江苏省洪泽外国语中学九年级数学下册 图形与证明(二)教案(无答案) 新人教版

合集下载

人教版九年级数学下册《反比例函数的图象和性质》教学设计

人教版九年级数学下册《反比例函数的图象和性质》教学设计

反比例函数的图象和性质(二)三维目标一、知识与技能进一步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.二、过程与方法1.经历用反比例函数的图象和性质解决数学问题的过程.2.进一步体会分类讨论思想特别是数形结合思想的运用.三、情感态度与价值观1.积极参与数学活动、注意多与同伴交流看法.2.在参与数学活动的过程中,体会探索、创新的乐趣,养成乐于探索的习惯.教学重点用反比例函数的图象和性质解决数学中的简单问题.教学难点数形结合的思想在解题中的应用.教具准备多媒体课件.教学过程创设问题情境,引入新课活动11.•作反比例函数图象的基本步骤是:•(•1)•________;•(•2)•_________;•(•3)_________.2.反比例函数y=kx的图象是由_______组成的,通常称为_______,当k>0•时______位于________;当k<0时,_________位于________.3.反比例函数y=kx的图象,当k>0时,在每一个象限内,y的值随x值的增大而________;当k<0时,在每一个象限内,y的值随x的增大而________.4.反比例函数y=kx的图象上任取一点,过这一点分别作x轴、y轴的平行线,与坐标轴围成的矩形的面积是________.5.知识结构反比例函数的图象与性质(1)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩反比例函数的图象是__________(1)当k>0时_________ (2)性质(2)当k<0时__________设计意图:帮助学生回忆节上节课研究过的反比例函数的图象和性质,进一步让学生体会数形结合的思想.师生行为:由学生回答,教师引导学生进一步归纳总结.此活动中,教师应重点关注:①学生能否顺利地完成填空;②学生是否能由反比例函数的图象和性质整合起来理解.二、讲授新课活动2问题:【例3】已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y随x的增大如何变化?(2)点B(3,4),C(-212,-445)和D(2,5)是否在这个函数的图象上?设计意图:根据已知条件确定反比例函数的解析式,并根据函数解析式判断点是否在函数图象上.师生行为:学生独立思考,自己解答.教师巡视解答过程并给予引导.在此活动中,教师应重点关注:①是否理解反比例函数解析式的确定就是k值的确定.②点是否在图象上,只需将点的横、纵坐标代入解析式,看是否符合解析式,即可判断. 生:解:(1)设这个反比例函数为y=k x ,因为它经过点A ,把点A 的坐标(2,6)代入函数式,得6=2k ,解得k=12. 这个反比例函数的表达式为y=12x. 因为k>0,所以这个函数的图象在第一、第三象限,在每个象限内,y 随x 的增大而减小.(2)把点B 、C 和D 的坐标代入y=12x,可知点B 、点C 的坐标满足函数关系式.点D•的坐标不满足函数关系式,所以点B 、点C 在函数y=12x 的图象上,点D 不在这个函数的图象上.活动3问题:【例4】如下图是反比例函数y=5m x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数m 的取值范围是什么?(2)如上图的图象上任取点A (a ,b )和点B (a ′,b ′)如果a>a ′,那么b 和b ′有怎样的大小关系?设计意图:熟练运用反比例函数的图象和性质解答数学问题,特别强调让学生注意数形结合思想的应用.师生行为:让学生先观察图象,然后结合反比例函数的性质完成此题.教师应给学生充分交流的时间和空间.在此活动中,教师应重点关注:①学生能否从图象的特点得到m-5的符号;②学生能否从图象的特点,结合函数的性质解决问题;③学生能否独立思考问题.生:解:(1)反比例函数的图象的分布只有两种可能,分布在第一、•第三象限,或者分布在第二、四象限,在这个函数的图象的一支在第一象限,则另一支必在第三象限.因此这个函数的图象分布在第一、三象限,所以m-5>0,解得m>5.(2)由函数的图象可知,在双曲线的一支上,y 随x 的增大而减小.所以当a>a ′时,b<b ′.三、巩固提高活动4练习:1.练习反比例函数的图象经过点A (3,-4).(1)这个函数的图象分布在哪些象限?在图象的每一支上,y 随x 的增大如何变化?(2)点B (-3,4),点C (-2,6)和点D (3,4)是否在这个函数的图象上?2.如下图是反比例函数y=7n x的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n 的取值范围是什么?(2)在图象上任取一点A (a ,b )和B (a ′,b ′),如果a<a ′,那么b 和b ′有怎样的大小关系?设计意图:进一步熟悉由数得到形的特点,由形得到数的特点,渗透数形结合的思想.师生行为:由学生独立思考完成,教师进一步根据学生的情况进行评析.在此活动中,教师应重点关注:①学生是否具有数形结合的意识.②学生能否有独立思考问题的习惯.生:解:1.(1)设这个反比例函数为y=k x ,因它经过点A (3,-4),把点A 的坐标代入函数式,得-4=3k .解得k=-12.这个反比例函数的表达式为y=-12x.因为k<0,所以这个函数的图象在第二、四象限,在每个象限内,y随x的增大而增大.(2)把点B、C、D的坐标代入y=-12x,可知点B、点C的坐标满足函数关系式,点D的坐标不满足函数关系式,所以点B,点C在函数y=-12x的图象上,点D不在这个函数图象上.2.(1)因为反比例函数的图象的分布只有两种可能,分布在第一、三象限,•或者分布在第二、四象限,这个函数的图象的一支在第二象限,则另一支必在第四象限.因此这个函数的图象分布在第二、第四象限,所以n+7<0,n<-7.(2)由函数的图象可知,在双曲线的一支上,y随x的增大而增大,所以当a<a′时,b<b′.活动5问题:如下图,点A、B在反比例函数y=kx的图象上,且点A、B的横坐标分别为a,2a(a>0),AC⊥x轴,垂足为点C,且△AOC的面积为2.(1)求该反比例函数的解析式.(2)若点(-a,y1),(-2a,y2)在该反比例函数的图象上,试比较y1与y2的大小.设计意图:综合函数与几何知识,提高学生综合运用知识的能力.师生行为:先由学生独立思考,寻找解题的途径.教师应给予适当的引导,特别对于“学困生”.在此活动中,教师应重点关注:①综合运用数学知识的能力;②学生面对困难,有无面对困难的勇气和克服困难的坚强意志;③学生能否借助于新旧知识的联系,转化迁移旧知识.师生共析:通过Rt△AOC的面积S=12OC·AC=2,可知x A·y A=4.又因为点A在双曲线上,所以x A·y A=k,•可求出函数的解析式,再根据反比例函数的性质,k>0,y随x的增大而减小知,•自变量x 越大,函数值反而小,通过比较-a与-2a的大小可知y1与y2的大小.生:(1)解:因为点A在反比例函数y=kx的图象上,设点A的坐标为(a,ka).∵a>0,k>0,∴AC=ka,OC=a,又∵S△AOC=12OC·AC=2.∴12·a·ka=2,k=4,y=4x.即此反比例函数的解析式为y=.(2)∵A点,B点横坐标分别为a;2a(a>0)∴2a>a,即-2a<-a<0.由于点(-2a,y1),(-a,y2)在双曲线上,根据反比例函数的性质k>0,y随x•增大而减小知y1<y2.四、课时小结活动6谈谈你本节课有什么新的收获?掌握反比例函数的性质;会利用待定系数法求函数解析式.设计意图:这种形式的小结,激发学生主动参与的意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要.师生行为:让学生小组讨论、交流本节课的收获.教师根据学生的情况汇总.在活动中,教师应重点关注:①不同层次学生对本节知识的认识程度;②学生独立面对困难和克服困难的能力.板书设计17.1.2反比例函数的图象和性质(二)1.反比例函数①定义②图象③主要性质2.反比例函数的图象和性质的应用例3例43.练习4.小结活动与探究已知力F 所做的功是15焦,则力F 与物体在力的方向上通过的距离s 的图象大致是() 过程:在物理学中,功W=F ·s ,所以F=W s,又因为W=15为定值,所以F 是s 的反比例函数,因为W=15>0,s>0,所以其图象在第一象限.结果:应选B .习题详解习题17.11.(1)S=V h,此函数为反比例函数. (2)y=S x.此函数为反比例函数.2.B 是反比例函数,k=-3 3.(1)>,减小.(2)<,增大,(3)k=3,减小.4.如果y 是x 的反比例函数,那么x 也是y 的反比例函数.5.y 与x 具有正比例函数关系.6.y 与x 具有反比例函数关系.7.(1)设正比例函数y=x 的图象与反比例函数y=k x的图象的交点坐标为(a ,2),则 2,2,4.2;a a k k a =⎧=⎧⎪⎨⎨==⎩⎪⎩解得 所以反比例函数的解析式为y=4x . 当x=-3时,y=-43. (2)反比例函数y=4x 的图象在第三象限函数值y 随x 的增大而减小. 当x=-3时,y=-43;当x=-1时,y=-4. 所以-3<x<-1时,y 的取值范围是-4<y<-43. 8.BD9.(1)y=m x的图象的一支在第一象限,图象的另一支在第三象限,所以>0,得(2)的图象在第一、三象限,所以在每个象限y 随x 的增大而减小,所以b>b ′,•有a<a ′.备课资料参考练习1.如果k>0,那么函数y=k x的图象大致是下图中的( )2.已知y=(a-1)x a 是反比例函数,则它的图象在( )A .第一,三象限B .第二,四象限C .第一,二象限D .第三,四象限3.对于反比例函数y=-2x,下列结论错误的是( ) A .当x>0时,y 随x 的增大而增大B .当x<0时,y 随x 的增大而增大C .x=-1时的函数值小于x=1时的函数值D .在函数图象所在的每个象限内,y 随x 的增大而增大4.对于函数y=-12x,当x>0时,函数的这部分图象在第______象限. 5.若点(-2,-1)在反比例函数y=k x 的图象上,•则当x>•0•时,•y•值随x•值的增大而______.6.如果函数y=kx 222k k +-的图象是双曲线,且在第二、四象限内,那么k=_______.7.已知点P (1,a )在反比例函数y=k x (k ≠0)的图象上,其中a=m 2+2m+3(m 为实数),•则这个函数的图象在第________象限.8.设函数y=(m-2)x 255m m -+.当m 取何值时,它是反比例函数?它的图象位于哪些象限?•在每个象限内,y 随x 的增大而增大还是减小?画出其图象;并利用图象求当12≤x ≤2时,•y 的取值范围. 答案:1.C2.B3.C4.第四象限5.减小6.k=-17.第一、三象限8.m=3时,它是反比例函数,当m=3时,它的图象位于第一、三象限,在每一个象限y 随x•的增大而减小.图略,12≤y ≤2.。

