【名师一号】2014-2015学年北师大版高中数学必修2:第一章 立体几何初步 单元同步测试]
北师大版高中数学必修2第一章《立体几何初步》简单几何体
思考题:用一个平行于棱锥底面的平面 去截棱锥,那么所得截面与棱锥底面 之间的几何体会是怎样的一个几何体 呢?
A1
D1
B1
C1
A1
D1 B1
C1
35
三、棱台的结构特征 1、棱台的概念:用一个平行于棱锥底面 的平面去截棱锥,底面和截面之间的部分 叫做棱台。
A1 D1 B1 C1 上底面 侧面 侧棱 下底面 顶点
面去截它们,那么所得的截面是什么图形?
性质1:平行于圆柱,圆锥,圆台底面的截面都是 圆。
2.过圆柱,圆锥,圆台的旋转轴的截面是什么图形?
性质2:过轴的截面(轴截面)分别是全等的矩形,等 腰三角形,等腰梯形。
3.用一个平面去截球体得到的截面是什么图形? 性质3:用一个平面去截球体得到的截面是一个圆。
38
棱台的性质:棱台的上下底面平行,侧棱的延长线交于一点
36
2、棱台的分类:由三棱锥、四棱锥、五棱 锥…截得的棱台,分别叫做三棱台,四棱台, 五棱台…
3、棱台的表示法:棱台用表示上、下底面各 顶点的字母来表示,如图棱台ABCD-A1B1C1D1 。
A1 D1 B1 C1
37
思考题:1.用平行于圆柱,圆锥,圆台的底面的平
矩形
O
(1)旋转轴叫做圆柱的轴。
(2) 垂直于轴的边旋转而成 的圆面叫做圆柱的底面。 (3)由平行于轴的边旋转而 成的曲面叫做圆柱的侧面。
(4)无论旋转到什么位置不 11 垂直于轴的边都叫做圆柱的母线。
2、表示:用表示它的轴的端点的两个字 母表示,如圆柱OO1。 O
O1
侧面 轴 底面
母线
12
问题5: 如图所示:把直角三角形ABC绕着其一 边AB所在的直线在空间中旋转一周,则直角 三角形ABC的其它两条边在旋转的过程中所 形成的曲面围成的几何体会是什么呢?
北师大版数学必修2 第一章 立体几何初步归纳总结课件(64张)
4.三视图与直观图的画法 三视图和直观图是空间几何体的不同的表现形式,空间几 何体的三视图可以使我们很好地把握空间几何体的性质.由空 间几何体可以画出它的三视图,同样由三视图可以想象出空间 几何体的形状,两者之间可以相互转化. 5.直线和平面平行的判定方法 (1)定义:a∩α=∅⇒a∥α; (2)判定定理:a∥b,a α,b α⇒a∥α; (3)线面平行的性质:b∥a,b∥α,a α⇒a∥α; (4)面面平行的性质:α∥β,a α⇒a∥β.
8.证明线线垂直的方法 (1)定义:两条直线所成的角为 90° ; (2)平面几何中证明线线垂直的方法; (3)线面垂直的性质:a⊥α,b α⇒a⊥b; (4)线面垂直的性质:a⊥α,b∥α⇒a⊥b.
9.判定两个平面平行的方法 (1)依定义采用反证法; (2)利用判定定理: a∥β,b∥β,a α,b α,a∩b=A⇒α∥β; (3)垂直于同一条直线的两个平面平行: a⊥α,a⊥β⇒α∥β; (4)平行于同一平面的两个平面平行: α∥γ,β∥γ⇒α∥β.
12.垂直关系的转化
在证明两平面垂直时一般先从现有直线中寻找平面的垂 线,若这样的直线图中不存在,则可通过作辅助线来解决.如 有平面垂直时,一般要用性质定理,在一个平面内作交线的垂 线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟 练掌握“线线垂直”“面面垂直”间的转化条件是解决这类问 题的关键.
明朗化的立体几何问题.
[例 2] 如下图所示,在矩形 ABCD 中,AB=3 3,BC= 3.沿对角线 BD 将△BCD 折起,使点 C 移到点 C′,且 C′O ⊥平面 ABD 于点 O,点 O 恰在 AB 上.
