四舍法试商
四年级上笔算除法四舍法试商
四年级上笔算除法四舍法试商在四年级上册的数学学习中,笔算除法的“四舍法试商”是一个非常重要的知识点。
它不仅是我们解决除法问题的有力工具,也是后续数学学习的重要基础。
首先,让我们来了解一下什么是“四舍法试商”。
当我们在做除法运算时,比如计算 182÷21,我们要先把除数 21 看成一个接近它的整十数,21 接近 20,这时候就用“四舍”的方法,把 21 看成 20 来试商。
那为什么要采用“四舍法试商”呢?这是因为把除数看成接近的整十数来试商,能让我们更快地找到商的大致范围,从而提高计算的速度和准确性。
接下来,我们通过一个具体的例子来看看“四舍法试商”是怎么运用的。
比如计算 196÷28。
我们先把 28 用“四舍”的方法看成 30 来试商。
196 里面大概有 6 个 30,所以我们先试商 6。
用 6 去乘 28 得到 168,然后用 196 减去 168 得到 28,这说明商 6 小了,需要调大。
我们再试商 7,7 乘 28 等于 196,刚好除尽。
在运用“四舍法试商”时,要注意可能会出现初商过大或过小的情况。
如果初商过大,乘得的积大于被除数,就要把商调小;如果初商过小,余数大于除数,就要把商调大。
为了更好地掌握“四舍法试商”,我们可以多做一些练习。
比如:252÷36、175÷25 等等。
在做这些练习的时候,我们可以按照这样的步骤:第一步,先把除数用“四舍法”看成整十数;第二步,根据估计的商去乘除数;第三步,比较乘得的积和被除数,如果积大于被除数,说明商大了,要调小;如果余数大于除数,说明商小了,要调大;第四步,直到找到合适的商为止。
在实际计算中,有些同学可能会觉得容易出错,这时候不要着急。
可以先把步骤写清楚,多检查几遍。
也可以和同学一起讨论,或者请教老师,找到自己容易出错的地方,加强练习。
“四舍法试商”在我们的生活中也有很多应用。
比如,我们去买东西,如果知道总价和单价,要计算能买多少个,就可能会用到除法和“四舍法试商”。
试商的方法
一些灵活试商的方法(一)“四舍五入法”与“口算法”。
1、用四舍法试商当除数个位上的数就是1、2、3、4时,在一般情况下,可以把除数的尾数舍去,把它瞧作与除数接近的整十数来试商。
但“四舍”初商容易大,如144÷21,把除数“四舍”瞧作20,试商7,而这道题的商就是6。
由此可知,除数若往小瞧,初商容易大。
计算时学生们可记住“四舍商大减去1”的规律。
2、用五入法试商当除数个位上的数就是5、6、7.8、9时,在一般情况下,可以把除数个位上的数“五入”为整十数来试商。
但“五入”初商易小,如246÷27,把除数“五入”瞧作30,试商8,而这道题的商就是9。
从这道题瞧出,把除数往大瞧,初商容易小。
因此要学生理解并记住“五入商小加上1”的规律。
3、用口算法试商这种方法适用于除数十位上的数较小、个位上的数又不接近整十数的情况。
当除数个位上的数就是4、5、6时,也可以瞧成几十五直接口算。
特别就是当除数就是14、15、16、24、25、26等。
例如:教材85页例4,计算时。
学生一般会根据“四舍五入”法把26瞧作30试商,也可能有学生直接用乘法“25×5=125”想商。
这就就是为什么在前面我们要学生熟练几十五乘几的乘积。
这里学生如果对一些数的乘积记得十分清楚,这个商就来得很快。
但不管哪种方法只要能得出正确的商,都应给予肯定。
但在交流不同的算法时,还应让学生了解各自试商方法的不同之处,即使同一种试商方法,在试商的过程中也会有各自的巧妙之处:如有学生在把26瞧作30试商时,当发现商4小了,不就是将4改写成5再试商,而就是根据余数36里面还有一个26,直接确定商5,整个过程既有一般方法又有灵活处理。
在了解了不同的方法后,可以组织学生讨论:您认为哪种方法简便?通过比较使学生了解到:有的计算直接用一位数乘两位数能很快地确定应商几。
但允许学生认为怎样简便就怎样算。
这三种试商方法,就是人教版教材上介绍的,由于除数有时瞧大或瞧小,就出现了初商过小或过大的情况,就需要把初商调大或调小。
《四舍法试商》说课设计(精选4篇)
《四舍法试商》说课设计〔精选4篇〕篇1:《用四舍法试商》的教学反思《用四舍法试商》的教学反思用四舍法试商笔算除法,是四年级上册第六单元的内容,经过上节课的学习,学生对于除数是两位数的笔算除法的书写和计算方法已经掌握,本节课是在上节课的根底上学习除数接近整十数的笔算除法。
