发⽣的概率(频率),以此作为要控制的事故⽬标值。

5.调查原因事件:调查与事故有关的所有原因事件和各种因素。

6.画出故障树:从顶上事件起,逐级找出直接原因的事件,直⾄所要分析的深度,按其逻辑关系,画出故障树。

7.分析:按故障树结构进⾏简化,确定各基本事件的结构重要度。

8.事故发⽣概率:确定所有事故发⽣概率,标在故障树上,并进⽽求出顶上事件(事故)的发⽣概率。

9.⽐较:⽐较分可维修系统和不可维修系统进⾏讨论,前者要进⾏对⽐,后者求出顶上事件发⽣概率即可。

10.分析:原则上是上述10个步骤,在分析时可视具体问题灵活掌握,如果故障树规模很⼤,可借助计算机进⾏。

⽬前我国故障树分析⼀般都考虑到第7步进⾏定性分析为⽌,也能取得较好效果附:故障树分析程序(国家标准)GB7829—87国家标准局1987—06—03批准 1988—01—01实施1 总则1.1 ⽬的故障树分析是系统可靠性和安全性分析的⼯具之⼀。

故障树分析在故障诊断中的应用概述

故障树分析在故障诊断中的应用概述

设备状态监测与故障诊断作业标题:故障树分析在故障诊断中的应用概述故障树分析在故障诊断中的应用概述摘要:在介绍故障树分析基本理论的基础上,分析和总结了故障树分析方法在故障诊断的应用现状,提出了目前故障树分析的主要发展方向。

关键词:故障树分析,故障诊断,模糊故障树ABSTRACT:Based on the introduction of the basic theory of fault tree analysis, the present situation of fault tree analysis in fault diagnosis is analyzed and summarized; the main developing direction of fault tree analysis is given.KEYWORDS:fault tree analysis(FTA), fault diagnosis, fuzzy fault tree前言故障树分析(Fault Tree Analysis,简称FTA)方法,利用故障树将系统故障原因自顶向下逐级进行分析,估计顶事件的发生概率和底事件重要度,是系统可靠性分析、故障检测与诊断常用的一种分析方法。

这种方法通过把系统可能发生或已经发生的事故(即顶事件)作为分析起点,将导致事故的原因事件按因果关系逐层列出,用树形图表示出来,构成一种逻辑模型。

找出事件发生的各种可能途径及发生概率,找出避免事故发生的各种方案并优选出最佳安全对策[1]。

故障树分析既可用定性模型也可以用定量模型。

故障树的果因关系清晰、形象,对导致事故的各种原因及逻辑关系能做出全面、简洁、形象地描述,因而在各行业故障诊断中得到广泛而重要的应用。

1故障树分析的基本理论1.1故障树分析的原理及步骤故障树(FT)模型是一个基于被诊断对象结构、功能特征的行为模型,是一种定性的因果模型,以系统最不希望事件为顶事件,以可能导致顶事件发生的其他事件为中间事件和底事件,并用逻辑门表示事件之间联系的一种倒树状结构。

高可靠性系统设计与分析方法的研究

高可靠性系统设计与分析方法的研究

高可靠性系统设计与分析方法的研究随着技术的不断进步,现代社会对于各种系统的可靠性要求也越来越高。

因此,高可靠性系统的设计和分析成为了一个重要的领域。

本文主要探讨高可靠性系统设计与分析方法的研究。

一、高可靠性系统的概念与特点高可靠性系统是指在设备运行期间保持系统正常工作的能力。

对于一些重要的系统,如航空、航天、铁路、核电站等,高可靠性系统具有不可替代的作用。

高可靠性系统一般具有以下特点:1. 故障率低:高可靠性系统的故障率较低,一旦出现故障,需要能够快速恢复;2. 系统复杂:高可靠性系统的结构和功能比较复杂,部件之间的关系和依赖很难直接判断;3. 安全性高:高可靠性系统的安全性要求高,对于系统中可能发生的事故需要有有效的应对措施;4. 数据管理:高可靠性系统需要对数据进行有效的管理和处理,保证系统的准确性和稳定性;5. 需要长期使用:高可靠性系统需要长期使用,需要考虑系统的更新和维护。

二、1. 可靠性分析方法可靠性分析是高可靠性系统设计与分析的核心内容。

常用的可靠性分析方法主要有以下几种:(1)故障树分析法:故障树分析法是一种将系统故障分类、分解、描述和分析的方法。

该方法适用于分析系统的故障原因和概率,有效地了解系统的可靠性瓶颈。

(2)事件树分析法:事件树分析法是一种方法,用于描述事件与创造性方案之间的因果关系。

该方法适用于分析系统在不同状态下的可靠性。

(3)失效模式和影响分析法:失效模式和影响分析法是一种根据产品使用环境和实际故障情况对新产品进行可靠性分析的方法。

该方法适用于分析系统中个别部件的失效率和对系统总可靠性的影响。

2. 可靠性评估方法可靠性评估是对高可靠性系统进行全面评价的方法。

常用的可靠性评估方法包括:(1)故障模式和影响分析法:故障模式和影响分析法是一种将系统故障分离、分类、并确定其对系统造成的影响的方法。

该方法适用于分析系统中重要部件的失效率和对系统可靠性的影响。

(2)故障模式、影响和关键性分析法:故障模式、影响和关键性分析法是一种将系统故障分离、分类、并确定其关键性的方法。

故障树分析法

故障树分析法

16
2021/10/10
17
2021/10/10
• 2.逻辑或和逻辑与还有如下性质 • 乘对加的分配律: A(B+C)=AB+BC • 加对乘的分配律: A+BC=(A+B)(A+C) • 3.逻辑非有如下的基本性质 • 互补律:A+A’=1 A·A’=0 • 双重否律:A’’=A • 三、逻辑代数的两个基本定理 • 1.吸收律: A+AB=A A(A+B)=A • 2.得摩根定理(反演律)
5.制定安全对策:
依据上述分析结果及安全投入的可能,寻求降低事故 概率的最佳方案,以便达到预定概率目标的要求。
5
2021/10/10
事 故 树 分 析 流 程 图
常用事件及其符号
6
2021/10/10
7
2021/10/10
常用逻辑门及其符号
8
事故树分析法 2021/10/10
9
建造事故树时的注意事项:
事故树应用数理逻辑方法,可以对系统中各种危
险进行分析以及预测和评价,它还可以借助计算 机进行分析、计算。
2
一、事故树分析方法的特点 2021/10/10
是故障事件在一定条件下的逻辑演绎推理方法,可以就某 些特点的故障状态作逐层次分析,分析各层次之间的各要 素的相互联系与制约关系,应用专门的符号标注出来;
n
QT qi
当各基本事件均是独立i1事件时,凡是或门连接的地 方,可用几个独立事件逻辑和的概率计算公式:
n
n
QT qi 1 (1qi)
i1
i1
31
(四)事故树定量分析 2021/10/10
• 如图所示的事故树, 各基本事件的概率分 别是:

发电设备可靠性评价规程

发电设备可靠性评价规程

发电设备可靠性评价规程本规程旨在建立一套全面的发电设备可靠性评价体系,以确保发电设备在运行过程中保持高可靠性和稳定性,减少故障次数和停机时间。

可靠性评价是发电设备运行管理的重要内容,对设备性能进行客观的评价,有利于发现和解决潜在问题,提高设备运行的可靠性和安全性。

2. 评价范围本规程适用于各类电力发电设备的可靠性评价,包括发电机组、变压器、开关设备等各类电气设备和相关系统。

3. 评价内容(1)设备可靠性指标:根据设备的运行数据和历史故障情况,确定各项可靠性指标,包括平均时间故障间隔(MTBF)、平均维修时间(MTTR)、故障率等。

(2)可靠性评价方法:采用可靠性分析、故障模式与影响分析(FMEA)、故障树分析(FTA)等方法,对设备进行可靠性评价,识别潜在故障模式和影响因素。

(3)可靠性测试与监测:对设备进行定期的可靠性测试和监测,包括振动、温度、电流等相关参数的监测,以及设备的负载试验、开关试验等。

(4)设备维护与管理:建立健全的设备维护和管理体系,包括设备维护计划、备件管理、设备管理系统等,确保设备的维护保养工作得到有效实施。

4. 评价流程(1)数据采集:整理设备的运行数据、维修记录等相关信息,为评价提供数据支持。

(2)可靠性分析:使用可靠性分析方法对设备进行评价,确定设备的可靠性指标和潜在故障模式。

(3)可靠性测试:根据设备的特点和运行条件,进行相应的可靠性测试,以验证设备的可靠性。

(4)维护管理反馈:针对评价结果,对设备的维护管理工作进行调整和改进,提高设备的可靠性和稳定性。

5. 评价报告评价报告应包括设备的可靠性评价结果、存在的问题和建议的改进措施等内容,为设备的管理和运行提供决策依据。

6. 结论依据本规程进行的发电设备可靠性评价,可以为设备的管理和运行提供客观的评价和有效的改进措施,提高设备的可靠性和安全性,确保电力供应的稳定性和可靠性。

7. 实施措施根据可靠性评价报告中提出的改进建议,开展相应的实施措施是保障设备可靠性的重要环节。

故障树分析

故障树分析

在给定一些必要假设的情况下,将真实的系统图简化为一个与主要逻辑关系等效的系统图。
(四)建造故障树方法 1.建树基本规则 演绎法建树应遵循以下基本规则; (1)明确建树边界条件,确定简化系统图:建树前应根据分析目的,明确定义所分析的系统和其他系统(包 括人和环境)的接口,同时给定一些必要的合理假设(如:不考虑一些设备或接线故障;对一些设备做出 偏安全、保守的假设;暂不考虑人为故障等),从而由真实系统得到一个主要逻辑关系等效简化系统图。 建树的出发点不是真实系统图,而是简化系统图。 (2)故障事件严格定义:为了正确确定故障事件的全部必要而又充分的直接原因,各级故障事件都必须严格 定义,应明确表达是什么故障,是在何种条件下发生的。例如“泵起动后压力罐破裂”,“开关合上后灯 泡不亮”。 (3)从上向下逐级建树:建树应从上到下逐级进行,在同一逻辑门的全部必要而又充分的直接输入未列出之 前,不得进行下一逻辑门的任何输入。 (4)建树时不允许门一门直接相连:建树时不允许不经过结果事件而将门一门直接相连。每一个门的输出事 件都应清楚定义。 (5)用直接事件逐步取代间接事件:为了故障树向下发展,必须用等价的、比较具体的直接事件逐步取代比 较抽象的间接事件。这样在建树时也可能形成不经任何逻辑门的事件—事件串。 (6)处理共同事件:共同的故障原因会引起不同的部件故障,甚至不同的系统故障。共同原因故障事件简称 为共同事件。鉴于共同事件对系统故障发生概率影响很大,故建树时必须妥善处理共同事件。若某个故障 事件是共同事件,则对故障树不同分支出现的该事件必须使用同一事件标号。若该共同事件不是底事件, 则必须使用相同转移符号简化表示。 2.建树方法 将已确定的顶事件写在顶部矩形框中。将引起顶事件的全部必要而又充分的直接原因事件置于相应事件符 号中,画出第二排,再根据实际系统中它们的逻辑关系,用适当的逻辑门连接顶事件和这些直接原因事件。 如此,遵循建树规则逐级向下发展,直到所有最低一排原因事件都是底事件为止,就由演绎法建成了给定 顶事件的故障树。下面以建造压力罐控制系统故障树为例,详细说明演绎法的建树方法。

故障树分析FTA管理

故障树分析FTA管理

关事件:常用房形符号表示,故又称为房形事件。 。开关事件是在正常工作条件下必然发生或者必然 的特殊事件.
条件事件:条件事件是描述逻辑门起作用的具体限制的特殊事件 条件事件是描述逻辑门起作用的具体限制的特殊事件。
逻辑门:在故障树分析中,逻辑门只是描述事件间的逻辑因果关系 逻辑门只是描述事件间的逻辑因果关系。逻辑门包括“与门”、“或门” “非门”和一些特殊事件。