人教版九年级数学下册第二十六章:反比例函数的图像和性质第二课时教学设计

人教版九年级数学下册第二十六章:反比例函数的图像和性质第二课时教学设计

例 1 已知反比例函数的图象经过点 A(2,6). 自主思考,完成例题, 鼓励学生分析思路、过 程,并做补充说明,最 后由教师进行总结得 到反比例函数的代数 意义,用以验证点是否 在反比例函数图像上.
例题 讲解
例题 讲解
让学生识图, 根据函 数图像求解析式中 的未知数, 并根据图 像的变化趋势分析 师生共同分析、思考并 函数值 y 随 x 的变化 完成例题中的 (1) (2) . 情况,体验由“形” 到“数”,进一步领 悟数形结合思想, 同 m -5 时提高从函数图像 例 2 如图是反比例函数 y 的图象的 x 获取信息的能力. 一支.根据图象回答下列问题:
y
.B
.A
O
x
教师引导追问( 3 )与 (2)的区别,学生观察 发现点 A,B 的位置有 三种可能,需要分类讨 论. 引导学生将所有情况 的示意图画出后运用 数形结合的数学思想 方法分析函数值的大 小关系,请一名学生上 讲台展示,掌声鼓励.
(1)图象的另一支在哪个象限?常数 m 的 取值范围是什么? (2)在这个函数图象的某一支上任取点 A(x 1 ,y 1)和点 B(x
1、进一步理解和掌握反比例函数的图像和性质. 2、灵活运用反比例函数的图像和性质解决问题. 3、掌握反比例函数的几何意义,体会数形结合及转化的思想方法.
学习者特征分析
大部分学生学习能力一般,少部分学生有一定分析探究问题的能力,对于模仿学习较易掌握,在反 比例函数图像和性质学习之前,学生已经学习了反比例函数的概念,引导学生类比正比例函数、一 次函数、二次函数的研究方法,研究反比例函数图像和性质的运用,探究反比例函数的几何意义, 并在过程中渗透数形结合及转化的思想方法.

章节名称 学科 依据标准

人教版九年级数学下教案 图形的相似 第二课时

人教版九年级数学下教案 图形的相似 第二课时

27.1 图形的相似第2课时教学目标【知识与技能】1.掌握相似多边形的性质,会利用性质判断相似多边形.2.了解相似比和成比例线段的概念.【过程与方法】经历观察、思考、探索、猜想等活动,提高推理能力.【情感态度】在探索相似多边形的过程中,进一步发展归纳、类比能力,培养学生良好的情感态度. 教学重难点【教学重点】掌握相似多边形性质及判别方法,能用性质解决具体问题.【教学难点】判别两个多边形相似.课前准备无教学过程一、情境导入,初步认识问题 图中的两个大小不同的四边形ABCD 和四边形A 1B 1C 1D 1中,∠A=∠A 1,∠B=∠B 1,∠C=∠C 1,∠D=∠D 1,11111111A D DA D C CD C B BC B A AB ===,因此四边形ABCD 与四边形A 1B 1C 1D 1相似.【教学说明】四边形是学生非常熟知的图形,很容易得出它们相似的结论.让学生通过四边形相似,初步体验相似图形性质.二、思考探究,获取新知问题1 如图,四边形ABCD 与EFGH 相似,求角α,β的大小和EH 的长度x.【教学说明】通过类比,学生能得到两个四边形的对应角相等,对应边的比相等的结论.为进一步探索相似多边形的性质做好铺垫.在这一过程中,教师可适时给出比例线段定义,对其定义,我们应注意:①判别所给出的四条线段是否成比例线段,可先将这四条线段按长、短顺序排列后,再按顺序将两短线段之比与两较长线段之比进行比较即可得知它们是否是成比例线段;②如果知识成比例线段中三条线段的长度,可求出第四条线段之长.这些知识应让学生了解,而后回过来与学生一道得出两个多边形相似的性质:相似的多边形对应角相等,对应边的比相等.三、运用新知,深化理解1.在比例尺为1:1000000的地图上,甲、乙两地的距离为10cm,求两地的实际距离.2.如图所示的两个五边形相似,求a、b、c、d的值.【教学说明】可让学生独立完成,通过此题可加深学生对比例线段的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.四、师生互动,课堂小结1.比例线段的定义如何?如何判别四条线段是成比例线段的?2.相似多边形的性质与判定方法有何区别?3.这节课你的收获有哪些?还有哪些疑问?【教学说明】设置三个问题,师生以谈话交流形式进行,共同总结,及时反思.课后作业1.布置作业:从教材P27-28习题27.1选取.2.完成创优作业中本课时的“课时作业”部分教学反思本课时可以以探究的方式引入,使学生通过操作、观察、猜想、探究、交流、发现等学习方式掌握多边形的性质及判别方法,并且能够运用这些知识解决具体问题.。

江苏省洪泽外国语中学八年级数学下册《11.3 证明》教案(2) 苏科版【精品教案】

江苏省洪泽外国语中学八年级数学下册《11.3 证明》教案(2) 苏科版【精品教案】

课题:11.3 证明(2)教学目标:1.回顾平行线的判定和性质,能主动地区别这些互逆命题; 2.能从“同位角相等,两直线平行”、“两直线平行,同位角相等”这两个基本事实出发,证明平行线的判定定理、平行线的性质定理,并能简单应用这些结论. 教学重点:利用基本事实证明有关平行线的定理 教学难点:证明的基本步骤和书写格式,推理的合理性. 教学过程:一、课前预习与展示1、如图,已知AB ∥CD ,∠B=∠D ,求证:AD ∥BC 。

3、如图,AD 平分∠BAC ,点E 在BC 上,点G 在CA 的延长线上,EG ∥AD ,EG 交AB 于点F ,求证: AF=AG 。

二、探究学习探究(一):从基本事实“两直线平行,同位角相等”出发,如何证明“两直线平行,内错角相等”?1.画出图形,并根据图形写出已知、求证;2.说出你的证题思路;3.完成证明,并与同学交流.结论:定理:两直线平行,内错角相等. (二)、例题讲解FEDCBA321EBA1例1、已知:如图,直线AB 、CD 被直线EF 所截,AB ∥CD.求证:∠1+∠2=180°.例2. 已知:如图a ∥b ,c ∥d ,∠1=50°。

求证:∠2=130°。

分析:思考方法一: 思考方法二:三、课堂练习:1.如图,AB ∥CD ,∠A=25°,∠C=45°,则∠E 的度数是( )2.已知:如图,AD ∥BC ,∠ABC=∠C , 求证:AD 平分∠EAC 。

四.板书设计五.教学反思课题:11.3 证明(2)A. 60°B. 70°C. 80°D. 65°D一、选择题:1.已知:如图, AB∥CD,直线l 分别交AB 、CD 于点E 、F ,EG 平分∠BE F ,若∠EFG=40°,则∠EGF 的度数是 ( ) A.60° B.70° C.80° D.90° 2.如图,等腰△ABC 中,AB=AC ,∠A=44°,CD⊥AB 于D ,则∠DCB 等于 ( )A.44°B.68°C.46°D.22°3.如图, DE∥BC,∠ADE=30°,∠C=120°,则∠A 是 ( ) A.60° B.45° C.30° D.20° 二、填空题:4.已知,如图AB ‖DE ,∠E=65°,则∠B+∠C= .5.如图,AB ‖CD ,AD ,BC 相交于点O ,若∠BAD=35°,∠BOD=75°,则∠C= .6.如图,AB ∥CD ,则图中∠1、∠2、∠3关系是 .7.如图,∠E=∠F=90°,∠B=∠C.AE =AF ,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN .其中正确的结论是 (注:将你认为正确的结论的序号都填在横线上).8.如图(1),∠ABC=∠DCB,请补充一个条件: ,使△ABC≌△DC B .如图(2),∠1=∠2,请补充一个条件: ,使△ABC≌△AD E三.解答题9. 已知:如图,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.求证:AE∥CF ,AE=CF.10. 已知:如图,在△ABC中AB=AC,AB上有一点E,AC延长线上有一点F,BE=CF,连结EF交BC于点G.求证EG=GF.。

人教版九年级下册数学《反比例函数的图像和性质》第二课时教案

人教版九年级下册数学《反比例函数的图像和性质》第二课时教案

26.1.3反比例函数的图象与性质第二课时教学目标1、知识与技能1、进一步掌握反比例函数的图象与性质,理解反比例函数图象的增减性。

并初步运用性质解决一些简单的实际问题。

2、根据图象分析并掌握反比例函数的性质,进一步感受数形结合的思想方法.2、过程与方法经历探究反比例函数性质的过程,培养和发展学生的交流、合作和探究能力,提高学生的观察、识图能力,发展学生归纳与概括的能力。