教学的重点是让学生会用“四舍”的方法试商并正确计算。
本节课我主要让学生根据已有旧知的经历探究新知。
在复习铺垫局部,我设计了两个不同类型的复习题,“口算”、“括号里最大能填几?”,其目的是为后面的试商和笔算做好准备。
成功之处:本节课我设计了两道例题84÷21和430÷62,很明显例题是让学生利用四舍来试商,教学时,我重点教学例1,先让学生知道将除数21看成20来试商比拟简便,再理解其计算过程,尤其要让他们体会“调商”的过程,最后从练习中感受到当除数不是整十数需要用四舍的方法试商时,商一般偏大。
由于学生已有例1的'经历,所以例2的教学,我放手让学生自学展示。
本节课的难点是让学生理解“用四舍法试出的商偏大,要把商改小。
”为了更好的打破难点,我让小组讨论,在学生已经感受到上面的规律后,我又增加了一个先仔细观察,再发现规律的环节帮助学生重点理解。
从学生课堂练习、学生板演的反应看,局部孩子试商已经明显进步了速度。
改良措施:当然,本节课也有不尽人意之处,如对于个别后进生的关注不够,感觉他们对于所学知识还未完全理解。
另外,如何快速准确的试商还是一个难点,在后面的教学中还要加强练习训练。
篇2:小学数学“四舍”法试商优秀说课稿苏教版小学数学“四舍”法试商优秀说课稿模板我说课的内容是江苏教育出版社九年义务教育六年制教科书第35页例4,“试一试”及相应的“练一练”,练习七的第1—3题。
教材安排了一个例题〔97÷32〕和一题试一试〔2091÷51〕,本局部内容是在学生掌握用整十数除的根底上出现的把除数个位上的数“四舍”看做和他接近的整十数来试商〔不需要调商〕的两位数除法。
除数是两位数的笔算除法-用”四舍”法试商(教案)四年级上册数学人教版
教案:除数是两位数的笔算除法-用”四舍”法试商一、教学内容本节课的教学内容是除数是两位数的笔算除法,使用“四舍”法试商。
这是四年级上册数学人教版的内容,旨在帮助学生掌握除数是两位数的除法运算方法,提高计算能力。
二、教学目标1. 知识与技能:使学生掌握除数是两位数的除法运算方法,能正确进行计算。
2. 过程与方法:培养学生运用“四舍”法试商的技巧,提高计算速度和准确性。
3. 情感、态度与价值观:培养学生独立思考、合作交流的学习习惯,增强解决实际问题的能力。
三、教学难点1. 正确运用“四舍”法试商。
2. 理解除数是两位数的除法运算规律。
3. 提高计算速度和准确性。
四、教具学具准备1. 教具:PPT课件、黑板、粉笔。
2. 学具:草稿纸、计算器。
五、教学过程1. 导入新课通过PPT课件展示除数是两位数的除法运算实例,引导学生回顾已学的除法知识,为新课做好铺垫。
2. 讲解新课(1)讲解“四舍”法试商的原理和步骤。
(2)举例演示除数是两位数的除法运算过程。
(3)引导学生总结除数是两位数的除法运算规律。
3. 练习巩固(1)布置课堂练习题,让学生独立完成。
(2)选取部分学生的练习题进行讲解、评析。
4. 合作交流将学生分成小组,讨论除数是两位数的除法运算技巧,分享学习心得。
5. 课堂小结对本节课所学内容进行总结,强调重点和难点。
6. 布置作业(1)完成课后练习题。
(2)预习下一节课内容。
六、板书设计1. 除数是两位数的笔算除法-用”四舍”法试商2. 教学内容:除数是两位数的除法运算方法及“四舍”法试商技巧3. 教学目标:掌握除数是两位数的除法运算方法,提高计算能力4. 教学难点:正确运用“四舍”法试商,提高计算速度和准确性5. 教学过程:导入新课→讲解新课→练习巩固→合作交流→课堂小结→布置作业七、作业设计1. 完成课后练习题,巩固所学知识。
2. 预习下一节课内容,为新课做好准备。
八、课后反思本节课通过讲解、演示、练习、合作交流等多种教学方式,帮助学生掌握了除数是两位数的除法运算方法,提高了计算能力。
试商调商的方法
试商、调商有规律(一)“四舍五入法”和“口算法”。
1、用四舍法试商当除数个位上的数是1、2、3、4时,在一般情况下,可以把除数的尾数舍去,把它看作和除数接近的整十数来试商。
但“四舍”初商容易大,如43O÷62,把除数“四舍”看作60,试商7,7与62相乘,得434,积比被除数大,说明商7大了,应该改商6,6与62相乘,积是372,43O减去372,余数是58,比除数62小,说明商6合适。
由此可知,除数若往小看,初商容易大。
