(完整版)椭圆基础练习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(完整版)椭圆基础练习题
1. 问题描述
请解决以下椭圆基础练题:
1. 椭圆的标准方程是什么?请给出椭圆标准方程的一般形式和参数的含义。

2. 如何确定椭圆的焦点和直径?请解释每个参数的意义。

3. 已知椭圆的半长轴和半短轴的长度分别为a和b,求椭圆的离心率。

4. 已知一椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0, c),求椭圆的标准方程。

5. 若一椭圆的长轴与x轴夹角为θ,离心率为e,求椭圆的标准方程。

2. 解答
1. 椭圆的标准方程是$x^2/a^2 + y^2/b^2 = 1$,其中a和b分别为椭圆的半长轴和半短轴的长度。

2. 椭圆的焦点和直径可以通过半长轴和半短轴的长度来确定。

焦点F1和F2位于椭圆的长轴上,与长轴的中点O等距离。

焦点和直径的参数含义如下:
- 焦点F1和F2:焦点是椭圆的两个特殊点,其与椭圆上的每个点到焦点的距离之和等于2a,即2倍的半长轴的长度。

- 直径:椭圆的直径是通过椭圆的中心点O,并且两端点与椭圆上的点相切。

直径的长度等于2倍的短轴的长度。

3. 椭圆的离心率e可以通过半长轴和半短轴的长度计算。

离心率的计算公式为e = √(a^2 - b^2) / a。

4. 已知椭圆的焦点F1位于原点,离心率为e,焦点F2位于(0,
c)。

根据定义,焦距为c = ae。

代入焦点和离心率的信息,可以得到椭圆的标准方程为$x^2/a^2 + y^2/(a^2(1-e^2)) = 1$。

5. 若一椭圆的长轴与x轴夹角为θ,离心率为e。

由于椭圆是一个轴对称图形,所以可以将长轴对齐于x轴。

根据该信息,可以得到椭圆的标准方程为$[(x*cosθ + y*sinθ)^2 / a^2] + [(x*sinθ -
y*cosθ)^2 / b^2] = 1$。

以上是关于椭圆的基础练习题的解答。

希望可以帮助到您!。

相关文档
最新文档