障树分析FTA(英文为Fault Tree Analysis)是一种图形演绎的故障分析方法,是故障事件在一定条 (英文为 障树分析 )是一种图形演绎的故障分析方法, 逻辑推理方法。它将系统故障形成的原因(包括硬件、软件、环境、人为因素等)进行分析, 逻辑推理方法。它将系统故障形成的原因(包括硬件、软件、环境、人为因素等)进行分析,画出 系图(即故障树),从而确定系统故障的原因和发生的概率。 ),从而确定系统故障的原因和发生的概率 系图(即故障树),从而确定系统故障的原因和发生的概率。由FTA结果可以确定被分析系统的薄 结果可以确定被分析系统的薄 关键部位、应采取的措施、对可靠性试验的要求等。同时FTA还可通过分析各种可能的潜在故障 、关键部位、应采取的措施、对可靠性试验的要求等。同时 还可通过分析各种可能的潜在故障 系统内部的联系,指导维修方案及维修策略的制定,确定检修装置的最佳配置, 系统内部的联系,指导维修方案及维修策略的制定,确定检修装置的最佳配置,为故障诊断提供依 外还为后勤保障、运用维修管理打下相应的基础。 外还为后勤保障、运用维修管理打下相应的基础。 世纪60年代首先在宇航 从20世纪 年代首先在宇航,以后在核能领域内得到了重视和发展,目前已在电子、化工、电力、 世纪 年代首先在宇航,以后在核能领域内得到了重视和发展,目前已在电子、化工、电力、 通等行业中得到了广泛的应用,用来作为评价系统可靠性和安全性的有力工具。 通等行业中得到了广泛的应用,用来作为评价系统可靠性和安全性的有力工具。 FTA概念 )FTA概念 在故障树分析中,对于所研究系统的各种故障状态或不正常的情况均称为故障事件。 在故障树分析中,对于所研究系统的各种故障状态或不正常的情况均称为故障事件。各种完好状 确情况皆称为成功事件。两者均称为事件。FTA所研究的一个事件 所研究的一个事件, 确情况皆称为成功事件。两者均称为事件。FTA所研究的一个事件,也就是系统所不希望发生的事 中所关心的结果事件称为顶事件,位于故障树的顶端。 FTA中仅导致其它事件发生的原因事件称 中所关心的结果事件称为顶事件,位于故障树的顶端。在FTA中仅导致其它事件发生的原因事件称 它是可能导致事件发生的基本原因,位于故障树的底端。 是以顶事件为分析目标, 件,它是可能导致事件发生的基本原因,位于故障树的底端。FTA 是以顶事件为分析目标,通过逐 查找所有可能发生的原因。每层均查找其直接原因,从而找出系统内可能存在元件失效、 查找所有可能发生的原因。每层均查找其直接原因,从而找出系统内可能存在元件失效、环境影响 失误以及程序处理等硬件和软件因素(各种底事件)与系统故障(顶事件)之间的逻辑关系, 失误以及程序处理等硬件和软件因素(各种底事件)与系统故障(顶事件)之间的逻辑关系,并通 符号(事件符号、逻辑符号和转移符号)来描述系统中各种事件间的因果关系, 符号(事件符号、逻辑符号和转移符号)来描述系统中各种事件间的因果关系,从而形成倒立树状 种图形称之为故障树。 16表示出水泵驱动系统故障树 16( 种图形称之为故障树。图2—16表示出水泵驱动系统故障树,其中图2—16(a)为直流电动机驱动 16表示出水泵驱动系统故障树,其中图2 16 统的原理图, 16( 为该系统顶事件电机不转的故障树。在建造完故障树以后, 统的原理图,图2—16(b)为该系统顶事件电机不转的故障树。在建造完故障树以后,再定性分析 16 件对顶事件发生影响的组合方式和传播途径,识别可能的系统故障模式, 件对顶事件发生影响的组合方式和传播途径,识别可能的系统故障模式,以及定量计算这种影响的 计算出系统在该项事件时的故障概率。 度,计算出系统在该项事件时的故障概率。 系统的可靠性分析基本上分为两种方法,一种是归纳法 一种是归纳法。另一种是演绎法。FMECA属于归纳法,F 演绎法。FMECA是由下而上,确定产品可能的故障模式 确定产品可能的故障模式,确定各种故障对系统的影响,基本上是面向 各种组成部分。而FTA则是由上而下,假设系统故障 假设系统故障,分析其可能的原因,基本上是面向整个系统。

质量管理工程中的可靠性分析与优化

质量管理工程中的可靠性分析与优化

质量管理工程中的可靠性分析与优化引言:在现代工程领域中,质量管理是确保产品或服务达到一定标准的关键因素。

而在质量管理中,可靠性分析与优化是一个重要的环节。

本文将探讨质量管理工程中的可靠性分析与优化的方法和重要性。

一、可靠性分析的重要性可靠性是指产品或系统在特定条件下正常运行的能力。

在质量管理中,可靠性分析是评估产品或系统在使用过程中可能出现的故障和失效的概率和影响程度。

通过可靠性分析,可以帮助企业了解产品或系统的弱点,从而采取相应的措施进行改进和优化。

1. 提高产品质量通过可靠性分析,企业可以更好地了解产品的故障模式和失效原因,从而针对性地进行改进和优化。

例如,可以通过分析故障模式和失效原因,优化产品的设计、材料选择和生产工艺,从而提高产品的质量和可靠性。

2. 降低维修成本可靠性分析还可以帮助企业降低维修成本。

通过分析故障模式和失效原因,可以预测故障的发生概率和维修所需的时间和成本。

企业可以根据这些信息制定合理的维修计划,提前准备所需的维修材料和人员,从而降低维修成本和停机时间。

3. 提高客户满意度可靠性分析可以帮助企业提高产品的可靠性和稳定性,从而提高客户满意度。

当产品具有较高的可靠性时,用户可以更加放心地使用产品,减少故障和失效的发生,提高产品的可用性和可靠性,进而提升客户对产品的满意度。

二、可靠性分析的方法可靠性分析的方法有多种,下面将介绍几种常用的方法。

1. 故障模式和影响分析(Failure Mode and Effects Analysis,FMEA)FMEA是一种常用的可靠性分析方法,通过对产品或系统的故障模式、故障原因和故障后果进行分析,评估故障的严重程度和影响范围。

