(完整版)湖南省长沙市长郡教育集...
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度第二学期期末考试
八年级数学
注意事项:
1.答题前,请考生先将自己的姓名、准考证号填写清楚
,并认真核对条形码上的姓名、
准考证
号、考室和座位号;2.必须在答题卡上答题
,在草稿纸、试题卷上答题无效;
3.答题时,请考生注意各大题题号后面的答题提示;
4.请勿折叠答题卡
,保持字体工整、笔迹清晰、卡面清洁;
5.答题卡上不得使用涂改液、涂改胶和贴纸;
6.本学科试卷共
29个小题,考试时量120分钟,满分120分。
一、选择题(本大题共10小题,每小题3分,满分30分) 1.下列事件是必然事件的是A.明天太阳从西边升起
B.
掷出一枚硬币,正面朝上C.打开电视机,正在播放“新阐联播
D.
任意画一个三角形
,的内角和等于
180°
2.下列图形中,可以看作是中心对称图形的是
3.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是
A.
6
1 B.
3
1 C.
2
1 D.
3
24.下列图形中,绕着它的中心点旋转60°后,可以和原图形重合的是A.正三角形 B.
正方形 C.
正五边形 D.
正六边形
5.已知关于x 的一元二次方程
0122
kx kx
有两个相等的实根,那么k 的取值为A.0k B.1k C.
10k
k
或 D.
1
k
6.如图,△ABC 与C B A △关于点O 成中心对称,则下列结论不成立的是
第6题
第7题
A.点A 与点A 是对称点
B.O
B BO C.B A AB ∥ D.
B
A C ACB
7.如图,△ABC 的三个顶点都在方格纸的格点上
,其中点A 的坐标是(-1,0),∠ABA=90°,现
将△ABC 绕点A 顺时针旋转90°,则旋转后点C 的坐标是A.(1,0) B.(1,2) C.(2,1) D.(2,2) 8.衣橱中挂着
3套不同颜色的套装
,同一套服装的上衣与裤子的颜色相同
,若从衣橱里各任
取一件上衣和一条裤子,它们取自同一套的概率是
A.
27
1 B.
9
1 C.
6
1 D.
3
19.如图,在△ABC 中,∠B=90°,BC=8m,B=6m 。
动点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,动点Q 从点B 始沿边BC 向点C 以2cm/s 的速度移动,若P 、Q 两点分别从A 、B 两点同时出发,在运动过程中
,△PBQ 的最大面积是
第9题
第10题
A.2
cm 18 B.2
cm 12 C.2
cm 9 D.2
cm
310.如图,已知二次函数02
a
c bx ax
y 的图象与x 轴交于点
A(-1,0),
y 轴的交点在
(0,-2)
和(0,-1)之间(不包括这两点),对称轴为直线
1x。
下列结论:
①0>abc ;②a b ac 842
<③024>c b
a
;④c b >;⑤3
2
31<<a 。
其中含所有正确结论的选项是A.③④ B.
①②④ C.
①②④⑤ D.
①②③⑤
二、填空题(本大题共10个小题,每小题3分,共30分) 11.某种油菜籽在相同条件下的发芽试验结果如下
:
由此可以估计油菜籽发芽的概率约为_________(精确到0.1).
12.某厂一月份生产某种机器100台,计划三月份生产160台。
设二、三月份每月的平均增长
率为x ,根据题意列出的方程是
___________________.
13.已知点P(-2,a -1)关于原点的对称点在第一象限
,则a 的取值范围是__________.
14.在平面直角坐标系中,将抛物线12
x
y
向右平移2个单位,再响向下平移
3个单位,得
到的抛物线的解析式为
________________.
15.如图,校生物小组有一块长32m 、宽20m 的矩形实验由,为管理方便,准备沿平行于两边的
方向纵、横各开辟一条等宽的小道
,要使种植面积为
5402m ,小道的宽应是_______m.
16.已知二次函数
112
x
m x
y ,当1>x 时,y 随x 的增大而增大,则
m 的取值范围
是________________.
17.从-2、-1、2,这三个数中任取两个不同的数分别作为点P 的横、纵坐标,则点P 在第三象
限的概率是_______________.
18.如图,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△AED 的位置,恰好使得DC ∥AB,则∠CAB 的大小为________.
第15题
第18题
19.关于x 的一元二次方程02
n
x x 无实数根,则抛物线n x x y
2
的顶点在第____
象限.
20.如果方程
4
212
k x
x
x 的三根可以作为一个三角形的三边之长,那么实数k 的取值
范围是_______________.
三、解答题(第21至24题每题6分,第25至28题每题7分,第29题8分,共60分) 21.甲、乙、丙3人站成一排合影留念。
(1)甲站在中间的概率为
______;
(2)请用画树状图的方法给出分析过程
,并求出甲、乙两人恰好相邻的概率。
22.四边形ABCD 是正方形,△ADF 旋转一定的角度后得到△ABE,如图所示,如果AF=4,AB=7。
(1)指出旋转中心和旋转角度;(2)求DE 的长度。
23.已知关于x 的一元二次方程01122
2
k
x
k x
有两个不相等的实数根。
(1)求k 的取值范围;
(2)若方程的两个根分别为
21x x 、,且52
2
2
1
x x ,求k 的值。
24.为满足市场需求,新希望超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场
预测,该品牌粽子每个售价为
4元时,每天能出售500个并且售价每上涨
1元,其销售量将减
少100个。
为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的
200%,要
使该超市每天的销售利润为
800元,请问该超市应怎样定价
?
25.已知二次函数
c bx ax y
2
的图象经过A(-1,0)、B(0.-3)、C(4,5)三点。
(1)求此二次函数的解析式;
(2)当x 为何值时,y 随x 的增大而减小?
26.已知抛物线2
22
x
x
y
(1)写出它的开口方向、对称轴和顶点坐标;
(2)在如图的直角坐标系内画出
222
x x
y 的图象;
(3)直接写出函数值
y 为正数时,自变量x 的取值范围。
27.如图,点D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60°,得到线段AE,连
接CD 、BE 。
(1)求证:△AEB ≌△ADC ;
(2)连接DE,若∠ADC=105°,求∠BED 的度数。
28.图中是抛物线拱桥,点P 处有一照明灯,水面OA 宽4m,以O 为原点,OA 所在直线为x 轴建
立平面直角坐标系
,已知点P 的坐标为
2
33,. (1)求这条抛物线的解析式;(2)水面上升1m,水面宽是多少
29.如图①,已知抛物线c
l,
:x
ax
bx
y2的图象经过点A(0,3)、B(1,0),对称轴为直线2过点A作AC∥x轴交抛物线于点C,OB的平分线交线段AC于点E,点P是抛物线上的一个动点,设P的横坐标为m:
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由。