计算时同学们可记住“四舍商易大,初商可减1”的规律。
2、用五入法试商当除数个位上的数是5、6、7.8、9时,在一般情况下,可以把除数个位上的数“五入”为整十数来试商。
但“五入”初商易小,如197÷28,把除数“五入”看作30,试商6,6与28相乘得168,197减去168得29,余数比除数大,说明商小了。
应该改商7,7与28相乘得196,197减去196得1,余数比除数小,说明商7合适。
从这道题看出,把除数往大看,初商容易小。
因此要记住“五入商易小,初商可加1”的规律。
3、用口算法试商这种方法适用于除数十位上的数较小、个位上的数又不接近整十数的情况。
当除数个位上的数是4、5、6时,也可以看成几十五直接口算。
特别是当除数是14、15、16、24、25、26等。
例如:教材81页例5,计算时。
学生一般会根据“四舍五入”法把26看作30试商,也可能有学生直接用乘法“25×5=125”想商。
这就是为什么在前面我们要学生熟练几十五乘几的乘积。
这里学生如果对一些数的乘积记得十分清楚,这个商就来得很快。
但不管哪种方法只要能得出正确的商,都应给予肯定。
但在交流不同的算法时,还应让学生了解各自试商方法的不同之处,即使同一种试商方法,在试商的过程中也会有各自的巧妙之处:如有学生在把26看作30试商时,当发现商8小了,不是将8改写成9再试商,而是根据余数32里面还有一个26,直接确定商9,而且进一步知道余数是6,整个过程既有一般方法又有灵活处理。
四舍法试商什么意思
四舍法试商什么意思
用“四舍”法试商,是把除数根据四舍法,看成和它相近的整十数进行计算,除数变小了,所以商会偏大;用“五入”法试商,是把除数根据五入法,看成和它相近的整十数进行计算,除数变大了,所以商会偏小。
在取小数近似数的时候,如果尾数的最高位数字是4或者比4小,就把尾数去掉。
如果尾数的最高位数是5或者比5大,就把尾数舍去并且在它的前一位进"1",这种取近似数的方法叫做四舍五入法。
扩展资料:
一、算法发展
《九章算术》里也采用“四舍五入”的方法,在用比例法求各县应出的车辆时,因为车辆是整数,他们就采用四舍五入的方法对演算结果加以处理。
公元237年三国魏国的杨伟编写“景初历”时,已把这种四舍五入法作了明确的记载:“半法以上排成一,不满半法废弃之。
”法在这里指的是分母,意思是说,分子大于分母一半的分数可进1位,否则就舍弃不进位。
公元604年的“皇极历”出现后,四舍五入的表示法更加精确:“半以上为时,以下为退,退以配前为强,进以配后为
弱”在“皇极历”中,求近似值如果进一位或退一位,一般在这个数字后面写个“强”或“弱”字,意思就表明它比所记的这个数字多或不足,这种四舍五入法,完全的相同。
二、使用方法
在进行乘法计算时,若所求的积不需太精确,则可用四舍五入法省略两个因数最高位后面的尾数,求近似数,再将求得的两个近似数相乘。
四舍法试商教案
四舍法试商教案教案标题:四舍法试商教案教案目标:1. 理解四舍五入的概念和作用;2. 掌握四舍五入的规则和方法;3. 能够灵活运用四舍五入进行数值估算和商的计算。
教材准备:1. 教学课件或黑板;2. 学生练习册或工作纸;3. 针对四舍五入的示例题目。
教学过程:引入活动:1. 利用教学课件或黑板,展示一个购物小票或者其他有实际数值的例子,并询问学生是否知道如何进行精确的计算。
2. 引导学生思考,当我们遇到一个不太精确的数值时,如何进行估算或近似计算。
知识讲解:1. 解释四舍五入的概念:四舍五入是一种数值近似的方法,通过将一个数值调整到最接近的整数或某个特定位数的数值。
2. 介绍四舍五入的规则:当需要将一个数值精确到某个位数时,若该位数的后一位数大于等于5,则向前一位数进位;若该位数的后一位数小于5,则舍去后面的数。
3. 演示四舍五入的具体步骤和计算方法,并通过示例题目进行讲解。
示范练习:1. 在黑板上或课件上给出一些数值,要求学生根据四舍五入的规则,将其精确到个位、十位、百位等不同位数。
2. 让学生在练习册或工作纸上完成一些四舍五入的练习题,检查他们的答案,并及时解答他们的疑惑。
拓展应用:1. 引导学生思考,在实际生活中,四舍五入有哪些应用场景,如购物结算、科学计算等,并让他们举例说明。
2. 给学生提供一些商的计算题目,要求他们运用四舍五入的方法进行计算,并解释自己的思路和步骤。
总结回顾:1. 对四舍五入的概念、规则和方法进行总结,并与学生一起回顾讨论。
