2020年安徽省宣城市中考数学模拟试卷(5月份) (解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年安徽省宣城市中考数学模拟试卷(5月份)
一、选择题
1.﹣1绝对值的相反数是()
A.﹣2B.﹣1C.0D.1
2.计算a3•a•(﹣1)的结果是()
A.a2B.﹣a2C.a4D.﹣a4
3.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×108
4.如图,该几何体的俯视图是()
A.B.
C.D.
5.化简的结果是()
A.x+1B.x﹣1C.﹣x D.x
6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()
A.x<﹣1或x>4B.﹣1<x<0或x>4
C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4
7.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()
A.B.C.2πD.
8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()
A.2a2B.3a2C.4a2D.5a2
9.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()
A.4B.3C.2D.1
10.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()
A.线段AD B.线段AP C.线段PD D.线段CD
二、填空题(本大题共4小题,每小题5分,满分20分)
11.函数y=的自变量x的取值范围是.
12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.
13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是.
14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.
小光的策略是:石头、剪子、布、石头、剪子、布、……
小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)
例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表
局数123456789小光实际策略石头剪子布石头剪子布石头剪子布
小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1
小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、(本大题共2小题,每小题0分,满分0分)
15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|
16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.
(1)求证:四边形AECF是平行四边形.
(2)若AB=5,BC=8,求AF+AG的值.
四、(本大题共2小题,每小题0分,满分0分)
17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.
(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;
(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.
18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15.
.
五、(本大题共2小题,每小题0分,满分0分)
19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.
20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.
(2)若PC=PA,PF=1,求AF的长.
六、(本大题满分0分)
21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;
根据以上信息解答下列问题:
(1)2016年7月份,鄂尔多斯市共接待游客万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是,并补全条形统计图;
(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;
(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.
七、(本大题满分0分)
22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.
八、(本大题满分0分)
23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=
90°.
(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;
(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;
(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.
参考答案
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.
1.﹣1绝对值的相反数是()
A.﹣2B.﹣1C.0D.1
【分析】先根据负数的绝对值是其相反数,再利用相反数得出答案.
解:﹣1的绝对值为1,
所以﹣1绝对值的相反数是﹣1,
故选:B.
2.计算a3•a•(﹣1)的结果是()
A.a2B.﹣a2C.a4D.﹣a4
【分析】根据同底数幂的乘法法则计算即可.
解:a3•a•(﹣1)=a3+1•(﹣1)=﹣a4.
故选:D.
3.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×108
【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.
解:696000千米=6.96×105米,
故选:B.
4.如图,该几何体的俯视图是()
A.B.
C.D.
【分析】找到从几何体的上面所看到的图形即可.
解:从几何体的上面看可得,
故选:A.
5.化简的结果是()
A.x+1B.x﹣1C.﹣x D.x
【分析】将分母化为同分母,通分,再将分子因式分解,约分.
解:=﹣
=
=
=x,
故选:D.
6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()
A.x<﹣1或x>4B.﹣1<x<0或x>4
C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4
【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可.
解:解方程组得:,,
即A(4,1),B(﹣1,﹣4),
所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,
故选:B.
7.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()
A.B.C.2πD.
【分析】先计算圆心角为120°,根据弧长公式=,可得结果.
解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴的长==,
故选:D.
8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()
A.2a2B.3a2C.4a2D.5a2
【分析】根据正八边形的性质得出∠CAB=∠CBA=45°,进而得出AC=BC=a,再利用正八边形周围四个三角形的特殊性得出阴影部分面积即可.
解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,
∴AB=a,且∠CAB=∠CBA=45°,
∴sin45°===,
∴AC=BC=a,
∴S△ABC=×a×a=,
∴正八边形周围是四个全等三角形,面积和为:×4=a2.
正八边形中间是边长为a的正方形,
∴阴影部分的面积为:a2+a2=2a2,
故选:A.
9.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()
A.4B.3C.2D.1
【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;
②根据已知条件得到四边形BMDE是平行四边形,求得BM=DE=BC,根据线段垂
直平分线的性质得到DM垂直平分CF,于是得到结论,
③根据三角形的面积公式即可得到结论;
④设AE=a,AB=b,则AD=2a,根据相似三角形的性质即可得到结论.解:如图,过D作DM∥BE交AC于N,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,AD=BC,S△DCF=4S△DEF
∵BE⊥AC于点F,
∴∠EAC=∠ACB,∠ABC=∠AFE=90°,
∴△AEF∽△CAB,故①正确;
②∵DE∥BM,BE∥DM,
∴四边形BMDE是平行四边形,
∴BM=DE=BC,
∴BM=CM,
∴CN=NF,
∵BE⊥AC于点F,DM∥BE,
∴DN⊥CF,
∴DM垂直平分CF,
∴DF=DC,故②正确;
③∵点E是AD边的中点,
∴S△DEF=S△ADF,
∵△AEF∽△CBF,
∴AF:CF=AE:BC=,
∴S△CDF=2S△ADF=4S△DEF,
故③正确;
④设AE=a,AB=b,则AD=2a,
由△BAE∽△ADC,有=,即b=a,
∴tan∠CAD===.故④正确;
故选:A.