通过FMEA,可以确定故障的优先级,从而采取相应的措施进行改进和优化。

2. 可用性分析可用性分析是一种评估产品或系统可用性的方法。

通过分析产品或系统的故障率、维修时间和可用时间等指标,可以计算出产品或系统的可用性。

可用性分析可以帮助企业了解产品或系统的可靠性水平,从而优化产品或系统的设计和维护策略。

故障树分析法--,最全

故障树分析法--,最全

故障树分析法(Fault Tree Analysis简称FTA)什么是故障树分析法故障树分析(FTA)技术是美国贝尔电报公司的电话实验室于1962年开发的,它采用逻辑的方法,形象地进行危险的分析工作,特点是直观、明了,思路淸晰,逻辑性强,可以做左性分析,也可以做泄量分析。

体现了以系统工程方法研究安全问题的系统性、准确性和预测性,它是安全系统工程的主要分析方法之一。

一般来讲,安全系统工程的发展也是以故障树分析为主要标志的。

1974年美国原子能委员会发表了关于核电站危险性评价报告,即“拉姆森报告”,大量、有效地应用了FTA,从而迅速推动了它的发展。

目前,故障树分析法虽还处在不断完善的发展阶段,但其应用范围正在不断扩大,是一种很有前途的故障分析法。

故障树分析(Fault Tree Analysis)是以故障树作为模型对系统进行可靠性分析的一种方法,是系统安全分析方法中应用最广泛的一种自上而下逐层展开的图形演绎的分析方法。

在系统设计过程中通过对可能适成系统失效的各种因素(包括硬件、软件、环境、人为因素)进行分析,画出逻辑框图(失效树),从而确左系统失效原因的各种可能组合方式或其发生概率,以讣算的系统失效概率,采取相应的纠正措施,以提髙系统可靠性的一种设计分析方法。

故障树分析方法在系统可靠性分析、安全性分析和风险评价中具有重要作用和地位。

是系统可靠性研究中常用的一种重要方法。

它是在弄淸基本失效模式的基础上,通过建立故障树的方法,找出故障原因,分析系统薄弱环节,以改进原有设备,指导运行和维修,防止事故的产生。

故障树分析法是对复杂动态系统失效形式进行可靠性分析的有效工具。

近年来, 随着计算机辅助故障树分析的岀现,故障树分析法在航天、核能、电力、电子、化工等领域得到了广泛的应用。

既可用于定性分析又可定量分析。

故障树分析(Fai山Tree Analysis)是一种适用于复杂系统可靠性和安全性分析的有效工具,是一种在提髙系统可靠性的同时又最有效的提高系统安全性的方法。

软件安全性分析中故障树方法的应用

软件安全性分析中故障树方法的应用

软件安全性分析中故障树方法的应用故障树分析法(FTA)是硬件可靠性、安全性分析的传统技术工具.20世纪80年代,软件的可靠性和安全性开始成为科技界关注的课题,为了适应软件安全性分析的需要,故障树分析法被移植到软件这个新领域.。

经过20年不断的应用和创新,现在软件故障树分析已经成为软件安全性分析的重要手段并简称为SFTA.软件故障树分析极具应用潜力,在软件开发的早期,可以用故障树分析来确定软件的安全要求,进入概要设计、详细设计设计和实现阶段,可以对故障树加以扩充,继续进行更深入的分析.故障树分析法对于硬一软件复合系统的安全性分析尤为有效,分析人员可用它分析程序产生安全事故的各种原因,分析系统任何部分发生的失效,分析硬件、软件和操作员的失误,并可以识别潜在的、复杂的失效模式。

SFTA涉及的内容十分丰富,受篇幅限制,本篇文章介绍的是SFTA的基本框架和方法。

1 故障树的逻辑关系a. 逻辑"或门"设x1, x2 表示两个不同的事件,如果两个事件中至少有一个事件发生便能导致另一个事件x3发生,则称这种关系为逻辑"或门"关系,相应的布尔代数式为( 1 )其逻辑图见图1b.逻辑"与门"事件x1和x2必须同时发生,x3才能发生,这种关系称为逻辑"与门"关系,相应的布尔代数式为(2)其逻辑图见图2c. 逻辑否定逻辑否定表示同原命题相反,用x1 表示事件发生,则其相反命题"事件不发生"用x1 表示,在分析逻辑否定关系时经常用到德莫根定理(3)(4)进行故障树分析需要绘制故障树图.故障树图类似于一棵倒立的树.树的根部位于图的上方,代表需要分析的危险事件(或关键性失效)事件,从顶向下再层层衍生出许多分支,形成了若干的分支点,这些分支点代表了危险事件形成过程中的中间事件,分支的终点,类似于树叶,代表了可能导致危险事件发生的基本事件.为适应绘制故障树图的需要,在故障树分析法发展过程中,形成了一套可靠性工程界公认的图形符号标志.软件的故障树分析法的思路与硬件故障树分析法基本相同,因此这套源于硬件故障分析的图形符号,也为软件分析所采用.感兴趣的读者可从各种硬件FTA的资料中找到,本文不再赘述。

CAD设计中的可靠性分析与可靠性设计

CAD设计中的可靠性分析与可靠性设计

CAD设计中的可靠性分析与可靠性设计在工程领域中,可靠性是一个非常重要的概念。

随着计算机辅助设计(CAD)技术的广泛应用,CAD设计中的可靠性分析与可靠性设计成为了一个关键的议题。

本文将探讨CAD设计中的可靠性分析与可靠性设计的方法和技术。

一、可靠性分析可靠性分析是CAD设计中非常重要的一步。

通过对设计方案进行可靠性分析,可以预测设计在使用过程中可能出现的问题,从而采取相应的措施进行改进。

1.设计失效模式与影响分析(DFMEA)DFMEA是一种常用的可靠性分析工具,通过分析设计失效模式以及其对产品功能和性能的影响,可以帮助设计师发现潜在的问题,并针对性地进行改进。