2. 强调四舍五入在数值估算和商的计算中的重要性,并鼓励学生在日常生活和学习中灵活运用这一方法。
教学延伸:1. 鼓励学生在实际生活中寻找更多四舍五入的应用场景,并进行实际操作和计算。
2. 提供更多的商的计算题目,让学生继续巩固和拓展运用四舍五入的能力。
注:根据不同教育阶段的要求,教案的具体内容和难度可以适当进行调整和拓展。
《笔算除法——四舍法试商》教案
3.对于学生的疑问,我应该给予更多的耐心和鼓励,让他们感受到提出问题和解决问题的过程是学习的重要组成部分。
-针对不同的除法问题,如接近整十的除数和远离整十的除数,指导学生选择合适的试商方法。例如,对于接近整十的除数,可以适当四舍,而对于远离整十的除数,则可能需要使用更精确的试商方法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《笔算除法——四舍法试商》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要除法来解决问题的情况?”(如购物时找零、分配物品等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索四舍法试商的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解四舍法试商的基本概念。四舍法试商是指将除数四舍五入到最近的整十数,然后进行除法运算的方法。它在处理两位数的除法问题时,能简化计算过程,提高计算速度。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了四舍法试商在解决实际除法问题中的应用,以及它如何帮助我们快速得到答案。
我尝试通过小组讨论和实验操作来提高学生的参与度和互动性,效果比我预期的要好。学生们在小组中积极讨论,互相学习,这种合作学习的方式有助于他们更好地理解四舍法试商的原理。看到他们在实验操作中能够亲自实践所学知识,并将讨论成果展示出来,我感到非常高兴。
然而,我也注意到,在小组讨论中,部分学生表现得比较被动,可能是因为他们对这个话题还不够自信,或者是对自己的计算能力有所怀疑。在未来的教学中,我需要更加关注这部分学生,鼓励他们积极参与,增强他们的自信心。
6.2.3用“四舍”法试商(教案)四年级上册数学人教版
6.2.3用“四舍”法试商(教案)四年级上册数学人教版在今天的课堂上,我们将一起学习用“四舍”法试商的方法,这是数学人教版四年级上册第六章第二节的内容。
一、教学内容我们使用的教材是数学人教版四年级上册,今天我们将学习第6章第2节,内容是用“四舍”法试商。
这部分内容主要包括理解“四舍”法的概念,掌握使用“四舍”法试商的方法,并能够应用到实际问题中。
二、教学目标通过今天的学习,我希望孩子们能够掌握用“四舍”法试商的方法,并能够灵活运用到解决实际问题的过程中。
三、教学难点与重点今天的教学难点是如何正确使用“四舍”法进行试商,重点是让孩子们理解“四舍”法的意义,并能够独立完成试商的过程。
四、教具与学具准备为了更好地进行今天的教学,我已经准备好了黑板、粉笔以及学生的练习本。
五、教学过程1. 情景引入:我拿出了一袋苹果,告诉孩子们,我想知道这袋苹果一共有多少个,但是我数不清楚,该怎么办?孩子们提出了各种方法,我引导他们思考是否可以用“四舍”法来解决这个问题。
2. 新课导入:我黑板上写下“四舍”法试商的步骤,并解释了每一步的意义。
我让孩子们跟我一起读,并解释了“四舍”法的概念。
3. 例题讲解:我拿出了一道例题,展示了如何使用“四舍”法试商的过程,并解释了每一步的原因。
4. 随堂练习:我让孩子们分成小组,互相试商,并解决了实际问题。
我在每个小组中走了走,回答了他们的问题,并给予了指导。
5. 作业布置:我布置了一道作业,要求孩子们用“四舍”法试商,并解决了实际问题。
六、板书设计我在黑板上写下了“四舍”法试商的步骤,以及每一步的意义。
七、作业设计作业题目:小明有23个苹果,他想把它们平均分成3份,每份有多少个苹果?答案:7个苹果八、课后反思及拓展延伸课后,我反思了这节课的教学效果。
我发现孩子们对“四舍”法试商的理解还不够深入,我需要在未来的教学中加强引导。
同时,我也鼓励孩子们在课后用“四舍”法解决更多的实际问题,提高他们的应用能力。