7.证明线面垂直的方法 (1)线面垂直的定义:a 与 α 内任何直线垂直⇒a⊥α; m、n α,m∩n=A ⇒l⊥α; (2)判定定理 1: l⊥m,l⊥n (3)判定定理 2:a∥b,a⊥α⇒b⊥α; (4)面面平行的性质:α∥β,a⊥α⇒a⊥β; (5)面面垂直的性质;α⊥β,α∩β=l,a α,a⊥l⇒a⊥β.
高中数学北师大版必修2习题:第一章立体几何初步 1.5.1.1 Word版含解析
§5平行关系5.1平行关系的判定第1课时直线与平面平行的判定1.若直线a∥平面α,直线b∥平面α,则a与b的位置关系是()A.平行B.相交C.异面D.以上都有可能答案:D2.在五棱台ABCDE-A1B1C1D1E1中,若F,G分别是AA1和BB1上的点,且,则FG与平面ABCDE的位置关系是()A.平行B.相交C.异面D.FG在平面ABCDE内答案:A3.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四边形的四条边与两条对角线中与平面EFGH平行的条数为()A.0B.1C.2D.3解析:由线面平行的判定定理可知,BD∥平面EFGH,AC∥平面EFGH.答案:C4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是()A.①②B.①④C.①③D.②④答案:B5.如图所示,在长方体ABCD-A1B1C1D1中,E为AA1的中点,F为BB1的中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个解析:∵在长方体ABCD-A1B1C1D1中,E为AA1的中点,F为BB1的中点,∴EF∥CD,EF∥AB,EF∥A1B1,∴由直线与平面平行判定定理得,与EF平行的长方体的面有面CDD1C1,面ABCD,面A1B1C1D1,共3个.故选C.答案:C6.已知两条直线a,b,a∥平面α,b⫋α,则直线a与b的位置关系是.答案:平行或异面7.在空间四边形ABCD中,E,F分别为AB和BC上的点,且AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是.解析:∵,∴EF∥AC.又AC⊈平面DEF,EF⫋平面DEF,∴AC∥平面DEF.答案:平行8.如图所示,在三棱柱ABC-A1B1C1中,D是AB的中点.求证:BC1∥平面CA1D.证明如图所示,连接AC1交A1C于点O,连接OD,则O是AC1的中点.∵D是AB的中点,∴OD∥BC1.又OD⫋平面CA1D,BC1⊈平面CA1D,∴BC1∥平面CA1D.9.如图所示,在三棱柱ABC-A1B1C1中,点D1是A1C1上的一点,当等于何值时,BC1∥平面AB1D1? 解当=1时,BC1∥平面AB1D1.证明如下:如图所示,此时D1为线段A1C1的中点,连接A1B交AB1于点O,连接OD1.由棱柱的定义,知四边形A1ABB1为平行四边形,所以点O为A1B的中点.在△A1BC1中,点O,D1分别为A1B,A1C1的中点,所以OD1∥BC1.又因为OD1⫋平面AB1D1,BC1⊈平面AB1D1,所以BC1∥平面AB1D1.所以当=1时,BC1∥平面AB1D1.★10.如图所示,四边形ABCD是梯形,四边形CDEF是矩形,M是AE上的动点.试确定定点M的位置,使AC∥平面MDF,并说明理由.解当点M是线段AE的中点时,AC∥平面MDF.证明如下:连接CE,交DF于点N,连接MN,因为M,N 分别是AE,CE的中点,所以MN∥AC.又因为MN⫋平面MDF,AC⊈平面MDF,所以AC∥平面MDF.。
高中数学必修2(北师版)第一章1.7(与最新教材完全匹配)知识点总结含同步练习题及答案
描述:例题:高中数学必修2(北师版)知识点总结含同步练习题及答案
第一章 立体几何初步 1.7 简单几何体的面积与体积
一、知识清单
展开图
截面分析 表面积与体积
二、知识讲解
1.展开图
空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.
如图所示,是一个正方体的展开图,每一个面内都标注了字母,则展开前与字母 相对的是(
)
A.字母 B.字母 C.字母 D.字母
解:B B E C A D 下图是一个正方体表面的一种展开图,图中的四条线段 、、 和 在原正方体中
不在同一平面内的有______对.
解:将展开图恢复为正方体,如图,可见 与 , 与 , 与 不在同一平面内.
AB
CD EF GH 3
AB CD AB GH EF GH
解:C
分都是一个三棱锥.