2.可靠性测试可靠性测试是评估产品可靠性的重要手段。

在CAD设计中,通过模拟产品在实际使用条件下的工作状态,进行可靠性测试,可以检验设计的可靠性,并收集测试数据用于分析和改进。

二、可靠性设计可靠性设计是在CAD设计的初期阶段就考虑产品的可靠性,从而降低设计缺陷和故障的发生概率。

1.设计要素的选择在进行CAD设计时,需要对设计要素进行仔细选择。

选用高质量、可靠性较高的组件和材料,以确保设计的可靠性。

2.容错设计容错设计是在设计中考虑到产品在不同环境和条件下可能遇到的问题,并采取相应的措施进行预防和应对。

例如,采用冗余设计、添加保护装置等。

3.优化设计优化设计是通过使用CAD软件进行仿真和分析,寻找最佳设计方案,从而提高产品的可靠性。

通过优化设计,可以减少不必要的零部件和复杂性,提高产品的稳定性和可靠性。

三、CAD软件在可靠性分析与设计中的应用CAD软件在可靠性分析与设计中发挥了重要作用。

现代CAD软件提供了丰富的功能和工具,可以进行各种可靠性分析和优化设计。

1.模拟仿真CAD软件可以进行各种工程模拟仿真,如结构强度分析、疲劳寿命预测等。

这些仿真分析可以帮助工程师评估设计的可靠性,并提供优化建议。

2.故障树分析故障树分析是一种常用的可靠性分析方法,可以用于识别和分析导致系统故障的各种因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Method of Computer-Aided Fault Tree Analysis for High-Reliable and Safety DesignYouji Hiraoka,Member,IEEE,Tamotsu Murakami,Katsunari Yamamoto,Yoshiyuki Furukawa,and Hiroyuki SawadaAbstract—Fault tree analysis(FTA)is a method of analyzing and visualizing the causes of a fault using a fault tree diagram(FT di-agram),which has a tree structure with logical steps.Design engi-neers developing a new product generally use FTA to analyze many fault events,calculate their probability,and include redundancy systems in the design process.Furthermore,FTA has been used to analyze problems with products and to prevent the occurrence of problems in the design phase.In particular,it is necessary for de-sign engineers to analyze the events after a failure to determine the root causes of the failure of the redundancy systems.However,it is not easy for design engineers to produce an accurate FT diagram in the actual design process.We have developed a computer-aided knowledge management system for creating FT diagrams(FTAid) as part of a collaborative group(The University of Tokyo,National Institute of Advanced Industrial Science and Technology(AIST), and Jatco Ltd.).This system has been verified by the design engi-neers of Jatco Ltd.in actual product development.We report its ef-fectiveness for predicting mechanical,electrical,and heat transfer failure,the verification of the system,and its validation in an actual design process.We conclude that the system can help design engi-neers to effectively and efficiently create FT diagrams in reliability engineering,although some existing ability in FTA and engineering is required.We also describe some outstanding issues regarding the improvement of FTAid,engineering education,and ensuring reli-ability.Index Terms—Design engineering,design for quality,fault tree analysis,knowledge management,reliability,reliability engineering.I.I NTRODUCTIONP RODUCT DESIGN is defined as the process of seekinga design solution that can meet functional requirements under numerous constraints(e.g.,cost,layout,weight,and man-ufacturing conditions)[1].In practical product design,owing to diverse functional requirements,complicated product design systems,and many constraints,obtaining an optimal design so-lution has been difficult for design engineers and their groups and has required significant effort.Many design engineers makeManuscript received December06,2014;revised April14,2015,November 06,2015;accepted December23,2015.Associate editor:W.-T.Chien.Y.Hiraoka is with the Department of Mechanical Engineering,University of Tokyo,Tokyo113-8656,Japan,and also with the National Institute of AIST, Ibaraki305-8564,Japan(e-mail:youji.hiraoka@).T.Murakami is with the Department of Mechanical Engineering,University of Tokyo,Tokyo113-8656,Japan(e-mail:murakami@mech.t.u-tokyo.ac.jp). K.Yamamoto is with Jatco Ltd.,Kanagawa243-0026,Japan(e-mail:kat-sunari_yamamoto@jatco.co.jp).Y.Furukawa and H.Sawada are with the National Institute of AIST,Ibaraki 305-8564,Japan(e-mail:y-furukawa@aist.go.jp;h.sawada@aist.go.jp). Digital Object Identifier10.1109/TR.2015.2513050full use of various design methods and examine their results to achieve the required quality,performance,and durability of products.General design is also a process used by design engineers to meet functional requirements.Because the opposite word to functionality is failure,failure must not occur in design systems.A method used to describe functions and failures and to devise measures to prevent failures is failure modes and effects anal-ysis(FMEA)[2].FMEA is used to manage the design process in total quality management and quality standards(TS16949 [3])and to confirm the safety of designs in accordance with safety standards(IS026262[4]).Furthermore,measures to pre-vent failures are verified by fault tree analysis(FTA),which is used for the quantitative evaluation of fault trees,calculating the probability of failure,and evaluating the probability to judge the effectiveness of measures[5].Therefore,the tools of FMEA and FTA are generally important in the design process for quality management and safety assessment.FTA is a method employed to analyze the cause of a fault. FTA uses a fault tree diagram(FT diagram),which has a tree structure with logical steps.The probability of a failure is cal-culated,which is used to judge the effectiveness of a multiple redundancy system.Therefore,FTA is used to ensure the safety of systems in the plant engineering,aviation,vehicle,and space industries[6]and the quality of products in general manufac-turing to comply with product liability laws.FT diagrams are often used to display events in a system in which a failure mode occurs.However,it has recently become necessary to display an event in terms of design parameters.This is because some prod-ucts do not allow the inclusion of redundancy systems owing to constraints of layout and cost,and the design engineers must prevent failure by setting appropriate design parameters. Recently,some serious accidents and major recalls problems of automobiles have occurred in America and Japan.These have been due to safety problems owing to the malfunction of a com-ponent or a subsystem in the product,for example,the recall of runaway Toyota cars in2011–2012and the recall of Takata airbags in2014.Accidents due to unintended acceleration(UA) of Toyota cars were investigated by NASA Engineering and Safety Center and the National Highway Traffic Safety Ad-ministration(NHTSA)[7].In this investigation,many analysis methods and tests and a large amount of statistical data obtained in thefield were used to establish and prove a hypothesis for the cause of the accidents.In particular,all factors that may have led to failures were analyzed using afishbone diagram,which is similar to an FT diagram,and verified by performing tests and simulations in system,software,and mechanical domains.0018-9529©2015IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.See /publications_standards/publications/rights/index.html for more information.Fig.1.P-FTA,D-QFD method[9].It was concluded that the cause of UA was the short distance between the accelerator pedal and thefloor mat or the driver error.The cause of accidents involving Takata airbags is cur-rently being investigated.The same analysis methods and tests as for the cause of Toyota cars will be employed.Therefore, design engineers must not only estimate the probability of the failure modes but also clarify all factors and scenarios by which failure may occur in safety problems such as the investigation of the UA of Toyota cars.At the end of the design process,design engineers must take measures to identify problems and verify their effectiveness.Therefore,it is necessary for design engi-neers to analyze all events and factors