试商调商的方法
试商、调商有规律(一)“四舍五入法”和“口算法”。
1、用四舍法试商当除数个位上的数是1、2、3、4时,在一般情况下,可以把除数的尾数舍去,把它看作和除数接近的整十数来试商。
但“四舍”初商容易大,如43O÷62,把除数“四舍”看作60,试商7,7与62相乘,得434,积比被除数大,说明商7大了,应该改商6,6与62相乘,积是372,43O减去372,余数是58,比除数62小,说明商6合适。
由此可知,除数若往小看,初商容易大。
计算时同学们可记住“四舍商易大,初商可减1”的规律。
2、用五入法试商当除数个位上的数是5、6、7.8、9时,在一般情况下,可以把除数个位上的数“五入”为整十数来试商。
但“五入”初商易小,如197÷28,把除数“五入”看作30,试商6,6与28相乘得168,197减去168得29,余数比除数大,说明商小了。
应该改商7,7与28相乘得196,197减去196得1,余数比除数小,说明商7合适。
从这道题看出,把除数往大看,初商容易小。
因此要记住“五入商易小,初商可加1”的规律。
3、用口算法试商这种方法适用于除数十位上的数较小、个位上的数又不接近整十数的情况。
当除数个位上的数是4、5、6时,也可以看成几十五直接口算。
特别是当除数是14、15、16、24、25、26等。
例如:教材81页例5,计算时。
学生一般会根据“四舍五入”法把26看作30试商,也可能有学生直接用乘法“25×5=125”想商。
这就是为什么在前面我们要学生熟练几十五乘几的乘积。
这里学生如果对一些数的乘积记得十分清楚,这个商就来得很快。
但不管哪种方法只要能得出正确的商,都应给予肯定。
但在交流不同的算法时,还应让学生了解各自试商方法的不同之处,即使同一种试商方法,在试商的过程中也会有各自的巧妙之处:如有学生在把26看作30试商时,当发现商8小了,不是将8改写成9再试商,而是根据余数32里面还有一个26,直接确定商9,而且进一步知道余数是6,整个过程既有一般方法又有灵活处理。
用四舍法试商课件
04
四舍法试商的实例分析
实例一:简单数字的四舍法试商
总结词:简单明了
详细描述:对于一些较小的数字,可以直接使用四舍法进行试商,例如将26除以 4,可以将26看作24,商为6,实际结果为6余2,符合四舍法的规则。
在确定上下限时,我们需要充分考虑被除数和除 数的性质,以及四舍法的特性。同时,我们也需 要了解不同情况下上下限的变化规律,以便更好 地选择合适的上下限进行试商。
注意试商的误差控制
误差控制是四舍法试商中需要特别关注的一个方面。由于四 舍法本身存在一定的误差,我们需要采取措施来控制误差, 以确保试商结果的准确性。
02 当被除数的第二位数字小于除数的首位数字时, 商的最高位数字应该舍去,即“四舍”。
02 当被除数的第二位数字大于或等于除数的首位数 字时,商的最高位数字应该进位,即“五入”。
四舍法的应用场景
四舍法常用于除数首位数字较小的情况,例如除数小于 50的除法。
在实际应用中,四舍法可以快速地估算出商的大致范围 ,有助于快速解决问题。
用四舍法试商课件
目录
• 什么是四舍法? • 如何使用四舍法试商? • 四舍法试商的注意事项 • 四舍法试商的实例分析 • 四舍法试商的进阶技巧
01
什么是四舍法?
四舍法的义
01 四舍法是一种常用的试商方法,它根据除数的首 位数字的大小来决定商的位数,然后根据被除数 的第二位数字的大小来决定商的最高位数字。
在实际应用中,我们通常会选择比实际需求更高的精度进行试商,以防止精度不足导致的误差 。同时,我们也需要了解不同精度的适用范围和限制,以便更好地选择合适的精度进行试商。
四舍法试商教案
四舍法试商教案四舍法试商教案【教学目标】1. 理解四舍五入的概念和意义。
2. 掌握四舍五入的规则和方法。
3. 能够灵活运用四舍五入进行计算,解决实际问题。
【教学重点】1. 掌握四舍五入的规则和方法。
2. 能够灵活运用四舍五入进行计算。
【教学难点】能够运用四舍五入解决实际问题。
【教学过程】一、导入(5分钟)教师出示一张数学试卷,上面有一道题目:“计算30.564÷3.8,请保留两位小数。
”让学生思考如何计算和保留两位小数。
二、概念解释(10分钟)教师给出四舍五入的概念和意义,即:在对一个数进行四舍五入时,如果这个数的小数部分大于等于5,则进位;如果小于5,则舍去。
四舍五入的目的是简化计算,使结果更加合理。