′
A.三角形 B.四边形 C.五边形 D.六边形作截面图如图所示,可知是六边形.
ii)若两平行截面在球心的两侧,如图(2)所示,则
PA=PB=PC=2
,求三棱锥
R=AB
2。
北师大版高中数学必修二第一章 立体几何初步.docx
第一章立体几何初步§1简单几何体【课时目标】1.能根据圆柱、圆锥、圆台和球的定义及结构特征,掌握它们的相关概念和表示方法.2.能根据棱柱、棱锥、棱台的定义和结构特征,掌握它们的相关概念、分类和表示方法.1.以____________所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球.2.分别以________________、___________、_____________所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台.3.棱柱的结构特征:两个面____________,其余各面都是____________,并且每相邻两个四边形的公共边都____________,由这些面围成的几何体叫作棱柱.侧棱垂直于底面的棱柱叫作__________,底面是正多边形的直棱柱叫作__________.4.棱锥的结构特征:有一个面是__________,其余各面是_______________________,这些面围成的几何体叫棱锥.如果棱锥的底面是____________,且各侧面________,就称作正棱锥.5.棱台的结构特征:用一个__________棱锥底面的平面去截棱锥,____________之间的部分叫作棱台.一、选择题1.棱台不具备的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点2.下列命题中正确的是()A.有两个面平行,其余各面都是四边形的几何体叫棱柱B.有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱D.用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台3.下列说法正确的是()A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线4.下列说法正确的是()A.直线绕定直线旋转形成柱面B.半圆绕定直线旋转形成球体C.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D.圆柱的任意两条母线所在的直线是相互平行的5.观察下图所示几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③是棱锥D.④不是棱柱6.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下二、填空题7.由若干个平面图形围成的几何体称为多面体,多面体最少有________个面.8.将等边三角形绕它的一条中线旋转180°,形成的几何体是________.9.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图?其序号是________.三、解答题10.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.11.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45°,求这个圆台的高、母线长和底面半径.能力提升12.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个正方体的图形的是()13.如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A 点爬到B点,问蚂蚁爬行的最短距离是多少?1.学习本节知识,要注意结合集合的观点来认识各种几何体的性质,还要注意结合动态直观图从运动变化的观点认识棱柱、棱锥和棱台的关系.2.棱柱、棱锥、棱台中的基本量的计算,是高考考查的热点,要注意转化,即把三维图形化归为二维图形求解.在讨论旋转体的性质时轴截面具有极其重要的作用,它决定着旋转体的大小、形状,旋转体的有关元素之间的关系可以在轴截面上体现出来.轴截面是将旋转体问题转化为平面问题的关键.3.几何体表面距离最短问题需要把表面展开在同一平面上,然后利用两点间距离的最小值是连接两点的线段长求解.第一章立体几何初步§1简单几何体答案知识梳理1.半圆的直径2.矩形的一边直角三角形的一条直角边直角梯形垂直于底边的腰3.互相平行四边形互相平行直棱柱正棱柱4.多边形有一个公共顶点的三角形正多边形全等5.平行于底面与截面作业设计1.C[用棱台的定义去判断.]2.C[A、B的反例图形如图所示,D显然不正确.]3.C[圆锥是直角三角形绕直角边旋转得到的,如果绕斜边旋转就不是圆锥,A不正确,圆柱夹在两个平行于底面的截面间的几何体才是旋转体,故B不正确,通过圆台侧面上一点,有且只有一条母线,故D不正确.]4.D[两直线平行时,直线绕定直线旋转才形成柱面,故A错误.半圆以直径所在直线为轴旋转形成球体,故B不正确,C不符合棱台的定义,所以应选D.] 5.C6.B7.48.圆锥9.①②10.