causing accidents,accu-rately display the design parameters of faults on an FT diagram, and judge that all possible events are included in the FT dia-gram.At the very least,design engineers must display events with accurate design parameters on an FT diagram in the design process.Miyamura[8]reported that the knowledge management of design information using FTA is possible and that it is an ef-fective method of ensuring the design quality of a product.The power train division of Nissan Motors and Jatco Ltd.make use of FTA for problem resolution in product development and pre-vention in the design process.Fig.1shows an example of a de-sign process using FTA:the P-FTA,D-QFD(Perfect-Fault Tree Analysis,Design-Quality Function Deployment)method[9] developed by the power train development division of Nissan Motors.P-FTA is a tool that displays an event causing failures including the design parameters selected by FMEA.Therefore, knowledge management based on FTA is practically effective in the problem resolution of products and in the design process. In this paper,we propose a new approach to FTA involving computerized support to improve the system used for FTA in previous studies.We confirm that an FT diagram can be classi-fied into component failure,system failure,and control failure diagrams in an actual design process.A component failure di-agram is created by a previously proposed computerized sup-port method based on quantity dimension indexing[10],[11]. System failure and control failure diagrams are created by a computerized support method utilizing block diagrams created by design engineers.We have developed this computer-aided FTA system for design engineers as a collaborative research group(The University of Tokyo,National Institute of Advanced Industrial Science and Technology(AIST),and Jatco Ltd.)[12], [13].This system is targeted towards design engineers who can create an accurate FT diagram efficiently using the system.We have investigated the accuracy of FT diagrams created with this system and the time required to confirm its effectiveness in an actual design process at Jatco Ltd.We conclude that the system can support design engineers to prevent almost all failures of machines.We report our verification of the system for many types of failures in machines by comparison between our predic-tion and results in the actual design process.We found that the average time required by engineers to create an FT diagram is decreased by over50%while improving the accuracy of the di-agram by analysis of an actual development process[12]–[15]. We also describe the potential uses of the system.II.P REVIOUS S TUDIES ON FTAFTA wasfirst conceived of in1961by H.A.Watson of Bell Telephone Laboratories jointly with the U.S.Air Force to study missile launch control systems.Since then,FTA has received widespread interest as a tool for ensuring the safety and reli-ability of complex dynamic systems such as vehicles,aircraft, space vehicles,and nuclear reactors.This section describes the previous studies on FTA from three viewpoints.A.Classical Analysis Techniques:FTA and Other Methods The fundamental concept in FTA is the translation of a phys-ical system into a tree structure,in which specified causes lead to a single top event.This logical diagram is generally constructed using event symbols and logic symbols.Upper and lower events are connected with AND and OR gates[5],[6].The top event in the tree structure is selected from the results of a prelimi-nary hazard analysis,design analysis,and quality management process.FTA consists of the following four steps[16]:•systems definition;•fault tree construction;•qualitative evaluation;•quantitative evaluation.In this paper,we only consider the second step of fault tree con-struction through computer-aided support for design engineers. This step is the most important when using FTA in the design process because a mistake in fault tree construction may lead to a problem in products or an unsafe event.Furthermore,FTA is useful for ensuring product quality by establishing the cause of product problems and obtaining design parameters for quality in manufacturing companies.Boeing has studied models of FTA,software for fault tree construction,and how to use FTA in the design process[6].FTA has been used in the design of commercial and military aircraft.Moreover,the knowledge management of design information using FTA(how to prevent past problems,how to design,etc.)is possible and ef-fective in general product design.The power train development division of Nissan Motors also uses FTA in the development process with FTA to ensure the quality in the design stage[8].HIRAOKA et al.:METHOD OF COMPUTER-AIDED FAULT TREE ANALYSIS FOR HIGH-RELIABLE AND SAFETY DESIGN3Fig.2.FT diagram used in actual design process[14].As a result,accurate FT diagrams help to ensure the quality of products in manufacturing companies.puter-Aided AnalysisFTA is useful for ensuring the quality and safety of products, but an FT diagram must accurately display the events leading to the top event.A practical FT diagram is too large and displays many events(Fig.2)[14].It is laborious for design engineers to create an accurate FT diagram in the product design process. Therefore,it is necessary to support them by providing knowl-edge-based information via computer support in the actual de-sign process.Computer support methods and systems aiding fault tree con-struction have been studied in many technical areas(e.g.,air-craft,nuclear power,and chemical plants).Many attempts have been made to develop a procedure for automated fault tree con-struction and an interactive procedure between a user and a com-puter system.These attempts can be classified into three types of computer-aided approaches to fault tree construction[16]. Thefirst uses the algorithmic procedures of traditional com-puter approaches.The CAT[17]and DIGRAPH[18]computer systems and a system based on Taylor's approach[19]have been developed and reported.The CAT approach is oriented towards a fully automated method based on a component model and a simplified scheme representing the system.The DIGRAPH system is thefirst functional approach using a graph connecting different functions and automatically construct the fault tree. Taylor presented a new component model approach in which each component is separately modeled by a context-indepen-dent representation.Second,CAFTS[20],Minitrees[21],and AFTGM[22]have been developed as automated fault tree generation methodolo-gies.CAFTS is an interactive approach between a user and the system,and is supported by modular component models and transfer logic models.Minitrees consists of component models of the physical behavior that are classified in an FT diagram. AFTGM was developed for electrical and electronic applica-tions and employs graph theory to determine the functional structures of the system.Finally,an expert system approach has been developed for computerized fault tree generation that employs artificial intel-ligence(AI).STARS[23]is an expert system for fault tree con-struction.Expert systems are designed so that the knowledge used in an application is separated from the reasoning mech-anism used to determine new facts and solve problems.Such systems employ an inference-engine-based computer code. C.Issues in Previous StudiesAutomated fault tree generation is faster and easier than a manual approach in