2019年全国各地中考数学压轴题分类汇编:几何综合(浙江专版)(原卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国各地中考数学压轴题分类汇编(浙江专版)
几何综合
1.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.
(1)求线段CE的长;
(2)若点H为BC边的中点,连接HD,求证:HD=HG.
2.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,
①求证:OD=OA.
②当OA=1时,求△ABC面积的最大值.
(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.
3.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.
(1)求证:BG=DE;
(2)若E为AD中点,FH=2,求菱形ABCD的周长.
4.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.
(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.
(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.
5.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,
CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.
(1)求证:BD=BE.
(2)当AF:EF=3:2,AC=6时,求AE的长.
(3)设=x,tan∠DAE=y.
①求y关于x的函数表达式;
②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.
6.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.
(2)当BE=4,CD=AB时,求⊙O的直径长.
7.(2019•嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:
(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.
(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).
8.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.
(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.
(3)推理:证明图2中的四边形PQMN是正方形.
(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.
9.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).
(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;
(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.
①当点Q与点C重合时,求证:直线l1与⊙Q相切;
②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN
是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.
10.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.
(1)求OC的长和点D的坐标;
(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.
①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点
G也随之运动,请直接写出点G运动路径的长.
11.(2019•绍兴)在屏幕上有如下内容:
如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.
(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.
(2)以下是小明、小聪的对话:
小明:我加的条件是BD=1,就可以求出AD的长
小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.
12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.
(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.
(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.
13.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,
①当A,D,M三点在同一直线上时,求AM的长.
②当A,D,M三点为同一直角三角形的顶点时,求AM的长.
(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.
14.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.
(1)若a:b的值为1,当MN⊥EF时,求k的值.
(2)若a:b的值为,求k的最大值和最小值.
(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.
15.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.
(1)求的度数.
(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.
16.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.
(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.
(2)已知点G为AF的中点.
①如图2,若AD=BD,CE=2,求DG的长.
②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试
说明理由.
17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.
(1)求证:DE是⊙O的切线.
(2)若DE=,∠C=30°,求的长.
18.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.
(1)求CD的长.
(2)若点M是线段AD的中点,求的值.
(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?
19.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形ABCDE的各条边都相等.
①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;
②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”)
如图3,已知凸六边形ABCDEF的各条边都相等.
①若AC=CE=EA,则六边形ABCDEF是正六边形;()
②若AD=BE=CF,则六边形ABCDEF是正六边形.()
20.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.
(1)求的值;
(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;
(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.。