三、四舍五入的规则和方法(10分钟)1. 对整数部分四舍五入教师以例子引导学生理解四舍五入整数的规则和方法。
2. 对小数部分四舍五入教师以例子引导学生理解四舍五入小数的规则和方法。
四、练习与训练(15分钟)教师出示一些四舍五入的计算题,让学生进行计算并保留指定位数的小数。
五、四舍五入的应用(10分钟)教师给出一些实际问题,让学生运用四舍五入解决,并讨论解决方法的合理性和准确性。
六、拓展延伸(5分钟)教师给出一些拓展的四舍五入问题,让学生进行思考和解决,并展示解决方法和结果。
七、总结与反思(5分钟)教师对本节课所学内容进行总结概括,引导学生回顾学习过程,并检查学生对四舍五入的理解和掌握程度。
【教学反思】在本节课中,教师通过导入引出问题,然后通过概念解释和例子的讲解,掌握了四舍五入的规则和方法。
接着进行了练习与训练、应用和拓展延伸等环节,使学生在实践中巩固与应用所学的知识,较好地达到了教学目标。
但是在教学中,教师应注意针对性地训练学生的计算和分析能力,培养学生灵活应用四舍五入解决实际问题的能力。
同时,教师还应引导学生思考,对所学知识进行总结和反思,提高学生的思维能力和思考深度。
试商调商的方法[详解]
试商、调商有规律(一)“四舍五入法”和“口算法”。
1、用四舍法试商当除数个位上的数是1、2、3、4时,在一般情况下,可以把除数的尾数舍去,把它看作和除数接近的整十数来试商。
但“四舍”初商容易大,如43O÷62,把除数“四舍”看作60,试商7,7与62相乘,得434,积比被除数大,说明商7大了,应该改商6,6与62相乘,积是372,43O减去372,余数是58,比除数62小,说明商6合适。
由此可知,除数若往小看,初商容易大。
计算时同学们可记住“四舍商易大,初商可减1”的规律。
2、用五入法试商当除数个位上的数是5、6、7.8、9时,在一般情况下,可以把除数个位上的数“五入”为整十数来试商。
但“五入”初商易小,如197÷28,把除数“五入”看作30,试商6,6与28相乘得168,197减去168得29,余数比除数大,说明商小了。
应该改商7,7与28相乘得196,197减去196得1,余数比除数小,说明商7合适。
从这道题看出,把除数往大看,初商容易小。
因此要记住“五入商易小,初商可加1”的规律。
3、用口算法试商这种方法适用于除数十位上的数较小、个位上的数又不接近整十数的情况。
当除数个位上的数是4、5、6时,也可以看成几十五直接口算。
特别是当除数是14、15、16、24、25、26等。
例如:教材81页例5,计算时。
学生一般会根据“四舍五入”法把26看作30试商,也可能有学生直接用乘法“25×5=125”想商。
这就是为什么在前面我们要学生熟练几十五乘几的乘积。
这里学生如果对一些数的乘积记得十分清楚,这个商就来得很快。
但不管哪种方法只要能得出正确的商,都应给予肯定。
但在交流不同的算法时,还应让学生了解各自试商方法的不同之处,即使同一种试商方法,在试商的过程中也会有各自的巧妙之处:如有学生在把26看作30试商时,当发现商8小了,不是将8改写成9再试商,而是根据余数32里面还有一个26,直接确定商9,而且进一步知道余数是6,整个过程既有一般方法又有灵活处理。
“四舍法”试商
归纳:如果把除数看作和它接近的整十数来试商,就比较方便了。
62最接近60,把62看作60来试商,这样把430÷62转化成430÷60,应该商几?商写在哪一位上?试商7。因为除数62,不是60,因此,商是否合适,还要看商与除数相乘的情况,可以在商的个位上先轻轻地写上“7”,不行再调商为6。
反馈练习 64÷21 68÷34 92÷23
引导学生观察三道题的除数的个位数。
提问:这三道题的除数的个位数分别是几?
你把它们看做多少来试商?
你是怎样计算的?
归纳小结:当除数的个位是1、2、3、4时,把除数的个位数舍去,看作整十数来试商,试得的商和除数相乘,如果余数比除数小,说明试得的商是合适的。这就是我们今天学习的用“四舍”的方法试商。
30×( )<75 40×( )<180
2、在○里填上>或<
35×4 ○ 138 42×5 ○ 230
3、下面各题应该商几?
91÷20 84÷40
198÷20 215÷30
二、探究新知
出示例3
一个笔袋21元,84元可以买几个?
提问:你能计算出84÷21等于多少吗?
你是怎样想的?