10.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()
A.线段AD B.线段AP C.线段PD D.线段CD
【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x 的范围,结合图象得到答案.
解:由图2知,当x取最小值2时,y=3.
正△ABC的边长为4,则0≤x≤4,
根据等边三角形的性质可知,当AP⊥BC即x=2时,线段AP、PD有最小值,
此时AP=2,PD=AP=,AD=AP cos30°=3,CD=AC﹣AD=1,
故选:A.
二、填空题(本大题共4小题,每小题5分,满分20分)
11.函数y=的自变量x的取值范围是x≥2.
【分析】根据被开方数大于等于0列式计算即可得解.
解:根据题意得,x﹣2≥0,
解得x≥2.
故答案为:x≥2.
12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是n2+2n.
【分析】由第1个图形是2×3﹣3、第2个图形是3×4﹣4、第3个图形是4×5﹣5,据此可得答案.
解:第1个图形是2×3﹣3,
第2个图形是3×4﹣4,
第3个图形是4×5﹣5,
按照这样的规律摆下去,
则第n个图形需要云子的个数是(n+1)(n+2)﹣(n+2)=n2+2n,
故答案为:n2+2n.
13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是10或4.
【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,即可求出斜边的长.解:①如图,因为CD=,点D是斜边AB的中点,
所以AB=2CD=4;
②如图,因为CE═=5,E是斜边AB的中点,
所以AB=2CE=10,
综上,原直角三角形纸片的斜边长是10或4,
故答案为:10或4.
14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.
小光的策略是:石头、剪子、布、石头、剪子、布、……
小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)
例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表
局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子
小光得分33﹣100﹣13﹣1﹣1
小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为90分.【分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据50局比赛后小光总得分为﹣6分,即可得出关于x、y的二元一次方程,由x、y、(25﹣x﹣y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得﹣1分、平不得分,可求出小王的总得分.
解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分.
∵50÷6=8(组)……2(局),
∴(3﹣1+0)×8+3=19(分).
设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,
根据题意得:19+3x﹣y=﹣6,
∴y=3x+25.
∵x、y、(25﹣x﹣y)均非负,
∴x=0,y=25,
∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).
故答案为:90.
三、(本大题共2小题,每小题0分,满分0分)
15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|
【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质、零指数幂的性质进而化简得出答案.
解:原式=+1++2﹣
=+1++2﹣
=4﹣.
16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,
BA的延长线于点E,F,交边BC,AD于点H,G.
(1)求证:四边形AECF是平行四边形.
(2)若AB=5,BC=8,求AF+AG的值.
【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE∥CF,结合AF∥CE,可证得结论;
(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.
【解答】(1)证明:
∵四边形ABCD为平行四边形,
∴AD∥BC,∠BAD=∠BCD,
∵AE、CF分别平分∠BAD和∠BCD,
∴∠BCG=∠CGD=∠HAD,
∴AE∥CF,
∵AF∥CE,
∴四边形AECF是平行四边形;
(2)解:
由(1)可知∠BCF=∠DCF=∠F,
∴BF=BC=AD=8,
∵AB=CD=5,
∴AF=BF﹣AB=3,
∵BF∥DE,
∴∠DCG=∠F,∠D=∠FAG,
∴△DCG∽△AFG,
∴==,
∴DG=AG,
∴AD=AG+DG=AG=8,
∴AG=3,
∴AF+AG=3+3=6.
四、(本大题共2小题,每小题0分,满分0分)
17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.
(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;
(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.
【分析】(1)利用△ABC三边长度,画出以A1为顶点的三角形三边长度即可,利用图象平移,可得出△A1B1C1,
(2)利用点B关于直线AC的对称点D,得出D点坐标即可得出AD与AB的位置关系.解:(1)如图所示:根据AC=3,AB=,BC=5,利用△ABC≌△A1B1C1,利用图象平移,可得出△A1B1C1,
(2)如图所示:AD可以看成是AB绕着点A逆时针旋转90度得到的.
18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15.
.
