磁县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁县高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )
A.{}|12x x <≤
B.{}|21x x -≤<
C. {}|21x x -≤≤
D. {}|22x x -≤≤
【命题意图】本题主要考查集合的概念与运算,属容易题.
2. 设集合
,,则( )
A
B
C D
3. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )
A .﹣1
B .1
C .6
D .12
4. 设集合A={x|x+2=0},集合B={x|x 2﹣4=0},则A ∩B=( )
A .{﹣2}
B .{2}
C .{﹣2,2}
D .∅
5. 已知函数f (x )是(﹣∞,0)∪(0,+∞)上的奇函数,且当x <0时,函数的部分图象如图所示,则不等式xf (x )<0的解集是( )
A .(﹣2,﹣1)∪(1,2)
B .(﹣2,﹣1)∪(0,1)∪(2,+∞)
C .(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D .(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
6. 函数y=
的图象大致为( )
A
. B
. C
. D
.
7. 下列函数中,与函数()3
x x
e e
f x --=的奇偶性、单调性相同的是( )
A
.(ln y x = B .2y x = C .tan y x = D .x
y e =
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
8. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪
-+≥⎨⎪-≤⎩
,则目标函数32z x y =-的最小值为( )
A .-5
B .-4 C.-2 D .3 9. 用反证法证明命题“a ,b ∈N ,如果ab 可被5整除,那么a ,b 至少有1个能被5整除.”则假设的内容是( ) A .a ,b 都能被5整除 B .a ,b 都不能被5整除
C .a ,b 不能被5整除
D .a ,b 有1个不能被5整除
10.如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F
是菱形,则其在底面ABCD 上投影的四边形面积( ) A .
12 B .34
C. D
.34 11.设函数的集合
,平面上点的集合
,则在同一直角坐标系中,P 中函数
的图象恰好经过Q 中
两个点的函数的个数是 A4 B6 C8 D10
12
10y -+=的倾斜角为( )
A .150
B .120
C .
60 D .
30
二、填空题
13.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、
、C (1,0),函数y=xf (x )(0
≤x ≤1)的图象与x 轴围成的图形的面积为 .
14.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想. 15.在
中,角
、
、
所对应的边分别为、、,若
,则_________
16.若函数y=f (x )的定义域是
[,2],则函数y=f (log 2x )的定义域为 .
17.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= .
18.设函数则______;若,,则的大小
关系是______.
三、解答题
19.已知m∈R,函数f(x)=(x2+mx+m)e x.
(1)若函数f(x)没有零点,求实数m的取值范围;
(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;
(3)当m=0时,求证:f(x)≥x2+x3.
20.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少am2;已知旧住房总面积为32am2,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m2?(Ⅱ),求前n(1≤n≤10且n∈N)年新建住房总面积S n
21.由四个不同的数字1,2,4,x组成无重复数字的三位数.
(1)若x=5,其中能被5整除的共有多少个?
(2)若x=9,其中能被3整除的共有多少个?
(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x.