在充分让学生参与学习的过程中,渗透“特殊—一般”“类比”的学习方法和“数形结合”“变化与对应”的思想方法。

3、情感态度与价值观通过对反比例函数图象性质的探究,充分展现了数学的直观形象美,增强学生对数学学习的审美情趣和求知欲。

培养学生严谨、科学的学习态度,勇于探索、创新的精神,并对学生进行由一般到特殊的辩证唯物主义观点教育。

教学重点:反比例函数的性质及应用。

难点:k的几何意义及应用。

专家建议1、本节是在学生学习了反比例函数的图象和性质的基础上,让学生进一步掌握其性质,以及k的几何意义,初步利用性质解决一些实际问题而设计。

所以,教师一定做好性质的复习与渗透。

2、教师在这一过程中,一定要注意数形结合思想,特别是对于性质的进一步理解和k的几何意义时。

注重学生认知的规律和过程。

3、注重知识的讲练结合,培养学生的动手能力和解决问题的能力。

教学用具:多媒体教学方法:数形结合法、合作、探究教学教程:一、复习巩固,情景导入师:上节课我们学习了反比例函数的图象和性质,请同学们完成下列表格:师:这节课我们继续学习反比例函数的图象和性质以及实际应用。

二、典例分析教师出示题目,先让学生独立思考,然后再让学生发表各自的理解意见,最后教师进行示范讲解。

例1:已知反比例函数的图象经过点A(2,6).(1)这个函数的图象分布在哪些象限?y 随x 的增大如何变化? (2)点B(3,4)、C( 544,212--)和D (2,5)是否在这个函数的图象上? 的增大而减小。

人教版九年级下册数学《图形的相似》说课稿

人教版九年级下册数学《图形的相似》说课稿

图形的相似(2)说课稿
各位评委,老师大家好:
我说课的内容是:人教版九年级义务教育课程标准实验教科书九年级下册第二十七章27.1《图形的相似》。

下面我从教材分析,教法学法,教学过程,板书设计四个方面做以说明:
一、说教材:
(一)教材的地位和作用
现实世界中既有图形的全等变换,也有图形的相似,在义务教育阶段,让学生接触相对完整的图形变换,是义务教育的性质所决定的。

本章是继“图形全等、三角形全等”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用。

因此学习本节内容,不仅是认识、描述物体的形状,更好地刻画现实世界的必要手段,也是密切数学与现实之间必然联系以及“图形与空间”各部分之间内在联系的重要桥梁。

(二)教学目标:
1、知识与技能:经历探索相似多边形特征的过程,掌握相似多边形的特征。

2、过程与方法:在探索相似多边形特征的过程中,进一步发展学生观察、操作、归纳、类比、反思、交流等多方面的能力,提高学生的数学思维水平。

3、情感态度与价值观:通过观察、推断得到数学猜想、获得数学结论的过程,体验数学活动充满了探索性和创造性。

(三)教学重点与难点:相似多边形的特征既是本节课的重点,也是本节课的难点。

二、说教法与学法:
本节教学主要采用目标教学法,并结合新课改的合作、探究式教学法,以探究、发现为主线,展示学生的思维过程,从特殊到一般,从具体到抽象,从简单到复杂。

三、说教学过程:
【师】利用上述方法,我们可
设计意图:体现整个教学内容及过程,更体现本节课的重点和难点,使学生对本节课教学内容一目了然,印象清晰系统,加深理解。

苏科版初中数学九年级上册第一章《图形与证明(二)》教学案及课时练习

苏科版初中数学九年级上册第一章《图形与证明(二)》教学案及课时练习

苏科版初中数学九年级上册第一章《图形与证明(二)》教学案及课时练习1.1-1.2等腰三角形的性质和判定、直角三角形全等的判定学习目标:通过对本章知识的小结与梳理,进一步掌握等腰三角形的性质和判定、直角三角形全等的判定、角平分线的性质定理与判定定理、特殊四边形(平行四边形、矩形、菱形、正方形)的定义、性质和判定;等腰梯形的性质和判定;中位线定理,并会灵活运用.学习难点:性质定理和判定定理的应用课前预习1.根据“等腰三角形,等腰梯形的性质定理与判定定理,直角三角形全等的判定定理,角平分线的性质定理与判定定理,三角形中位线定理等。

”填表:图形名称图形性质(符号语言)判定(符号语言)等腰三角形等腰梯形角平分线线段的垂直平分线三角形中位线梯形中位线平行四边形矩形菱形正方形直角三角形全等的判定方法有:。

知识梳理1、我们学习了四边形和一些特殊的四边形,右图表示了在某种条件下它们之间的关系。

如果①,②两个条件分别是:①两组对边分别平行;②有且只有一组对边平行。

那么请你对标上的其他6个数字序号写出相对应的条件。

例题分析3、如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。

D图1A B C E (1) 求证:BD =CD ;⑵如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论。

【课后作业】1.平行四边形ABCD 中,如果∠A=55°,那么∠C 的度数是(A)45° (B)55° (C)125° (D)145°2.如图1,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC=12,则DE 的长是(A)4 (B)5 (C)6 (D)73、已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.4、如图11,已知ABC ∆中,D 是AB 中点,E 是AC 上的点, 且ABE BAC ∠=∠,EF ∥AB ,DF ∥BE ,⑴猜想DF 与AE 有怎样的特殊关系? ⑵证明你的猜想.5、如图,在□ABCD 中,∠DAB=60°,点E 、F 分别在CD 、AB 的延长线上,且AE=AD ,CF=CB .(1)求证:四边形AFCE 是平行四边形;(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.1.3平行四边形、矩形、菱形、正方形的性质和判定1、根据平行四边形、矩形、菱形与正方形之间的关系,归纳出正方形的判定定理2、能运用正方形的判定定理进行简单的计算与证明3、能运用正方形的性质定理与判定定理进行比较简单的综合推理与证明1.正方形的定义是 2.正方形的性质有 .3如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成( ) A.22.5B.30 C.45D.601、菱形添加一个怎样的条件可以成为正方形?试证明。

第一章图形与证明(二)学案_苏科版_初三_九年级 图形与证明(二)小结与思考

第一章图形与证明(二)学案_苏科版_初三_九年级 图形与证明(二)小结与思考

第一章 图形与证明单元测试【知识回顾】【基础训练】1.梯形的中位线长为3,高为2,则该梯形的面积为 。

2.若等腰三角形的一个外角为70°,则它的底角为 度。

3.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为 A .9cm B .12cm C .15cm D .12cm 或15cm4.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为__________cm .2.直角三角形全等的判定: 4.等腰梯形的性质和判定 5.中位线 三角形的中位线 梯形的中位线注意:若等边三角形的边长为,则:其高为: ,面积为: 。

1.等腰三角形 等边三角形的性质和判定 等腰三角形的性质和判定 线段的垂直平分线的性质和判定 角的平分线的性质和判定3.平行四边形平行四边形的性质和判定:4个判定定理矩形的性质和判定:3个判定定理 菱形的性质和判定:3个判定定理 正方形的性质和判定:2个判定定理 注注意:(1)中点四边形 ①顺次连接任意四边形各边中点,所得的新四边形是 ; ②顺次连接对角线相等的四边形各边中点,所得的新四边形是 ; ③顺次连接对角线互相垂直的四边形各边中点,所得的新四边形是 ;④顺次连接对角线互相垂直且相等的四边形各边中点,所得的新四边形是 。

(2)菱形的面积公式:(是两条对角线的长) 注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。

即需要掌握常作的辅助线。

(2)梯形的面积公式:(-中位线长)5.如图,点P 到∠AOB 两边的距离相等,若∠POB =30°,则 ∠AOB =_____度.6.如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米. 7.平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( ) A .AB=BC B .AC=BD C .AC ⊥BD D .AB ⊥BD 8.(08,扬州)如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 、当AB=BC 时,它是菱形 B 、当AC ⊥BD 时,它是菱形 C 、当∠ABC=900时,它是矩形 D 、当AC=BD 时,它是正方形 9.下列条件中不能确定四边形ABCD 是平行四边形的是( )A.AB=CD ,AD ∥BCB.AB=CD ,AB ∥CDC.AB ∥CD ,AD ∥BCD.AB=CD ,AD=BC10.如图,下列条件之一能使平行四边形ABCD 是菱形的为( ) ①AC BD ⊥ ②90BAD ∠= ③AB BC = ④AC BD = A .①③B .②③C .③④D .①②③11.如图,在四边形ABCD 中,A D ∥BC ,∠D=90°,若再添加一个条件,就能推出四边形ABCD 是矩形,你所添加的条件是( ).(写出一种情况即可) 12.)如图,菱形ABCD 中,对角线AC ,BD 相交于点0,若再补充一个条件能使菱形ABCD 成为正方形,则这个条件是( )(只填一个条件即可).13.(08,临沂)如图,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为A . 32B . 33C . 34D . 3 14.顺次连接等腰梯形四边中点所得四边形是A.菱形B.正方形C.矩形D.等腰梯形ABCD 第10题DAB C 第11题ADCBO第12题第13题15.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是 A .平行四边形 B .对角线相等的四边形 C .矩形. D .对角线互相垂直的四边形 16.如图所示,有一张一个角为60拼成的四边形是 ()A .邻边不等的矩形B .等腰梯形C .有一个角是锐角的菱形D .正方形17.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm 18.如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为 。

人教版九年级数学下册:26.1.2反比例函数的图像和性质(教案)

人教版九年级数学下册:26.1.2反比例函数的图像和性质(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数,它描述了一种变量之间的反比关系。这种关系在现实生活中广泛存在,如物体在反比例力作用下的运动等。
2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以恒定功率行驶,功率与速度的平方成正比,我们可以通过反比例函数来描述功率与速度的关系,并分析在不同速度下能行驶的最大距离。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数的图像和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过距离和速度成反比的情况?”(例如,汽车以恒定功率行驶,速度越快,能行驶的距离越短。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
实践活动和小组讨论的环节,学生们表现得非常积极。他们能够将反比例函数的概念应用到实际问题中,并通过小组合作解决问题。这一过程不仅加深了他们对反比例函数的理解,还培养了他们的团队合作能力。但在讨论过程中,我也注意到有些学生较为内向,不太愿意表达自己的观点。在今后的教学中,我会更加关注这部分学生,鼓励他们积极参与,增强自信心。
二、核心素养目标
1.培养学生运用数学符号进行表达和交流的能力,通过反比例函数的学习,使学生在实际问题中抽象出数学模型,提高数学建模素养。
2.培养学生运用数形结合思想分析问题,和空间想象能力。
3.培养学生运用函数性质解决问题的能力,让学生在实际情境中发现反比例函数的增减性和奇偶性,提高数学抽象和逻辑推理素养。
此外,通过今天的课程,我也意识到教学过程中要充分关注学生的个体差异。在难点内容的讲解上,需要放慢节奏,给予学生更多的消化和理解时间。同时,针对不同学生的掌握程度,布置分层作业,使他们在巩固知识的基础上,能够有所提高。