师归纳:如果把除数看作和它接近的整十数来试商,就比较方便了。
21最接近20,把21看作20来试商,这样把84÷21转化成84÷20。
师:应该商几?(4)
师:商写在哪一位上?(除数是几位数,就看被除数的前几位)
师:因为除数21,不是20,因此,商是否合适,还要看商与除数相乘的情况,可以在商的个位上先轻轻地写上“4”然后把4与21相乘,看结果是否等于或小于84。因为21×4正好等于84,说明商4合适,这时将4写清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学内容:四舍法试商知识与技能:1、使学生学会“四舍”的试商方法,正确的计算除数是两位数的除法,知道在什么情况下需要调商,初步掌握调商的方法。
2、培养学生的迁移能力和抽象概括能力。
过程与方法:使学生经历笔算除法试商的全过程,掌握试商的方法。
情感、态度和价值观:培养学生养成认真计算的良好学习习惯。
重点使学生学会用“四舍”的试商方法,正确计算除数是两位数的除法难点掌握试商的方法。
教学方法引导学习方法尝试计算总结教具多媒体课件教学过程教师导学一、复习:1. 口算。
40÷40=50÷50=100÷20=810÷90=540÷60=280÷40=640÷80=560÷70=2. ()里最大能填几?20×()<85 60×()<206 40×()<31690×()<643 70×()<165 30×()<282二、探究新知与巩固练习:出示例3(1)一个笔袋21元,84元可以买几个?提问:你能计算出84÷21等于多少吗?是怎样想的?学生讨论教师归纳:如果把除数看作和它接近的整十数来试商,就比较方便了。
21最接近20,把21看作20来试商,这样把84÷21转化成84÷20,应该商几?商写在哪一位上?试商4。
因为除数21,不是20,因此,商是否合适,还要看商与除数相乘的情况,可以在商的个位上先轻轻地写上“4”然后把4与21相乘,看结果是否等于或小于84。
因为21×4正好等于84,说明商4合适,这时将4写清楚。
反馈练习做一做第1题96÷32 85÷41324÷80 245÷70引导学生观察除数的个位数。
提问:这三道题的除数的个位数分别是几?你把它们看做多少来试商?你是怎样计算的?讲解:96÷32,把32看成30试商,96里有3个30,所以商3,写在个位上。
32×3=96,96-96=0,所以96÷32=3。
(2)一个台灯62元,430元可以买几个?还剩多少元?怎样列式?怎样想的?430÷62=743062434商大了,改商6.643062372归纳:如果把除数看作和它接近的整十数来试商,就比较方便了。
62最接近60,把62看作60来试商,这样把430÷62转化成430÷60,应该商几?商写在哪一位上?试商7。
因为除数62,不是60,因此,商是否合适,还要看商与除数相乘的情况,可以在商的个位上先轻轻地写上“7”,不行再调商为6。
学生试做:小结:用“四舍”的方法,把除数看作整十数来试商,初商容易大,大了要调小(小了要调大)。
三、巩固练习:(1)61÷13 98÷34 143÷22 480÷63(2)解决问题(3)把不对的改正过来(见多媒体课件)638÷72 商9316÷53 商51、学生单独完成2、教师检查并讲解四、总结1、这节课你学习了什么新知识?2、当除数的个数是1、2、3、4时怎样试商?五、作业:第78页练习十四,第3题教学内容:五入法试商教学目标知识与技能:1、学习商是两位数的除法,总结除数是两位数的除法计算方法。
2、巩固除法的估算及验算方法。
过程与方法:使学生经历笔算除法计算的全过程,掌握两位数除法的笔算方法。
情感、态度和价值观:培养学生养成认真计算的良好学习习惯。
重点商的位置。
难点除数是两位数的除法计算法则教学方法引导学习方法尝试计算教具多媒体课件教学过程教师导学一、复习:1. ()里最大能填几?60×()<262 50×()<368 60×()<41730×()<206 80×()<453 90×()<6412. 完成下面的竖式。
156÷32 589÷621、学生单独完成2、教师检查并讲解二、新授:1、出示例4:学校礼堂有28个座位,四年级共有197人,可以坐满几排?还剩几人?问:怎样列式?除数是两位数,先看被除数的前几位试商?19比28大,28除19个十,商几个十?前两位不够除,就看前三位,商应写在哪一位的上面?把28看作30来试商,商6应写在个位上,第一次商后余29比28小,说明商6小了,怎么办?问:这道题的商是几位数?商是多少?观察每次商后的余数,你发现了什么?197÷28=7 (1)61972816829余数比除数大,说明商不合适,小了,改商7.71972819612总结除法的计算法则是什么?三、巩固新知:1.根据试商情况,很快说出准确的商。
(见多媒体课件)2.完成下面的竖式。
想一想:当除数不是整十数时,我们应该怎样求商?(见多媒体课件)3. 计算下面各题,你发现了什么?(见多媒体课件)(1)这些题的商是()或()。
(2)被除数和除数最高位上的数(),并且被除数的前两位比除数()。