【分析】过点B作CD⊥AC于点D,根据锐角三角函数的定义即可求出答案.
解:过点B作CD⊥AC于点D,
∵∠A=30°,AB=60,
∴BD=AB=30,
∴AD=BD=30,
在Rt△CBD中,
tan49°=,sin49°=,
∴CD≈26,BC≈40,
∴AC=AD+CD≈78.
五、(本大题共2小题,每小题0分,满分0分)
19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.
【分析】设每枚黄金重x两,每枚白银重y两,根据题意列出方程组即可求出答案.解:设每枚黄金重x两,每枚白银重y两,
由题意得,
解得,
答:每枚黄金重两,每枚白银重两
20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.
(2)若PC=PA,PF=1,求AF的长.
【分析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;
(2)根据(1)中的结论和三角形相似的知识可以求得AF的长.
【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,
∴∠ADF+∠FDC=90°,∠EAC+∠CEF=90°,
∵∠FDC=∠CEF,
∴∠ADF=∠EAC;
(2)连接FC,
∵CD是圆O的直径,
∴∠DFC=90°,
∴∠FDC+∠FCD=90°,
∵∠ADF+∠FDC=90°,∠ADF=∠EAC,
∴∠FCD=∠EAC,
即∠FCP=CAP,
∵∠FPC=∠CPA,
∴△FPC∽△CPA,
∴,
∵PC=PA,PF=1,
∴,
解得,PA=,
∴AF=PA﹣PF=,
即AF=.
六、(本大题满分0分)
21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;
根据以上信息解答下列问题:
(1)2016年7月份,鄂尔多斯市共接待游客150万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是72,并补全条形统计图;
(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;
(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.
【分析】(1)根据条形图和扇形图得到游“其他”的人数和所占的百分比,计算出共接待游客人数,用“乌兰木伦景观湖”所占的百分比乘以360°求出圆心角;用总人数减去各个旅游景点的人数求出黄河大峡谷的人数,从而补全条形统计图;
(2)用总人数乘以去响沙湾旅游的人数所占的百分比,即可得出答案;
(3)列树状图得出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.
解:(1)由条形图和扇形图可知,游其他的人数是12万人,占8%,
则鄂尔多斯市共接待游客人数为:12÷8%=150(万人),
乌兰木伦景观湖所对应的圆心角的度数是:360°×=72°,
黄河大峡谷人数为:150﹣45﹣27﹣30﹣24﹣12=12(万人),补全条形统计图如图:故答案为:150,72;
(2)根据题意得:
200×=60(万人)
答:估计其中选择去响沙湾旅游的人数有60万人;
(3)设a,b,c分别表示响沙湾、成吉思汗陵、蒙古源流,列树状图如下:
由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种
则同时选择去同一个景点的概率是=
七、(本大题满分0分)
22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.
(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;
(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.
【分析】(1)根据题意可以求得w与x的函数关系式,并写出x的取值范围;
(2)根据题意,利用分类讨论的数学思想可以解答本题.
解:(1)由题意可得,
w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,
∴w=10x+10200(60≤x≤260);
(2)由题意可得,
w=10x+10200﹣mx=(10﹣m)x+10200,
当0<m<10时,
x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,
解得,0<m≤8,
当m>10时,
x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,
解得,m≤.
∵<10,
∴m>10这种情况不符合题意,
由上可得,m的取值范围是0<m≤8.
八、(本大题满分0分)
23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=
90°.
(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;
(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;
(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.
【分析】(1)先判断出∠BAD=∠CAE,进而判断出△ABD≌△ACE,最后用勾股定理即可得出结论;
(2)先判断出△ABC∽△ADE,进而得出∠BAC=∠DAE,即可判断出△BAD∽△CAE,最后用勾股定理即可得出结论.
解:(1)CD2+BD2=AD2,
理由:∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS),
∴BD=CE,
在Rt△DCE中,CD2+CE2=DE2,
∴CD2+BD2=AD2,
(2)CD2+BD2=AD2,
理由:∵BA=BC=2AC,DA=DE=2AE,
∴,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵,
∴△BAD∽△CAE,
∴=2,
∴BD=2CE,
在Rt△DCE中,CD2+CE2=DE2,
∴CD2+BD2=AD2,
(3)(mCD)2+(pBD)2=(nAD)2,
理由:∵AB:BC:AC=AD:DE:AE=m:n:p,∴DE=AD,△ABC∽△ADE,
∴∠BAC=∠DAE,
∵,
∴△ABD∽△ACE,
∴,
∴CE=BD,
在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,
∴(mCD)2+(pBD)2=(nAD)2。