第一章图形与证明(二)学案_苏科版_初三_九年级 第一章

第一章图形与证明(二)学案_苏科版_初三_九年级 第一章

年级(上)数学期末复习――图形与证明(二)一、选择题1、等腰三角形一底角为500 ,则顶角的度数为()A、65°B、70°C、80°D、40°2、△ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为A、35°B、40°C、70°D、110°()3、用两个全等的直角三角形拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等腰三角形,一定可以拼成的图形是()A、(1)(2)(5)B、(2)(3)(5)C、(1)(4)(5)D、(1)(2)(3)4、一个菱形的两条对角线长分别是6cm,8cm,则这个菱形的面积S等于( )A、48cm2B、24cm2C、12cm2D、18cm25、若一个梯形的中位线长为15,一条对角线把中位线分成两条线段, 这两条线段的比是3:2,则梯形的上、下底长分别是( )A、3,4.5B、6,9C、12,18D、2,36、若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为()A、75°或15°B、30°或60°C、75°D、30°7、若矩形的一个内角的平分线把矩形的一条边分成3cm和5cm的两段,则该矩形的周长为A、20B、22C、26或22D、30 ()cm二、填空题8、依次连接四边形ABCD各边的中点所得的四边形是矩形,则原四边形。

9、菱形的一个内角是60,一边长6cm,则它的面积为,较长的那条对角线长为。

10、在平行四边形ABCD中,补充一个条件,即可得到平行四边形ABCD是矩形。

11、在△ABC中,AD是边BC上的中线,AB=5,AD=2,AC=3,则BC= 。

12、如图,若将四根木条钉成的矩形木框变为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的一个最小内角的值等于。

九年级数学下册 26.1.2 反比例函数的图象和性质(第2课时)教案 (新版)新人教版

九年级数学下册 26.1.2 反比例函数的图象和性质(第2课时)教案 (新版)新人教版

26.1.2 反比例函数的图象和性质第二课时一、教学目标1.核心素养通过学习反比例函数的图象和性质,充分体现几何直观,渗透模型思想.2.学习目标(1)进一步理解和掌握反比例函数的图象和性质.(2)灵活运用反比例函数的图象和性质解决问题.(3)领会反比例函数的解析式与图象之间的联系,体现数形结合及转化的思想方法.3.学习重点灵活运用反比例函数的图象和性质解决问题.4.学习难点与反比例函数相关的面积的计算,以及自变量和函数值大小的比较.二、教学设计(一)课前设计1.预习任务任务1阅读教材P7-P8,思考:怎样用待定系数法求反比例函数的解析式?任务2怎样判定一个点是否在反比例函数的图象上?任务3思考1:过反比例函数图象上任意一点作坐标轴的垂线,与坐标轴形成的矩形面积与k有什么关系?思考2:过反比例函数图象上任意一点作某一个坐标轴的垂线,并将这个点与原点相连,形成的三角形的面积积与k有什么关系?2.预习自测1.一个反比例函数的图象经过点(2.5,-3),则这个函数的图象位于第()象限.A.一、三B.二、四C.一、四D.二、三答案:B2.如图,点A为反比例函数3yx=上的任一点,过点A作AB⊥x轴于点B,则AOBS∆等于()A .3B .32C .1D .无法确定 答案:B3.若点(1.5,2)在反比例函数xk y =的图象上,则k = ,在图象的每一支上,y 随x 的增大而 .答案:3,减小(二)课堂设计1.知识回顾(1)反比例函数的图象是双曲线.(2)当k >0时,它的两个分支位于一、三象限;在每一个象限内,y 随x 的增大而减小.(3)当k <0时,它的两个分支位于二 、四象限;在每一个象限内,y 随x 的增大而增大.(4)反比例函数的图象既关于x 轴对称,还关于y 轴对称,也关于原点对称.(5)同学们预习本课,知道过双曲线上一点作坐标轴的垂线,与坐标轴围成的矩形面积等于|k |.2.问题探究问题探究一 感受“数”与“形”结合的必要性●活动一 回顾旧知,加深理解问题1 下列反比例函数:①2y x =-;②1y 3x =;③107y x =-;④3y 100x=. (1)图象位于第一、三象限的是 ;(2)图象位于第二、四象限的是 .教师提出如下问题,学生独立思考并写出答案.(1)上述四个答案中,k 的值分别是多少?(2)当k 0>时,反比例函数的图象分别位于第几象限?(3)当k 0<时,反比例函数的图象分别位于第几象限?问题 2 在反比例函数:①2y x =-;②1y 3x =;③107y x =-;④3y 100x=的图象上,11(x ,y )、22(x ,y )分别是图象上同一象限内的点:(1)若12x x <,则12y y <的函数是 .(2)若12x x <,则12y y >的函数是 .教师提出如下问题,学生独立思考并回答,然后独立写出答案,再交流反馈.(1)反比例函数2y x=-的图象位于哪几个象限?y 随x 的变化趋势是什么? (2)反比例函数107y x =-的图象位于哪几个象限?y 随x 的变化趋势是什么? 问题探究二 探究反比例函数图象的性质●活动一 探究矩形面积与k 值例1 如图,点A 为2y x=上的任意一点,过点A 分别作x 轴和y 轴的垂线,垂足分别为点B 和点C ,求矩形ABOC 的面积.【知识点:反比例函数的性质,矩形的面积;数学思想:数形结合】详解:设点A 的坐标为(a ,b),则矩形的面积为ab∵x2y =过点A (a ,b ) ∴ab=2,即矩形的面积刚好等于反比例的k 值2.●活动二 若将反比例函数的解析式改为xk y =,请模仿上述解答过程得出准确答案.详解:设点A 的坐标为(a ,b),则矩形的面积为ab∵xk y =过点A (a ,b ) ∴ab=k ,即矩形的面积刚好等于反比例的k 值.●活动三 探究三角形面积与k 值例2 如图,点A 为x k y =上的任意一点,过点A 分别作x 轴的垂线,垂足为点B ,求三角形ABO 的面积.【知识点:反比例函数的性质,三角形的面积;数学思想:数形结合】详解:设点A 的坐标为(a ,b),则三角形ABO 的面积为ab 21 ∵xk y =过点A (a ,b ) ∴ab k =,即ab k = ∴k 21S ΔABO =,即△ABO 的面积刚好等于k 的绝对值的一半. 问题探究二 反比例函数图象离原点的距离与k 值的关系在同一坐标系中,作x 1y =、x 2y =、x 3y =、x 4y =的图象,如图. 可以发现,当k>0时,随着k 的增大,反比例函数xk y =的图象的位置相对于原点越来越远.1x =2x在同一坐标系中,作出一系列k <0反比例函数xk y =的图象. 可以发现,当k <0时,随着k 的增大,反比例函数xk y =的图象的位置相对于原点越来越近. 综上所述,在同一坐标系中,作多个反比例函数x k y =的图象. 可以发现,当|k |越大时,反比例函数xk y =的图象的位置相对于原点越来越远.问题探究三 反比例函数性质的应用.●活动一 面积与k 的关系的应用例3 如图,正比例函数x y =与反比例函数xy 1=的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( )A .1B .2C .23D .25 【知识点:反比例函数的性质;数学思想:数形结合】详解:设点B 的坐标为(m ,n)∵反比例函数x y 1=过点B(m ,n) ∴ mn=1 ∴2121)()(21==-•-•=∆mn n m S BOC 由反比例函数的对称性知:点A 与点B 关于原点O 对称,即AO=BO∴BOC AOB S S ∆∆=2=1方法2:由反比例函数的性质知:21k 21S ΔBOC =⨯= ∴由对称性知OA=OB ,BOC AOB S S ∆∆=2=1.●活动二 反比例函数图象与性质的关系例4 已知反比例函数的图象经过点A (2,6).(1)反比例函数的图象在第几象限?y 随x 的增大而如何变化?(2)点B (3,4),C (-212,544-),D (2,5)是否在这个反比例函数的图象上? 【知识点:反比例函数的性质;数学思想:数形结合】师生共同分析,教师引导并提出下列问题:(1)点A (2,6)在图象上的含义是什么?(2)图象的位置由哪两个量来确定?我们如何救出这个量?(3)反比例函数y 随x 的变化情况与哪个量有关?y 随x 的变化情况有没有限制条件?(4)某点不在函数图象上的含义是什么?学生解答,在小组里讨论,互相检查,小组代表展示解答过程.详解:(1)设反比例函数的解析式为x k y =∵它过点(2,6)∴k xy 2612==⨯=,它的图象过一、三象限;在每一个象限内,y 随x 的增大而减小.(2)∵12y x= ∴x 3=时,y 4=x =-122时,244y 455=-=- x 2=时,y 6=∴点B 和点C 在此反比例函数上,而点D (2,5)不在这个反比例函数的图象上. ●活动三 拓展提高 活学活用例5 过反比例函数)01>=x xy (的图象上的任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1、 S 2,则它们的大小关系为( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .不能确定 【知识点:反比例函数的性质;数学思想:数形结合】详解:∵2k S S ΔBOD ΔAOC == ∴COE COE S S ∆∆-=-ΔBOD ΔAOC S S ,即S 1=S 2,故先C .3.课堂总结【知识梳理】(1)判断反比例函数的图象的两个分支在哪些象限,只需判断k 的正负即可. 当k 为正时,它的两个分支分别在一、三象限;当k 为负时,它的两个分支分别在二、四象限.(2)判断一个点是否在函数图象上,只需将它的横(纵)坐标代入求出纵(横)坐标,如果刚好相等,则表示这个点在在此函数图象上;若求出的值与告知的坐标不相等,则说明这个点不在函数的图象上.(3)过反比例函数的图象上任一点作坐标轴的垂线,它们与坐标轴围成的面积等于|k |.(4)过反比例函数的图象上任一点作某一坐标轴的垂线,则这个点与垂足和原点围成的三角形面积等于k 的绝对值的一半.【重难点突破】(1) 过反比例函数的图象上任一点作坐标轴的垂线,它们与坐标轴围成的面积等于k 的绝对值.利用与坐标轴围成矩形面积求k 时特别要注意,主要是图象过二、四象限时容易出现符号错误.(2) 过反比例函数的图象上任一点作某一坐标轴的垂线,则这个点与垂足和原点围成的三角形面积等于k 的绝对值的一半.利用三角形面积求k 时特别要注意,主要是图象过二、四象限时容易出现符号错误.(3)判断一个点是否在反比例函数图象上时,只需要将它的一个坐标代入,若另一个坐标刚好也相等,则函数必过这一点;否则函数不过这个点.4.随堂检测1.如图,点P 是反比例函数2y x=-图象上的一点,若PD ⊥x 轴于点D ,则△POD 的面积为( ).A .1B .2C .4D .12 答案:A解析:2.如图,点P 是反比例函数xm y =图象上第二象限内的一点,且矩形OEPF 的面积为3,则m 的值为( ).A .3B .6C .-3D .-1.5 答案:C解析:3.如图,点P 是反比例函数xm y =图象上的一点,若PD ⊥x 轴于点D ,△POD 的面积为2,则m 的值为( )A .-2B .-4C .-1D .4答案:B解析: 4. 反比例函数xa y =的图象上有一点A ,AB ∥x 轴交y 轴于点B ,△ABO 的面积为1,则反比例函数的解析式为( )A .2x 1y -=B .x 1y -=C .x2y -= D .4x 1y -= 答案:C解析: 5.如图,A 、B 两点在双曲线xy 4=上,分别经过A 、B 两点向坐标轴作垂线段,已知1阴影=S ,则12S S +=( )A .3B .4C .5D .6 答案:D解析:。