the design phase,but it acts as a black box regarding FT diagram generation and its accuracy cannot be confirmed.Therefore,design engineers are not responsible for the accuracy of the FT diagram,and ultimately for the safety and reliability of a product.It is important that design engineers can interpret the obtained FT diagram.Furthermore,the methods outlined in the previous section are design support systems that require a database to be established correctly in accordance with the defined notation.Converting enormous amounts of corpo-rate design data into notation to establish the database requires a lot of labor hours and days of work.These were issues in pre-vious studies on the development of computer software.In this paper,we propose a new approach to computerized support for FTA,but that does not rely on“black box”software, and the interpreter of the obtained FT diagram is not a computer but a design engineer,who does not have to build a new database for the company.III.FTA IN THE D ESIGN P ROCESS AND I SSUES Design engineers must think logically when deciding the di-mensions,tolerances,and specifications of a system.They un-consciously logically consider tree structures along with dy-namics and engineering principles,and then make decisions re-garding the design process in accordance with this considera-tion.FTA is a familiar and important tool that visualizes the possibilities for system failure considered by design engineers. An FT diagram is a tool for visualizing the process of design consideration and can also be verified by a chief engineer and a senior manager in the design review.However,it takes time and effort for design engineers and a design team to create an accurate FT diagram.The following issues that design engineers must consider when creating an FT diagram in an actual design process at Jatco Ltd.have been defined[12].We believe that many manufacturing companies have the same issues and problems.•Since technical knowledge and profound expertise are required to create an FT diagram,it is difficult task for younger design engineers.•Since the thoughts of experienced design engineers are affected by past designs,problems,and experiments on products,it is difficult for experienced design engineers to create an error-free accurate FT diagram.4IEEE TRANSACTIONS ON RELIABILITY•Since an FT diagram for an actual design is complicated and the scale is large,checking and the correction of misun-derstandings and oversights may be difficult with the staff available.•Since,during the process of creating a new FT diagram, feedback from senior engineers and corrections must be repeatedly incorporated until the FT diagram is complete, its correction is a time-consuming process. Experienced design engineers are much more likely to de-scribe only the failures that they have experienced in an FT dia-gram,resulting in the FT diagram lacking some events.After re-ceiving feedback from senior engineers,the FT diagram is mod-ified by trial and error.Thoughts being affected by past experi-ences is a general phenomenon that is called“cognitive bias”in psychology[24],and it is frequently found in experienced design engineers.This psychological phenomenon probably af-fects an engineer thought in the actual design process of all com-panies.Thus,enabling design engineers to efficiently create an accurate FT diagram is a major challenge.IV.S UPPORT M ETHODS FOR FTAA.Concept of Classifying an FT DiagramFTA is a systematic method in which the possible causes of fault events can be analyzed and visualized during the product design and development process in the form of an FT diagram. Even in the fault analysis of a single component,the FT diagram frequently becomes large(Fig.1),since it is based on logic. Therefore,the FT diagram of the entire product has a much larger scale,and the checking and correction of possible fault events using human resources is difficult.FT diagrams are clas-sified as follows at Jatco Ltd.so that they can be easily handled by design engineers:•FT diagram of system failure;•FT diagram of component failure;•FT diagram of control failure.An FT diagram of system failure is defined as a tree diagram of some failures that occur between multiple components and controls,and an event that occurs at the end of the diagram is defined as a component failure or control failure.In an FT dia-gram of component failure,the breakage,wear,leakage,and so forth,of a component is defined as the top event.The FT dia-gram of control failure describes a failure in the control system such as a hydraulic system or an electronic system,and the con-trol logic and its input(from a sensor,etc.)are factors causing failure.From its definition,an FT diagram of system failure is composed of a complicated combination of top events in FT di-agrams of component failure and control failure,as shown in Fig.3[15]–[18].This approach to classifying FT diagrams has generally been used in previous studies[21].The proposed method of supporting the creation of FT dia-grams using bidirectional arrows is shown in Fig.3.Since the FT diagram of component failure follows physical phenomena in many cases,we support the creation of FT diagrams using the quantity dimension indexing method[11]–[13].Since the engi-neers responsible for the system and its control use a block dia-gram to analyze the behaviors of the system and control,we sup-port the creation of FT diagrams based on a block diagramincor-Fig.3.Structure of FT diagrams and support method[24].porating the FT diagrams of system failure and control failure. In this way,it is possible to support the creation of FT diagrams of a large-scale system or product by combining these support methods.B.Knowledge Management for FTA in Design ProcessThe concept of our proposed method of FTA is not the auto-mated generation of an FT diagram but a support system based on knowledge management for creating an FT diagram in the design process of product development.Knowledge manage-ment is a promising approach for supporting such complicated design processes,in which design knowledge and information are compileusing information technology then used.An approach to knowledge management based on physical quantities has been discussed in some studies[10].If we select the physical quantities appearing in two descriptions and rep-resent them using SI units(the international system of units), we can estimate their possible relevance because they have a common physical quantity such as temperature(K).This sug-gests a possible advantage of representing physical quantities as an index for estimating the relevance between design knowl-edge descriptions.On the basis of this observation,we propose quantity dimension indexing as a method for design knowledge management and describe the use of this method for FTA.1)Quantity Dimension Indexing:In SI units,all physical quantities describing physical phenomena can be defined by a combination of seven base quantities(and their units):length (m),mass(kg),time(s),electric current(A),thermodynamic temperature(K),amount of substance(mol),and luminous in-tensity(cd).The unit of a quantity is represented as a seven-di-mensional(7-D)vector in a space asHIRAOKA et al.:METHOD OF COMPUTER-AIDED FAULT TREE ANALYSIS FOR HIGH-RELIABLE AND SAFETY DESIGN5TABLE ID IMENSIONS OF V ARIOUS QUANTITIES For example,force kg m/s m kg s is expressed as [110000].We call this 7-D vector a quantity dimension vector.Examples of quantity dimension vectors for various quantities are listed in Table I.Because of the generality,objectivity,and universality of SI,it covers all physical quantities that may appear in any design knowledge or design problem in the past,present,or future,TABLE I (Continued.)D IMENSIONS OF V ARIOUS QUANTITIESand the same physical quantities are represented as the same vectors regardless of differences between people,products,do-mains,organizations,nations,and languages.This is expected to be a promising method for indexing design knowledge from the viewpoint of physical phenomena.One of the authors pre-viously reported that this method is effective for design knowl-edge management [11].6IEEE TRANSACTIONS ONRELIABILITYFig.4.FT diagram and quantity dimension indexing.