七年级上册数学教案(北师大版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个性化教学辅导方案

姓名年级:初一教学课题:初一数学

阶段基础()提高(√)强化()课时计划第()次课共()次课

教学

目标

复习并熟练掌握变量之间的关系

重点

难点

熟悉运用函数的三种表示方法

教学

内容

课前检查作业完成情况:优□良□中□差□建议______________________

1

2

与教

学过

程 一、知识结构 第六章 变量之间的关系

一、变量、自变量、因变量 1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y 随另一个变量x 的变化而变化,则把x 叫做自变量,y 叫做因变量。

一.列表法。

采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。

例1:在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型肺炎的抗生素。据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量(微克)与时间(分钟)之间的关系近似地满足下表:

时间

(分钟)

0 20 40 60 80 100 120 140 160 180 200 含药量

(微克) 0 2 4 6 5.7 5.2 4.8 4.4 4 3.6 3.2

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当注射药液60分钟后血液中含药量是多少?

(3)据临床观察:每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的。如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长?

【解】(1)上表反映了注射药液的时间和血液中的含药量这两个变量之间的关系,自变量是注射药液的时间,因变量是血液中的含药量。

(2)当注射药液60分钟后血液中含药量是6微克。

(3)据临床观察:每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的。如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过40分钟后控制病情开始有效,这个有效时间是120分钟(从表格中可以看出:当注射药液达到40分钟时,血液中的含药量上升到4微克,之后继续上升至最高值为6微克,然后缓慢下降,当注射药液160

签字学科组长:学习管理师:

老师课后点评老师最欣赏的地方:老师的建议:

备注

3

相关文档
最新文档