初中数学_几何证明举例(2)教学设计学情分析教材分析课后反思

初中数学_几何证明举例(2)教学设计学情分析教材分析课后反思

几何的证明举例导学案(二)宫里镇初级中学主备:课本内容:P177——179课前准备:三角板学习目标:1.进一步掌握证明的基本步骤和书写格式。

2.能用“公理”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

一、合作与探究等腰三角形的性质定理1:等腰三角形的两个底角相等性质定理2:等腰三角形的顶角平分线﹑底边上的中线﹑底边上的高互相重合(简称“三线合一”)二、交流与发现说出等腰三角形的性质定理的逆命题,如何证明这个逆命题是正确的?要求:(1)写出它的逆命题:______。

(2)画出图形,写出已知、求证,并进行证明。

如果一个三角形的两个角相等, 那么这两个角所对的边也相等. 三、学以致用利用等腰三角形的性质定理和判定定理证明 1、等边三角形的每个内角都是60° 2、三个角都相等的三角形是等边三角形。

四、例已知:在△ABC 中,AB=AC ,D 是AB 上的一点,DE ⊥BC , 交BC 于点E ,交CA 的延长线于点F 。

求证:AD=AFC三、巩固练习1.如图(1),已知BC 为等腰三角形纸片ABC 的底边,AD ⊥BC ,AD =BC ,将此三角形纸片沿AD 剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( )(A )1 (B )2 (C )3 (D )42、如图,在△ABC 中,∠ABC =2∠ACB ,BD 平分∠ABC ,AD ∥BC ,则图中等腰三角形共有 个.3、如图所示,AB =AC ,AC 上一点D 在AB 的垂直平分线上,若△ABC 的周长为16cm,△BCD 的周长为10cm ,则AB 的长为 .(第5题)(第6题)4、如图,已知AB =AC ,∠A =40°,AB 的垂直平分线交AC 于D ,求∠DBC 的度数.四、学习小结:通过本节课的学习,你都有哪些收获? 五、达标检测1.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( )(A )60° (B )120° (C )60°或150° (D )60°或120 2.已知等腰三角形的两边长分别为2和5,则它的周长为( )(A )12或9 (B )12 (C )9 (D )73.如图,等腰三角形ABC 中,AB =AC ,∠A =44°,CD ⊥AB 于D ,则∠DCB 等于( )(A )44° (B )68° (C )46° (D )22° 4、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。

江苏省洪泽外国语中学九年级数学下册 图形与证明(二)学案(1)(无答案) 新人教版

江苏省洪泽外国语中学九年级数学下册 图形与证明(二)学案(1)(无答案) 新人教版

1(3)90︒CBA108︒(4)CBA(2)45︒CBA (1)36︒CBA 江苏省洪泽外国语中学2013届九年级数学下册 图形与证明(二)学案(1)(无答案) 新人教版【学习目标】1.能证明等腰三角形的性质定理和判定定理.2. 掌握了直角三角形的全等判定定理和其它相关性质的证明方法.3. 运用直角三角形的全等判定定理和其它相关知识的证明角平分线的性质和判定. 【重点、难点】直角三角形和其它相关知识的证明方法. 知识回顾:2.线段垂直平分线上的点到 相等。

到一条线段的 的点,在这条线段的垂直平分线上。

3. 这两个直角三角形全等。

4.角平分线上的点到 相等。

到一个角的两边距离相等的点在这个角的 上。

三角形的三条角平分线交于一点,这一点到三角形 相等。

【典型例题】1、等腰三角形一边等于5,另一边等于8,则周长是_________,面积是____________.2、在⊿ABC 中∠BAC=90°,AD 是中线,∠B=70°,BC=15cm,则∠BAC=_________, ∠DAC=_________,BD=___________。

3、等腰直角三角形一条直角边的长为1cm,那么它的斜边上的高是__________cm 。

4、已知.等腰三角形的一个角为72°,则其顶角为_____________。

5、如图,⊿ABC 中,AD ⊥BC,CE ⊥AB,垂足分别为D 、E,AD 、CE 交于点H ,请你添加一个适当的条件:_____________________,使⊿AEH ≌⊿CEB 。

6、在直角坐标系中,O 为坐标原点,A (-2,2),在x 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有 ( ) A .1个 B .2个 C .3个 D .4个7、如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , ∠A 的度数为 ( ) A .30° B .36° C .45° D .70°8、如图,在下列三角形中,若AB=AC ,则不能被一条直线分成两个小等腰三角形的是( ) HECBADCB A注意:若等边三角形的边长为a ,则:其高为: ,面积为: 。

第一章图形与证明(二)学案_苏科版_初三_九年级

第一章图形与证明(二)学案_苏科版_初三_九年级

九年级数学备课组课型:新授【学习目标】1、进一步掌握证明的基本步骤和书写格式。

2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

【重点、难点】1、等腰三角形的性质及其证明。

2、应用性质解题。

【预习指导】:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、用_______________的过程,叫做证明。

经过________________称为定理。

(1)_________________________;(2)_________________________;(3)_________________________.3、推理和证明的依据有哪几类?_____________、___________、_____________。

(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________。

此外,还有_____________和____________也都看作是基本事实。

5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________;(6)______________________;(7)______________________;(8)______________________;(9)______________________;(10)______________________。

人教版九年级数学下册第2课时 反比例函数的图象和性质(2)(导学案)

人教版九年级数学下册第2课时 反比例函数的图象和性质(2)(导学案)

