对无穷的深入思考康托尔的集合论

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


————科尔莫格洛夫


“我的理论坚如磐石,任何想要
言 动摇它的人都将搬起石头砸自己的
脚…更重要的是,我已追溯到这一理
论最终无可怀疑的根源.”
整理课件
————康托尔
课堂小结
波尔查诺关于集合的观点. 康托尔提出的“集合”的概念.
比较两个集合的势的大小.
整理课件
两个元素能够一一对应的集合,称为是 等价的或具有相同的“势”.
整理课件
y = 12x 5
x
y
0
0
1
2.4
2.5
6
0.5
1.2
5
12
整理课件
2.康托尔的集合论思想
1874年开始,康托尔 的集合论思想的文章分别发 表在《克雷尔数学杂志》和 《数学年鉴》上.
整理课件
康托尔(Georg Cantor,1845-1918,德) 德国数学家,集合论的创始者 .1845年3月3日 生于圣彼得堡(今苏联列宁格勒),1918年1 月6日病逝于哈雷.其父为迁居俄国的丹麦商人. 康托尔11岁时移居德国,在德国读中学.1862年 17岁时入瑞士苏黎世大学,翌年转入柏林大学, 主修数学 .
整理课件
康托尔创造的精神乐园
康托尔的集合论为数学史翻开了崭新的 一页.集合论是现代数学中重要的基础理论.如 果没有集合论的观点,很难对现代数学获得 一个深刻的理解.所以集合论的创立不仅对数 学基础的研究有重要意义,而且对现代数学 的发展也有深远的影响.
整理课件
“康托尔不朽的功绩在于向无限冒 险前进.”
教学目标
知识与能力
了解集合的概念. 能够比较两个集合的势的大小. 康托尔的集合论思想.
整理课件
过程与方法
通过社会背景了解当时人们的无穷观念. 查阅课外资料理解康托尔的集合论思想.
情感态度与价值观
学习数学家的严谨态度和锲而不舍的探索 精神,培养创造性思维力.
整理课件
教学重难点
重点
康托尔的集合论思想.
整理课件
过去数学家认为靠得住的只有限,而康 托尔把无穷分成许多“层次”.在最初阶段, 康托尔主要证明了无穷之间也有差别,既存 在可数的无穷,比如自然数集,也存在那种 像实数集合那样不可数的无穷.
整理课件
3.不朽的康托尔
康托尔是19世纪末20世纪初德国伟大的 数学家,集合论的创立者.是数学史上最富有 想象力,最有争议的人物之一.
整理课件
两个元素能够一一对应的集合,称
为是等价的或具有相同的“势”.
“势”的概念可以应用于有限集合. 如果两个有限集合的元素个数相同, 就可以说他们是等价的或等势的.
整理课件
有两个集合M和N,如果在M和N这两个 集合中,N能与M的一个子集构成一一对应, 而M不可能与N的任何子集构成一一对应, 就说M的势大于N的势.
比较两个集合的势的大小.
康托尔证明了有理数是可数集. 康托尔的一生.
整理课件
随堂练习
建立“无穷集合论”的数学家是
( D) A.费马
B.欧拉
C.高斯
D.康托尔
整理课件
整理课件
难点
比较两个集合的势的大小.
整理课件
内容解析
1.建立集合理论的最早尝试
在重建微积分理论的过程中,Bolzano (波尔查诺)是第一个朝着建立集合的明 确理论方向采取了积极步骤的人.
整理课件
波尔查诺(B.Bolzano, 1781-1848)——捷克著名的数 学家.早在康托尔之前,就已经 为建立集合论作出了努力.
他所创立的集合论被誉为20世纪最伟大 的数学创造.
整理课件
中学阶段便激发了对数学的热爱,定下 决心投身纯粹数学,并为之不断努力.中学毕 业时,学校的评语是这样的:
“六年一班学生康托尔是一个有很高天 赋,发展全面的学生,在数学方面尤为突出, 具备了出色的从事自然科学研究的预备知识 和能力.”
整理课件
整理课件
波尔查诺的观点:
支持实无穷集合的观点. 强调两个集合等价的概念. 对于无穷集合,可以指定一种数叫超限数, 使不同的无穷集合有不同的超限数.
整理课件
无限集合的部分子集可以等价于整体, 例如0到5之间的实数可以通过公式 y 1 2 x
5
与0到12间的实数构成一一对应,虽然和第 二个数集包含了第一个数集,但是他同样也 遇到了一些问题在他看来属于悖论的,因此 他认为这些不必深入研究.
“离经叛道”的理论受到来自四面八方的攻击
希尔伯特
vs
彭加勒
康托尔
克罗内克
菲利克斯.克莱因
整理课件
坚持科学所付出的代价
在40岁的时候,他患了精神分裂症,在 他生命的最后几十年里,这种精神病时时发 作,使他不得不经常住到精神病院的疗养所 去.长期的精神折磨所造成的危害是不容忽视 的.由于健康状况逐渐恶化,1918年,他在哈 雷大学附属精神病院去世.
第八讲 对无穷的深入思考
—康托尔的集合论
整理课件
旧知回顾
无穷集合(元素个数无穷)——一个“矛 盾”的集合.
以前的自然数集合指的是正整数集合;现 在规定0也属于自然数集 .
整理课件ห้องสมุดไป่ตู้
旧知回顾


Aristotle(亚里士多德)考虑过无穷集
留 合,他认为潜在的无穷(大)需要和真
声 实的无穷(大)加以区别. 机
整理课件
➢给出了集合(set)的概念 集合为一些确定的﹑不同的东西的总
体,这些东西人们能意识到,并且能判断 一个给定的东西是否属于这个总体.
整理课件
➢明确指出那些认为只有潜无穷集合的 人是错误的.
➢如果一个集合能够和它的一部分构成 一一对应,那么它就是无穷的.
➢将集合论的概念推广到了n维欧几里得 空间的点集.
整理课件
导入新课
微积分——重建数学基础. 微积分理论遇到严重的逻辑困难. 对微积分基础的严密论证成为集合论产生 的一个重要原因.
整理课件
悖论:我们把自相矛盾的命题称为悖论. 数学家们为了解决类似的“悖论”,200多年 后诞生了整个数学基础的学科——集合论.
整理课件
二. 无穷集合论的创立
整理课件
相关文档
最新文档