(a)FT diagram.(b)FT diagram with quantity dimension indexing.2)Quantity Dimension Indexing Support for an FT Dia-gram:An FT diagram for component failure places a fault of a component as the top event.Since a fault of a component occurs following various physical phenomena,the events logi-cally leading up to the top event can mostly be expressed by a physical ually engineers include literal expression in FT diagrams as shown in Fig.4(a)for example.In this study,quantity dimension indexing is applied to such literal expressions as shown in Fig.4(b),as follows.•A physical quantity is defined by its unit expressions such as[N/m2].•The operator‘@’is used to assigning a description string toa physical quantity,for example,[N/m2]@“stress at con-tact”.•A fault value is represented qualitatively,similarly to in qualitative physics(e.g.,[25]).When the occurrence of a fault is because the magnitude of a physical quantity is above(below)the normal range of values,its fault value is represented as“”(“-”).•The operator‘:’is used to assign a qualitative fault value to a physical quantity,for example,[N/m2]@“stress”:means“the stress in N/m2is above the normal range of values.”When expanding a physical quantity of an upper event into dis-junctions or conjunctions of physical quantities of lower events, there appear to be two typical types of expansion.Thefirst type is the decomposition of a physical quantity into those with the same unit dimension,as in the second disjunction in Fig.4(b). In this case,the addition and subtraction of the physical quanti-ties of lower events should comprise the physical quantity of the upper event.The second type is the decomposition of a physical quantity into those with different unit dimensions,as in thefirst disjunction in Fig.4(b).In this case,the multiplication,divi-sion and exponentiation of the physical quantities of the lower events should comprise the physical quantity of the upper event.TABLE IIC OMMONALITY B ETWEEND IMENSIONLESS QUANTITIESIn this study,we assume that both types of physical quantity de-composition are well-structured and appropriate for satisfying necessary conditions for consistency,whereas other types of decomposition are possibly incorrect or unnecessarily compli-cated.This assumption is used to verify FT diagrams. Furthermore,since the indices based on the quantity dimen-sion vectors of each event can be easily found by the computer installed in the system,design engineers can obtain candidate patterns of events from a database and select the correct pattern. In design,dimensionless quantities such as the number of gear teeth,strain[m/m],and energy efficiency[J/J]are often used.Since the quantity dimension vectors of these quantities are the same,i.e.,[0000000],we cannot distinguish the number of gear teeth,strain,and energy efficiency.To solve this problem,special processing is introduced for dimension-less quantities as follows.1)A unit symbol“_”is introduced to directly define dimen-sionless quantities such as the number of items.2)When the resulting dimension vector of a quantity is[0000000],a definition structure is considered for the quantity.When a dimensionless quantity is defined in terms of quantities and by either division or multiplication ,a set of quantities appearing in the definition such as and are considered as defining quantities.Whenis[m/m],,and[(N*m)/J],for example,the defining quantities are{m,m},{m,m},and{(N*m), J},respectively.3)When two dimensionless quantities share the definingquantities of the same dimension,the two dimensionless quantities are regarded as having definition commonality.Table II shows examples of this.4)Similarity estimation between quantities is segmentalizedintofive degrees as shown in Table III.As a result,higher similarity is estimated between two dimen-sionless quantities with definition commonality than between those without definition commonality.3)Procedure Employed in Support System for an FT Dia-gram:Fig.5shows the computer-aided support process con-structed from the concepts of the support system used to create FT diagrams[12].After this system initially performs the quan-tity dimension indexing of a newly created FT diagram on aHIRAOKA et al.:METHOD OF COMPUTER-AIDED FAULT TREE ANALYSIS FOR HIGH-RELIABLE AND SAFETY DESIGN7TABLE IIID EGREE OFS IMILARITY B ETWEEN QUANTITIESFig.5.Support process of quantity dimension indexing [12].computer,the user checks and corrects it to determine the quan-tity dimension index of each event.The system judges the log-icality of each event by quantity dimension indexing and dis-plays the results in different colors (red:incorrect,blue:correct,yellow:caution advised).When it finds a mistake,the software searches the database for a pattern similar to the event in the FT diagram.It calculates the similarity between the mistaken event and the quantity dimensions of the patterns registered in the database,and presents the patterns to the user in order of de-creasing similarity,similarly to a search engine.The userselectsFig.6.Fault-cause patterns for excess electrical resistance.(a)Electrical resis-tance of object.(b)Fault-cause expansion.the pattern judged to be correct among the presented candidates and corrects the event.We considered the creation of two databases containing the past design data and theories.One database contains the pat-terns of FT diagrams created when resolving previous problems (experimental patterns),and the other database contains the pat-terns included in a textbook such as physical formulas and equa-tions (theoretical patterns).A new FT diagram should be com-pared with those in the two databases.If the experimental pat-tern database contains the new FT diagram,design engineers can easily utilize the know-how of the company by referring to the matched patterns.If the theoretical pattern database contains the new FT diagram,it allows the consistency with theories to be confirmed.Furthermore,by accumulating the FT diagrams in a database,the know-how on which FT diagrams are based can be compiled in a database.This means that we can update a data-base of FT diagrams in sequence by registering FT diagrams that have been made in actual design and whose logicality has been verified without building a new database.Note that the data-base of theoretical patterns comprises common data compiled by the University of Tokyo from textbooks and papers and is not confidential.The experimental patterns are confidential and were created to run previous FT diagrams in this system,change their format,and confirm their validity.It took one person,a few。

相关文档
最新文档