26.1.2 反比例函数的图象和性质第2课时反比例函数的图象和性质(2)——反比例函数的图象和性质的运用一、新课导入1.课题导入问题:反比例函数的图象是什么?它有哪些性质?在学生回答问题后,提出本节任务,由此导入课题.2.学习目标(1)能灵活运用反比例函数的图象和性质解决一些较综合的问题.(2)领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.3.学习重、难点重点:利用反比例函数的图象和性质解决综合问题.难点:学会从图象上分析、解决问题.二、分层学习1.自学指导(1)自学内容:教材P7例3.(2)自学时间:5分钟.(3)自学方法:结合自学参考提纲自学.(4)自学参考提纲:①已知反比例函数的图象上一点的坐标,怎样判断其图象位于哪些象限?②若点(a,b)在y=kx的图象上,则ab=k.③怎样运用待定系数法求反比例函数的解析式?④练习:已知一个反比例函数的图象经过点A(3,-4).a.这个函数的图象位于哪些象限?在图象的每一支上,y随x的增大如何变化?这个函数的图象位于第二、第四象限;在图象的每一支上,y随x的增大而增大.b.点B(-3,4),C(-2,6),D(3,4)是否在这个函数的图象上?点B、C在这个函数图象上,点D不在这个函数的图象上.2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会通过观察图象理解反比例函数的性质.②差异指导:关注学困生和中间层的学生对性质的认识.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数的图象上一点的坐标判断其图象所在的象限根据图象说性质.(2)若点(a,b)满足解析式y=kx(即ab=k),则点(a,b)在此函数的图象上.1.自学指导(1)自学内容:教材P7例4.(2)自学时间:6分钟.(3)自学方法:先学习例题中的方法,然后模仿例题解答自学参考提纲中的问题.(4)自学参考提纲:①反比例函数y=kx的图象既是中心对称图形,其对称中心是原点,又是轴对称图形,其对称轴是直线y=x和y=-x②怎样比较反比例函数y=kx的图象上横坐标已知的两点的纵坐标的大小?举例说明.③右图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:a.图象的另一支位于哪个象限?常数n的取值范围是什么?图象的另一支位于第四象限,n<-7.b.在这个函数图象的某一支上任取点A (a,b)和点B (a′,b′).如果a<a′,那么b和b′有怎样的大小关系?(b<b′)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会顺利进行图象的位置、k的符号和函数的增减性之间的转换.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)反比例函数图象上点的横纵坐标的积与k的关系;比较两个点的纵坐标的大小的方法.(2)练习:已知点A(x1,y1),B(x2,y2)在反比例函数1yx=的图象上,如果x1<x2,而且x1,x2同号,那么y1和y2有怎样的大小关系?为什么?答案:y1>y2.因为函数1yx=的图象位于第一、第三象限,所以在每个象限内,y随x的增大而减小.因为x1<x2,所以y1>y2.三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).反比例函数的图象和性质是反比例函数的教学重点,本课时的学习让学生掌握反比例函数的图象和性质的应用.学生在学习过程中会存在一些问题,应引导学生类比一次函数和二次函数进行学习,课堂上多一些比较,多一些交流,让学生领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法.一、基础巩固(70分) 1.(10分)已知反比例函数2k y x-=的图象位于第一、第三象限,则k 的取值范围是(A )A.k >2B.k≥2C.k≤2D.k <2 2.(10分)如果点(3,-4)在反比例函数y=kx的图象上,那么下列各点中,在此图象上的是(C )A.(3,4)B.(-2,-6)C.(-2,6)D.(-3,-4) 3.(10分)关于反比例函数2y x=-的图象,下列说法正确的是(C ) A.经过点(-1,-2) B.y 随x 的增大而增大 C.当x <0时,图象在第二象限 D.y 随x 的增大而减小 4.(10分)已知函数3y x=(x >0),那么(A ) A.函数图象在第一象限内,且y 随x 的增大而减小 B.函数图象在第一象限内,且y 随x 的增大而增大 C.函数图象在第二象限内,且y 随x 的增大而减小 D.函数图象在第二象限内,且y 随x 的增大而增大 5.(10分)(多选)函数y kx =和y=kx(k≠0)的图象在同一平面直角坐标系中大致是(BD )6.(10分)反比例函数23k y x-=的图象在每个象限内,y 随x 的增大而增大,则k 32<.7.(10分)正比例函数y=x 的图象与反比例函数y=kx的图象有一个交点的纵坐标是2,求:(1)当x=-3时,反比例函数y 的值;(2)当-3<x <-1时,反比例函数y 的取值范围解:(1)由题意知:正比例函数与反比例函数图象的一个交点是(2,2),则k=2×2=4,即反比例函数的解析式为4y x =.当x=-3时,4433y ==--. (2)当-3<x <-1时,反比例函数的图象在第三象限,y 随x 的增大而减小,又∵当x=-1时,y=-4,∴-4<y <43-.二、综合应用(20分)8.(20分) 已知反比例函数w y x-=的图象的一支位于第一象限. (1)图象的另一支位于哪个象限?常数w 的取值范围是什么?(2)在这个函数图象的某一支上任取点A(a ,b )和点B(a′,b′).如果b >b′,那么a 和a′有怎样的大小关系?解:(1)图象的另一支位于第三象限,w >2.(2)a <a′. 三、拓展延伸(10分)9.(10分) 已知点A (x 1,y 1)、B (x 2,y 2)是反比例函数y=kx(k >0)图象上的两点,若x 1<0<x 2,则有(A )A.y 1<0<y 2B.y 2<0<y 1C.y 1<y 2<0D.y 2<y 1<0。

江苏省洪泽外国语中学八年级数学下册 反比例函数的图

江苏省洪泽外国语中学八年级数学下册 反比例函数的图

反比例函数的图像与性质教案(2)教学目标 1学会用描点法作反比例函数的图象2能结合函数图象进行探索、理解并掌握反比例函数的性质 3观察、分析、探究、归纳及概括能力 教学重点: 反比例函数图像的画法,反比例函数的性质 教学难点: 反比例函数的性质 教学过程: :一、课前预习与导学1.下列函数图像位于第一、三象限的是_________________①x y 21= ②x y 3.0= ③x y 10-= ④xy 1007-= 2.已知函数xm y 2-=的图像位于第二、四象限,则m 的取值范围是_______________3.已知正比例函数mx y =中y 随x 的增大而增大,则反比例函数xmy =的图像在第_____象限。

二、情境创设探究1、作反比例函数y=x 4和y=x4-的图象;并根据图象完成下表. 函数图象 (双曲线)k值 图象 位置对称性 图象与坐标轴的相交情况 随着x 的增大,y 值是怎样变化的 y=x4y=x4-思考:①、当函数为y=x , y=x 具有与y=x一样的性质吗?②、当函数为 y=x 2-, y=x 6-具有与y=x 4-一样的性质吗? ③、当函数为y=xk(k ≠0)又具有怎样的性质?归纳:反比例函数y=xk(k ≠0)的图象,当k >0时,在每一象限内,y 的值随着x 值的增大而减小;当k <0时,在每一象限内,y 的值随着x 值的增大而增大 二、例题讲解例1.:已知反比例函数y =kx的图象经过A (2,—4)。

(1)k 的值.(2)这个函数的图象在哪几个象限?y 随x 的增大怎样变化? (3)画出函数的图象. (4)点B (12,—16)、C (—3,5)在这个函数的图象上吗?例2:.已知一次函数图象与反比例函数图象2y x=-交于点(-1, m ),且过点(0,-3),求一次函数的解析式.三、课堂小结 四、板书设计五、教学反思9.2反比例函数的图像与性质(2)命题人审核人 审批人 学生姓名 班级 评价 批阅日期 序号1.反比例函数43y x=-的图象在( ) A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限 2.若函数ky x=的图象在第一、三象限,则函数y=kx-3的图象经过( ) A.第二、三、四象限 B.第一、二、三象限 C.第一、二、四象限 D.第一、三、四象限 3.下列函数中,y 随x 的增大而减小的有( ) 3(1)(2)21(3)5y y x y x x ==-=-+ 413(4)(5)(0)(6)(0)3x y y x y x x x-==>=<A.2个B.3个C.4个D.5个 4.以下各图表示正比例函数y=kx 与反比例函数()0ky k x-=<的大致图象,其中正确的是()5.若反比例函数21m y x-=的图象在第二、四象限,则 m 的取值范围是 . 6.反比例函数ky x=经过(-3, 2),则图象在 象限. 7.若反比例函数3k y x +=图像位于第一、三象限,则k .8.已知函数ky x=的图象与直线y=x-1都经过点(-2, m ),则m= ,k= .9.已知一次函数图象与反比例函数图象2y x=-交于点(-1, m ),且过点(0,-3),求一次函数的解析式.10、已知反比例函数xk y 12+=的图象在每一个象限内函数值y 随x 的增大而减小,且k 的值满足9-2(2k-1)≥2k-1,若k 为整数,求反比例函数的解析式。