解 截面BCFE 右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB ′—CFC ′,其中△BEB ′和△CFC ′是底面.EF ,B ′C ′,BC 是侧棱,截面BCFE 左侧部分也是棱柱.它是四棱柱ABEA ′—DCFD ′.其中四边形ABEA ′和四边形DCFD ′是底面.A ′D ′,EF ,BC ,AD 为侧棱.11.解圆台的轴截面如图所示,设圆台上、下底面半径分别为x cm 和3x cm ,延长AA 1交OO 1的延长线于点S .在Rt △SOA 中,∠ASO =45°,则∠SAO =45°.∴SO =AO =3x cm ,OO 1=2x cm .∴12(6x +2x)·2x =392,解得x =7,∴圆台的高OO 1=14 cm ,母线长l =2OO 1=14 2 cm ,底面半径分别为7 cm 和21 cm .12.C13.解 把圆柱的侧面沿AB 剪开,然后展开成为平面图形——矩形,如图所示,连接AB ′,则AB ′即为蚂蚁爬行的最短距离.∵AB =A ′B ′=2,AA ′为底面圆的周长,且AA ′=2π×1=2π, ∴AB ′=A ′B ′2+AA ′2=4+(2π)2=21+π2,即蚂蚁爬行的最短距离为21+π2.。
高中数学 第一章 立体几何初步单元同步测试(含解析)北师大版必修2
【名师一号】2014-2015学年高中数学 第一章 立体几何初步单元同步测试(含解析)北师大版必修2时间120分钟 满分150分一、选择题(本大题共10小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.下列说法正确的是( ) A .三点确定一个平面 B .四边形一定是平面图形 C .梯形一定是平面图形D .平面α与平面β有不同在一条直线上的三个交点解析 梯形有两条边平行,过两条平行直线有且只有一个平面. 答案 C2.室内有直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在的直线( ) A .异面 B .相交 C .平行 D .垂直答案 D3.若直线a ⊥b ,且直线a ∥平面α,则直线b 与平面α的位置关系是( ) A .b α B .b ∥αC .b α或b ∥αD .b 与α相交或b α或b ∥α答案 D4.若三球的半径之比是1:2:3,则半径最大的球的体积是其余两球的体积和的( ) A .4倍 B .3倍 C .2倍D .1倍解析 设三个球的半径依次为a,2a,3a ,V 最大=43π(3a )3=36πa 3,V 1+V 2=43πa 3+43π(2a )3=363πa 3=12πa 3,V 最大V 1+V 2=3.答案 B5.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为( )答案 C6.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是( )A.①②B.②③C.①④D.③④解析根据公理4,知①正确;根据垂直于同一平面的两直线平行可知④正确.答案 C7.在空间四边形ABCD中,若AD⊥BC,BD⊥AD,则有( )A.面ABC⊥面DBC B.面ABC⊥面ADCC.面ABC⊥面ADB D.面ADC⊥面DBC解析如图,在四面体ABCD中,∵AD⊥BC,AD⊥BD,BD∩BC=B,∴AD⊥面BCD.又AD面ADC,∴面ADC⊥面BCD.答案 D8.在直三棱柱ABC-A1B1C1中,AC=BC,D为AB的中点,下列说法中正确的个数有( )①CD⊥面ABB1A1;②BC1∥面A1DC;③面ADC⊥面ABB1A1.A.0个B.1个C.2个D.3个解析∵ABC-A1B1C1为直三棱柱,AC=BC,D为AB的中点,∴CD⊥AB,由两平面垂直的性质定理,可知CD⊥面ABB1A1,又CD面ADC,故面ADC⊥面ABB1A,故①、③正确,对于②连接AC 1,BC 1,设A 1C ∩AC 1=O ,则O 为AC 1的中点,又D 为AB 的中点,∴OD ∥BC 1. 又OD 面A 1DC ,BC 1面A 1DC ,∴BC 1∥面A 1DC ,故②正确. 答案 D9.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为( )A.73 m 3B.92 m 3C.72m 3D.94m 3 解析 由三视图可知,原几何体如图所示,故V =3×13+12×13=3+12=72m 3.答案 C10.如图,平行四边形ABCD中,AB⊥BD,沿BD将△ABD折起到A′BD,使面A′BD⊥面BCD,连接A′C,则在四面体A′BCD的四个面中,互相垂直的平面有( )①面ABD⊥面BCD;②面A′CD⊥面ABD;③面A′BC⊥面BCD;④面ACD⊥面ABC.A.1个B.2个C.3个D.4个解析由于面ABD⊥面BCD,故①正确.又AB⊥BD则A′B⊥BD,则A′B⊥BD,∴A′B ⊥面BCD,故面A′BC⊥面BCD,又CD⊥BD,∴面A′CD⊥面ABD,故②③正确,④显然不正确.答案 C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.某几何体的三视图如图所示,则该几何体的体积是________.解析由三视图知,该几何体是由圆柱中间除去正四棱柱得到的,所以体积是4π×4-2×2×4=16π-16.