1、学生单独完成2、教师检查并讲解四、小结:这节课学习了什么?有什么收获?五、作业:P79 11、12除数是整十数的除法练习课教学内容:教师补充除数是整十数的练习。
教学目标:1、复习除数是整十数除法方法。
2、让学生巩固除法竖式的书写格式。
3、使学生经历笔算除法计算的全过程,巩固算理和计算方法。
4、培养学生养成认真计算的良好学习习惯。
教学重点:使学生掌握除数是整十数的竖式书写格式。
教学难点:除数是两位数,先看被除数的前两位和商的书写位置。
教具准备:练习卡。
教学过程:一、复习导入;1、口算(出示卡片,指名口答)210÷70350÷5080÷20320÷80 50×840×70240÷6060×90270÷904×602、用递等式计算9×60-320 6400÷80-64 75×4+630 376+280÷70笔算除法的计算方法是什么?二、练习内容:1、选择1.51除()的商是6,余数是20。
①171 ②326 ③2602.a是一个非零的自然数,a÷73的余数最大是()。
①72 ②73 ③743. a÷( )=b……50。
除数最小是()。
① 50 ②49 ③514.如果A÷B=C,那么(A×40)÷(B×40)=()①C ②C×40 ③C÷405.选择正确的余数填在□里。
①980÷40=24……□(2,20)②500÷60= 8……□(2,20,200)③2700÷800=3……□(3,30,300)考查目的:(1)被除数、除数、商、余数关系;(2)除数是两位数除法的算理及余数与除数的关系;(3)除数是两位数除法的算理及余数与除数的关系;(4)商不变的规律;(5)商不变的规律及应用。
解析:1.被除数等于商乘除数加余数,51×6+20=326。
2.余数要比除数小,也就是比73小且还最大,因此选择72。
3.根据除数与余数的关系余数是50,而除数要比50大,且最小,因此选择51。
4.虽然不知道A、B具体的数据,但根据题目的描述A除以B等于C,现在A、B同时乘40,商应该不变,所以选择C。
5.此题中的3个小题都是利用商不变的规律进行简算,而且全用到的是被除数、除数同时除以一个相同的数,因此如果有余数,余数应该乘这个相同的数。
所以①被除数、除数同时除以10,余数是应为20;②被除数、除数同时除以10,余数是应为20,③被除数、除数同时除以100,余数是应为300。
答案:1.②;2.①; 3.③;4.①;5.①20、②20、③300。
6.计算239÷78时,把78看做()来试商,商是(),会偏(),所以要把商调整为()。
考查目的:“四舍五入”调商方法。
答案: 80、2、小、3解析:把78看做80,239不够3个80,因此商2,但把78看大了,初商就会小,所以要往大调1,所以商3。
三能力提高:考查目的:除数是两位数的除法口算能力及数量之间的关系。
答案:150÷3=50(人) 400÷50=8(辆)。
解析:要求需要几辆这样的客车?关键得知道有多少人、每辆车可乘多少人,现在每辆车有多少人不知道,因此通过运送150人需要3辆客车,可求每辆车能运送多少人,150÷3=50(人) ,接着就可以求400里有几个50,有几个50就需要几辆车, 400÷50=8(辆)。
2.星期天,四年级170人去公园划船。
四、小结:这节课学习了什么?有什么收获?五、作业:P79 11、12《除数是两位数的除法》同步试题一、填空1.计算239÷78时,把78看做()来试商,商是(),会偏(),所以要把商调整为()。
考查目的:“四舍五入”调商方法。
答案: 80、2、小、3解析:把78看做80,239不够3个80,因此商2,但把78看大了,初商就会小,所以要往大调1,所以商3。
2.□70÷67,可以把67看作()试商,如果商是一位数,方框里最大可以填()。
考查目的:试商方法、商的位数答案: 70、5解析:用四色色五入法试商时,可以把接近整十数的数看成整十数,然后试商,同时在试商时根据数据特点,会判断商的位数,可以检查商的位数对不对。
3.一个数除以38有余数,则余数最大是()。
考查目的:考查余数与除数的关系。
答案:37解析:根据余数与除数的关系——余数比除数小,因此比38小、且最大的数就是37。
4.两个数相除,商是20,如果在被除数和除数的末尾都填上一个0,商是()。
考查目的:商不变的规律的应用。
答案:20解析:两个数相除,商是20,在被除数和除数的末尾都填上一个0,相当于被除数和除数同时乘10,根据商不变的规律,商还应是20。
5.如果4×50+6=206,那么206÷50=()……()。
考查目的:被除数、除数、商、余数的关系及有余数除法验算方法。
答案:4、6解析:被除数等于商乘除数加余数,因此乘法的两个因数应分别作为除数或商,一个为除数那么另一个就应为商,现在50是除数,所以4应为商,而剩下的6应为余数,而且这题,因为余数是6,4只能为商,不可以为除数。
二、选择1.51除()的商是6,余数是20。
①171 ②326 ③2602.a是一个非零的自然数,a÷73的余数最大是()。
①72 ②73 ③743. a÷( )=b……50。
除数最小是()。