人教版九年级数学下册人教版九年级数学下册总复习第四部分 图形的认识和证明.doc

人教版九年级数学下册人教版九年级数学下册总复习第四部分 图形的认识和证明.doc

初中数学试卷桑水出品九年级数学总复习第四部分图形的认识和证明大港七中张玉松Ⅰ、三角形和相似形一、考点分析及难点提示1.熟练掌握线段的垂直平分线和角平分线的性质、判定及作图方法.2.熟练掌握三角形的中位线定理.3.三角形全等的证题思路4.等腰三角形的性质与判定提示:“三线合一”的应用是等腰三角形的重点,在证明过程中,常常要做辅助线&#0;底边上的高,以便使用这个性质证线段相等、垂直或角相等.5.Rt△知识注意问题(1)勾股定理常要用到:两条直角边的平方和等于斜边的平方.(2)直角三角形中线定理也是常用到的.如图,由∠C=90°,D为AB中点,得 .6.相似三角形三角形相似的判定:两角对应相等;三边对应成比例;两边对应成比例且夹角相等.相似比问题:线段比等于相似比;面积比等于相似比的平方.相似三角形中常见的基本图形如图:注意:在判断相似三角形的有关问题时,不要忽视公共角和对顶角,另外,很多题目的结论是等积式,只要把等积式化比例式,就能找到解决问题的途径.7.相似三角形的应用(1)位似图形.(2)平行投影在太阳光下同一时刻的物高与影长成比例.即8.黄金分割(1)定义:点C把线段AB分成两条线段AC和BC,如果,那么称线段A 被点C黄金分割,点C叫黄金分割点,叫黄金比.(2)比值: .(3)主要是应用于计算和作图(黄金分割点的几种作法,作黄金矩形).9.几何证明中辅助线的特殊作法1.平移法:平行移动线段到相关位置.2.对称法:利用轴对称和中心对称判断相关线段的关系.3.旋转法:利用旋转作图的性质判断相关线段和角的关系.二、三角形部分典型题1.已知A、B两点,以A、B为其中两个顶点,作等腰直角三角形,一共可作个.2.如图,平面镜A与B之间的夹角为110°,光线经过平面镜A反射到平面镜B上,再反射出去,若∠1=∠2,则∠1的数为.3.某科技小组制作了一个机器人,它能根据指令要求进行行走和旋转45°.某一指令规定,机器人先向正前方行走1米再左转45°,若机器人反复执行这一指令,则从出发到第一次回到原处,一共走了米.4.如图,OA=OB=OC,∠B=40°,∠C=25°,则∠BOC的度数为.5.在△ABC中,∠A=50°,AB=AC,AB的垂直平分线交AC于D,则∠DBC的度数为.6.如图,△ABC中,AB=AC,D是BC上的一点,要使△ABD与△ACD全等,只需再添上一个条件,这个条件可以是7.已知三角形的三边是方程的两根,那么它的周长是.8.如图,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需要在它的内部添加一些钢管EF、FG、GH……,添加的管的长度都与OE相等,那么最多能添加这样的钢管根.9.折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与对角线BD重合,得折痕DG,如图,若AB=2,BC=1, AG的长.10.如图是一三角形的纸片ABC,∠A=65°,∠B=75°,将纸片的一角C沿DE折叠,使点C落在△ABC内,若∠1=20°求∠2的度数.11.如图,在△ABC中,延长BC到D,延长AC到E,AD与BE相交于F,∠ABC=45°,试将下列设定中的两个作为题设另一个作为结论,组成一个正确命题,并证明这个命题.①AD⊥BD;②AE⊥BF;③AC=BF.12.如图,在3×3方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫格点三角形.请画出三个面积为3格点三角形.要求:①与例图不同;②不重复(两个全等图形视为重复);③在提供的3张图纸上各画一个.三、实战练习(一)填空题1.直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积是_________.2.如果一个角的余角是35度,那么这个角的补角是_________度.3.如图,D是ΔABC的AB边上的一点,过点D作DE//BC,交AC于E.已知AD∶DB=1∶3,那么SΔADE∶SΔABC=_________.(二)解答题1.如图,F、C是线段BE上的两点,BF=CE,AB=DE,∠B=∠E,QR//BE.求证:ΔPQR是等腰三角形. 2.已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点,求证:ΔADQ∽ΔQCP.3.已知:如图,正方形DEFG内接于RtΔABC,EF在斜边BC上,EH⊥AB于H.求证:(1)ΔADG∽ΔHED;(2)EF2=BE·FC.四、相似形部分典型题1.如图,把菱形ABCD沿着对角线的AC方向移动到菱形A′B′C′D′的位置,若,且,则菱形移动的距离AA′是.2.上午10时,校园内的旗杆影长为15米,与此同时,高为1.5米的测杆影长为2.5米,则旗杆的高是3.已知,如图,矩形EFGH的顶点在△ABC的三边上,AD⊥BC,若BC=10cm,AP=16cm,矩形的周长为24cm,则△ABC的积是.4.已知,1,,2三个数,请你再添上一个数,写出一个比例式5.某学生想利用树影测量校园内的树高,他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的棵大树影长时,因为大树靠近教学楼,有一部分影子在墙上,经过测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高为米.6.在矩形ABCD中,DH⊥AC于点H,若AH=6,CH=2,则S矩形ABCD= .7.已知:如图,正方形ABCD中,DC=12,E是CD上的一点,DE=5,AE的中垂线分别交AD、BC于M、N,垂足为P,则P PN= .8.在梯形ABCD中,AD∥BC,两条对角线相交于点O,若AD:BC=2:3,那么S△AOD:S△ACD= .9.已知△ABC、△DEF均为正三角形,D、E分别在AB、BC上,请你找出一个与△DEF相似的三角形,并加以证明.10.一块直角三角形木板的一条直角边长AB为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲乙二位同学的加工方法如图,请你用学过的知识,说明谁的加工方法符合要求.11.如图,ABCD是平行四边形,P是BD上的任意一点,过P的直线分别交AB、DC于E、F,交DA、BC的延长线于G、H 求证:(1)PE·PG=PF·PH;(2)当过P点的直线绕点P旋转到F、H、C重合时,请判断PE、PC、PG的关系,并给出证明.12.点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB?(2)当△ACP∽△PDB时,求∠APB的度数.13.已知直线L是线段AB的垂直平分线,垂足为D,点P为L上的一个动点,(点P与D不重合),连结AP、BP,作AE⊥于点E,交L于点C,连结BC.试问:当点P在L上运动且与点D的距离变大时,S△PAB·S△CAB的值变小、变大、还是不变?提你的猜想并加以证明.14.点E是四边形ABCD的对角线BD上的一点,且∠BAC=∠BDC=∠DAE.(1)求证:BE·AD=CD·AE;(2)根据图形的特点,猜想可能等于哪两条线段的比(只需写出图中已的线段中的一组即可),并证明你的猜想.Ⅰ、三角形与相似形参考答案二、三角形部分典型题1.6 2.35°3.8 4.130°5.15°6.略7.5 8.7 9.10.4011.略12.略三、实战练习(一)1.30cm22.125 3.1:16(二)1.证△ABC≌△DEF2.略3.略.证△CFG≌△BED四、相似形部分典型题1.2.9m 3.100cm24.略5.9.46.7.5:19 8.2:59.△GAD;△ECH;△GFH;证明略10. ;11.略.PC2=12.CD2=AC·DB;120°13,不变.证△ACD≌△PAD;14,证△ABE∽△ACD;Ⅱ、四边形一、考点分析四边形一部分,是三角形内容的应用和深化.这部分中考试题所考查的知识点主要有:1.根据多边形的内、外角和公式确定多边形的边数.2.会借助平行四边形的性质定理解决线段、角相等和求值等问题.3.能借助定义及判定定理判断四边形中的特殊四边形.4.会根据平行四边形的性质定理确定特殊四边形具有的性质,并结合其定义和判定定理判断与四边形有关的真假命题.5. 明确轴对称图形、中心对称图形的特性及其规律,并能结合实际图形予以辨认.6. 利用特殊四边形的面积公式(菱形、梯形面积等)解决与面积有关的几何问题(包括应用问题),并会解答折痕问题二、难点提示1.四边形一章是平行线和三角形知识的应用和深化,因此通常需要添加辅助线把四边形转化为三角形,把梯形转化成平四边形和三角形,把多边形转化为三角形或特殊四边形.2.矩形、菱形、正方形的性质都是在平行四边形的基础上扩展的,而平行四边形的有关性质和定理通常是证明线段相等两个角相等,两条直线平行或垂直的依据.3.连接平行四边形和特殊平行四边形的对角线是常添辅助线,它可将四边形问题转化为三角形问题解决.4.另一个容易出问题的地方,是梯形辅助线的作法,常见的辅助线总结如下:(1)过上底一端点,作一腰的平行线,如图(1).(2)过上底两端点,作下底的垂线,如图(2).(3)过上底的一端点作一对角线的平行线如图(3).(4)连结上底一端点和一腰中点的直线与下底延长线相交,通过构造全等三角形进行证明和计算如图(4). (5)延长梯形的两腰,如图(5).(6)作梯形的中位线,如图(6).5.菱形的面积公式(a, b为菱形对角线的长度).S菱形=ch (c, h分别为菱形边长和边上的高) .6.折痕问题的关键(1)解决折痕问题的基本原理是轴对称性质.(2)解决折痕问题的基本途径是借助勾股定理构建方程.三、四边形部分典型题1.在梯形ABCD中,AD∥BC,AD=2,BC=8,对角线AC=6,BD=8,则面积是.2.已知菱形的两条对角线长分别是4cm和10cm,则它的边长是.3.已知:平行四边形ABCD中,M是对角线AC上的一点,连结BM、DM,则图中面积相等的三角形有对.4.在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形,又能拼成三角形和梯形的是( )5.在平行四边形ABCD中,AB=6,AD=8,∠B是锐角,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,如果过BC的中点,那么平行四边形ABCD的面积是.6.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中三个分别是三角形,正四边形, 正六边形,那另外一个是正形.7.如图,在菱形ABCD中, ∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于8.A、B、C、D在同一平面内,从⑴AB∥CD;⑵AB=CD;⑶BC∥AD;⑷BC=AD这四个条件中任选两个,能使四边形ABCD是平四边形的选法有种.9.如图,把一个正方形三次对折后,沿虚线剪下,则所得的图形是( )10.有一腰长为5cm,底为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形,用这两个直三角形纸片拼成的平面图形中有个不同的四边形.11.把一块正六边形硬纸片作成一个底面仍为正六边形且高相等的无盖纸盒,需在每一个顶点处剪去一个四边形,那么剪的四边形中最小的角是度.12.一个画家把12个边长是1cm的正方体在地面上摆成三层,最上层一块,第二层四块,然后,他把露出的表面都涂上颜色那么被涂上颜色的总面积是.13.若将四根木条钉成的矩形木框变形为平行四边形的形状,使其面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.在矩形ABCD中,AB=3,BC=2,E为BC的中点,F在AB上,且BF=2AF,则四边形AFEC的面积为.15.如图,用一条宽相等的足够长的纸带,打一个结,然后轻轻拉紧,压平,就可以得到一个正五边形ABCDE,其中∠BAC=度.16. 如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形的一个角沿折痕AE翻折上去,使AB和AD边上的重合,则四边形ABEF就是一个最大的正方形,他的判断方法是.17.如图,正方形硬纸片的边长是4,点E、F分别是AB、BC的中点,若沿虚线剪开,拼成的图中的阴影部分面积是.18.如图,平行四边形ABCD中,AE、CF分别是∠BAD和∠BCD的角平分线,根据图形,添加一个条件,使四边形AECF 菱形,则添加的一个条件可能是.19.如图,边长是3的正方形ABCD绕点C按顺时针方向旋转300后得到正方形EFCG,EF交AD于点H,那么DH的长是.20.等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC于E,AE=BE,BF⊥AE于F,线段BF与图中的哪一条线段相等?先写出的猜想,再加以证明.21.把两个全等的等腰直角三角板ABC和EFG(直角边长为4)叠放在一起,且使三角板EFG的直角顶点G与三角板ABC 斜边中点O重合.现在将三角板EFG绕点O顺时针旋转一个锐角,四边形CHGK是旋转过程中两块三角板的重叠部分.(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连结HK,在上述旋转过程中,设BH=x,△GHK的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围四、实战练习(一)选择题1.在正方形ABCD中,E、F两点分别是BC、CD边上的点,若ΔAEF是边长为的等边三角形,则正方形ABCD的边长为()A. B.C. D.22.已知下列图形:(1)矩形;(2)菱形;(3)等腰梯形;(4)等腰三角形.其中是轴对称图形,而不是中心对称图的序号是()A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)3.以不在同一直线上的三个点为顶点作平行四边形,最多能作()A.4个B.3个C.2个D.1个(二)解答题1.已知:如图,□ABCD中,E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.2.如图,将□ABCD沿AC折叠,点B落在B′处,AB′交DC于点M.求证:折叠后重合的部分(即ΔMAC)是等腰三角形3.已知在梯形ABCD中,AD//BC,AD<BC,且AD=5,AB=DC=2.(1)如图,P为AD上的一点,满足∠BPC=∠A.①求证:ΔABP∽Δ在DPC;②求AP的长;(2)如果点P在AD边上移动(点P与点A、D不重合),且满足∠BPE=∠A,PE交直线BC于点同时交直线DC于点Q,那么①当点Q在线段DC的延长线上时,设AP=x, CQ=y,求y关于x的函数解析式,并写出函数y的值范围;②当CE=1时,求出AP的长.Ⅱ、四边形参考答案三、四边形部分典型题1.24 2.3.三4.D 5.6.四边7.60°8.四9.C 10.四11.60 12.33cm213.30 14.2 15.36 16.略17.4 18.AE=CE19.20.BF=DE 21.BH=CK;不变;S=4;;0<x<4四、实战练习(一)1.A 2.D 3.B(二)1.证△AEF≌△DEC2.证∠BAC=∠MAC=∠ACM3.⑴①略②1、4 ⑵①;1<x<4 ②AP=4Ⅲ、解直角三角形一、考点分析及难点提示1.特殊角的三角函数值,可利用特殊的直角三角形三边的比进行记忆2.解直角三角形(1)直角三角形角的关系:∠A+∠B=90°.(2)直角三角形边的关系:a2+b2=c2 .(3)直角三角形的边角关系:, ,, .在直角三角形中,除直角外的其余五个元素中,已知其中两个(至少有一个是边),即可求出其余三个.3.应用问题直角三角形边角关系的应用类型主要归结为:求解距离、测量物体高度、度量角度、计算面积等解直角三角形的数学问题步骤为:画出示意图,把实际问题抽象成数学问题;找出直角三角形或通过作辅助线构造直角三角形;利用直角三角形角关系求解.(1)仰角、俯角的概念如图1所示,在测量时,视线与水平线所成的角中,视线在水平线上方的叫仰角,在水平线下方的叫俯角.(2)坡度(坡比)、坡角的概念如图2所示,我们通常把坡面的铅直高度h和水平宽度L的比叫做坡度(或叫坡比),用字母i表示,即.这里,α是坡面与水平面的夹角,这个角叫坡角.(3)方向角如图3所示,视线(视点与目标的连线)与指北(南)线的夹角.(4)直角三角形应用题的常用图形二、解直角三角形部分典型题1.在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,,则AD 长是.2.如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着坡角为30°的山坡前进1000米,到达D处,在D处测得顶B的仰角为60°,则山高BC大约是(精确到0.01米).3.升国旗时,某同学站在离旗杆24米处行注目礼,他的视线的仰角是30°,若双眼离地面1.5米,则旗杆的高度是.4.直角三角形的周长是,斜边上的中线是1,则它的面积是5.如图,在高为2米,倾斜角为30°的楼梯表面铺地毯,地毯的长度至少需要米.(精确到0.1米)6.如图,矩形ABCD中,AC和BD相交于点O,AE⊥BD于点E,若OE:OD=1:2,则DE= cm.7.如图,是一条山坡路的横截面,CM是一段平路,它高出水平地面24米,从A到B,从B到C是两段不同坡角的山坡路山坡路AB的路面长100米,它的坡角∠BAE=5°,山坡路BC的坡角∠CBH=12°,为了方便交通,政府决定把山坡路BC的坡降到与AB的坡角相同,使得∠DBI=5°.(1)求山坡路AB的高度BE;(精确到0.01米)(2)降低坡度后,整个山坡的路面加长了多少米?(精确到0.01米)(参考数据sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)8.如图,甲乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速沿北偏西60°的方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C处,此时甲船发现渔具忘乙船上,于是甲船快速沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)甲船追赶乙船的速度是多少?9.如图,某货船以每小时20海里的速度把一批重要物质由A处运往正西方向的B处,经过16小时的航行到达,到达后即卸货,此时接到气象部门的通知,一台风中心正以每小时40海里的速度由A向北偏西60°的方向移动,距离台风中心20海里的圆形区域(包括边界)都会受到影响.(1) 问B处是否会受到影响?请说明理由;(2) 为了避免受到台风的影响,该货船应在多少小时内卸完货物?10.如图,已知测速站P到公路l的距离PO为40米,一辆汽车在公路l上行驶,测得此车从点A行驶到点B所用的时为2秒,并测得∠APO=60°,∠BPO=30°,计算此车从A到B的平均速度是多少?(结果保留四个有效数字)并判断此车是否过了每秒22米的限制速度.11.在一次实践活动中,某课题小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案,①在测点A处安置测倾器测得旗杆顶部M的仰角∠MCE=α;②量出测点到旗杆底部的水平距离AN=m;③量出测倾器的高度AC=h.根据上述测量数据,可求出旗杆的高度MN.如果测量工具不变,请仿照上述过程,设计一个测量某小山高度MN的方案.要求:(1)在图中,画出你测量小山高度的示意图,并标出适当的字母;(2)写出你的设计方案.三、实战练习(一)填空或选择1.在△ABC中,若sinA=1,tanB=,则∠C=度.2.在△ABC中,若∠C=90°,∠A=45°,那么tanA+ sinB= ,△ABC为对称图形(只填轴中心).3.在△ABC中,∠C=90°,∠A=30°,sinA+cosB的值等于()A. B.1 C.4.菱形ABCD的边长为5,AC、BD相交于点O,AC=6,若∠ABD=α,则下列式子正确的是()A. B. C.D.5.计算:= .6.计算:= .7. 计算:=_____. (二)证明与解答1.如图,△ABC中,∠C=90°,点D在BC上,BD=4,AD=BC,.求:(1)DC的长;(2)sinB的值.2.如图,在△ABC中,AD是BC边上的高,∠B = 30°,∠C = 45°,BD=10,求AC.3.如图,在△ABC中,AB=5,AC=7,∠B =60°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、探索并掌握三角形中位线的概念和性质。

2、经历探索三角形中位线性质的过程,体会转化的思想方法,进一步发展学生操作、观察、归纳、推理能力;让学生接触并解决一些现实生活中的问题逐步培 养学生的应用能力和创新意识。

教学重点:探索三角形中位线性质的过程,体会转化思想 教学难点:利用中心对称性质研究得到三角形中位线的性质。

教学过程:
【基础训练】
1.(08,盐城)梯形的中位线长为3,高为2,则该梯形的面积为 。

2.(08,南京)若等腰三角形的一个外角为70°,则它的底角为 度。

3.(08,乌鲁木齐)某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为 A .9cm
B .12cm
C .15cm
D .12cm 或15cm
4.已知梯形的上底长为3cm ,中位线长为5cm ,则此梯形下底长为__________cm .
5.(08,河南)某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm
6.(08,桂林)如图,在梯形ABCD 中,AD ∥BC ,AB =CD ,AC ⊥BD ,AD =6,BC =8,则梯形的高为 。

7.在梯形ABCD 中,AD ∥BC,对角线AC ⊥BD,且AC=12,BD=9,则此梯形的上下底之和是 A. 20 B. 21 C.15 D. 12
8.如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形
A
1.等腰梯形的性质和判定
2.中位线 三角形的中位线 梯形的中位线
注意:(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决。

即需要掌握常作的辅助线。

(2)梯形的面积公式:()lh h b a S =+=
2
1
(l -中位线长) 第17题 第18题 第21题
A.邻边不等的矩形B.等腰梯形
C.有一个角是锐角的菱形D.正方形
9. 若等腰梯形ABCD的上、下底之和为4,且两条对角线所夹锐角为60,则该等腰梯形的面积为.
10、①、顺次连接正方形的四边中点,所得的四边形是()
②、顺次连接平行四边形形的四边中点,所得的四边形是()
、若顺次连接四边形四边中点,所的四边形是菱形,则原四边形是()
A、一定是矩形
B、一定是菱形
C、对角线一定互相垂直
D、对角线一定相等
板书设计:
教学反思:
课题:图形与证明(二)(3)
1、顺次连结下列各四边形中点所得的四边形是矩形的是().
A.等腰梯形B.矩形C.平行四边形D.菱形或对角线互相垂直的四边形
2、已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是().
A .3cm
B .26cm
C .24cm
D .65cm
3、一个三角形的周长是12cm ,则这个三角形各边中点围成的三角形的周长 .
4、如图,D 、E 、F 分别是△ABC 各边的中点,(1)如果EF =4cm ,那么BC = cm ;如果AB =10cm ,那么DF = cm ;(2)中线AD 与中位线EF 的关系是
5、已知△ABC 中,D 是AB 上一点,AD=AC ,AE ⊥CD ,垂足是E 、F 是BC 的中点,试说明BD=2EF 。

6、如图,矩形ABCD 的对角线相交于点O ,点E 、F 、G 、H
分别是O A 、OB 、OC 、DO 的中点,四边形EFGH 是矩形吗?为什么?
H G
F
E
o D
C
B
A
7、已知在△ABC 中,∠B =2∠C ,AD ⊥BC 于D ,M 为BC 的中点. 求证:DM =2
1
AB
8.梯形中位线的定义:梯形两腰中点的连线,叫做梯形的中位线.如图,E ,F 是梯形ABCD 两腰AB ,CD 的中点,则EF 是梯形的中位线梯形中位线与两底长度的关系:梯形中位线长度等于两底长的和的一半如图:EF=
1/2(AD+BC )利用上面的知识,完成下面题目的解答已知:直线l 与抛物线M 交于点A ,B 两点,抛物线M 的对称轴为y 轴,过点A ,B 作x 轴的垂线段,垂足分别为D ,C ,已知A (-1,3),B (1/2,3/2)
(1)求梯形ABCD 中位线的长度;
A C B
D
E
F
B
(2)求抛物线M的解析式;
(3)把抛物线M向下平移k个单位,得抛物线M1(抛物线M1的顶点保持在x轴的上方),与直线l的交点为A1,B1,同样作x轴的垂线段,垂足为D1,C1,问此时梯形A1B1C1D1的中位线的长度(设为h)与原来相比是否发生变化?若不变,说明理由.若有改变,求出h与k的函数关系式.。

相关文档
最新文档