答案16π-1612.若正三棱台的上、下底面的边长分别为2和8,侧棱长为5,则这个棱台的高为________.解析 由题可知,上底面三角形的高为2sin60°=3,下底面三角形的高为8sin60°=43,故棱台的高h =52-⎣⎢⎡⎦⎥⎤43-3×232=13.答案1313.已知圆锥的表面积为a m 2,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为________.解析 设圆锥的底面半径为r ,母线长为l ,则πl =2πr ,即l =2r ,S 圆锥表=πr 2+πrl =3πr 2=a ,则r =3πa3π. 答案3πa3πm 14.如图四棱锥S -ABCD 中,底面ABCD 为平行四边形,E 为SA 上的点,当E 满足条件:________时,SC ∥面EBD .解析当E为SA的中点时,设AC∩BD=O,连接EO,EB,ED,∵ABCD为平行四边形,∴O为AC的中点.∴EO∥SC,又SC面EBD,OE面EBD,∴SC∥面EBD.答案E为SA的中点15.如图所示,平面α⊥平面β,在α与β的交线l上,取线段AB=4,AC、BD分别在平面α和平面β内,AC⊥l,BD⊥l,AC=3,BD=12,则线段CD的长为________.解析 连接BC ,∵AC ⊥l ,∴∠CAB =90°,CB =AC 2+AB 2=32+42=5.又BD ⊥l ,α⊥β, ∴BD ⊥平面α. 又BC α,∴BD ⊥BC . ∴CD =BD 2+BC 2=122+52=13. 答案 13三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明,证明过程或演算步骤)16.(12分)已知圆台的上、下底面半径分别是2,5,且侧面积等于两底面面积之和,求该圆台的母线长.解 设圆台的母线长为l ,则圆台的上、下底面面积为S 上=π·22=4π,S 下=π·52=25π,∴圆台的两底面面积之和S =S 上+S 下=29π, 又圆台的侧面积S 侧=π(2+5)·l =7πl , 由7πl =29π,得l =297,即母线长为297.17.(12分)如图所示,已知E ,F ,G ,H 分别为空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且EH ∥FG .求证:EH∥BD.证明∵EH∥FG,E H⃘面BDC,FG面BDC,∴EH∥面BDC,又EH面ABD,面ABD∩面BDC=BD,∴EH∥BD.18.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积.解(1)取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1= 3.又A1C=6,则A1C2=OC2+OA21,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC=3,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA1=3.19.(13分)如图,已知PA垂直于正方形ABCD所在平面,E,F分别是AB,PC的中点,∠PDA=45°.(1)求证:EF∥面PAD;(2)求证:面PCE⊥面PCD.证明 (1)设PD 中点为G ,连接FG ,AG ,∵F ,G 分别为PC ,PD 的中点,∴FG 綊12CD .又E 为AB 的中点, ∴AE 綊FG .即四边形EFGA 为平行四边形.∴EF ∥AG .又EF 面PAD ,AG 面PAD ,∴EF ∥面PAD .(2)PA ⊥面ABCD ,∴PA ⊥AD ,PA ⊥CD .又∵在Rt △PAD 中,∠PDA =45°,∴PA =AD ,∴AG ⊥PD .又CD ⊥AD ,CD ⊥PA ,且PA ∩AD =A ,∴CD ⊥面PAD ,CD ⊥AG ,又PD ∩CD =D ,∴AG ⊥面PCD .由(1)知EF ∥AG ,∴EF ⊥面PCD ,又EF 面PCE ,∴面PCE ⊥面PCD .20.(13分)如图①,△ABC 是等腰直角三角形,AC =BC =4,E ,F 分别为AC ,AB 的中点,将△AEF 沿EF 折起,使A ′在平面BCEF 上的射影O 恰为EC 的中点,得到图②.(1)求证:EF ⊥A ′C ;(2)求三棱锥F —A ′BC 的体积.解 (1)证法1:在△ABC 中,EF 是等腰直角△ABC 的中位线,在四棱锥A ′—BCEF 中,EF ⊥A ′E ,EF ⊥EC ,∴EF ⊥平面A ′EC ,又A ′C 平面A ′EC ,∴EF ⊥A ′C .证法2:同证法1 EF ⊥EC ,∴A ′O ⊥EF ,∴EF ⊥平面A ′EC .又A ′C 平面A ′EC ,∴EF ⊥A ′C .(2)在直角梯形EFBC 中,EC =2,BC =4,∴S △FBC =12BC ·EC =4. 又∵A ′O 垂直平分EC ,∴A ′O =A ′E 2-EO 2=3,∴三棱锥F —A ′BC 的体积V F —A ′BC =V A ′—FBC =13S △FBC ·A ′O =13×4×3=433. 21.(13分)如图所示,已知正方体ABCD —A 1B 1C 1D 1,O 是底面ABCD 对角线的交点.(1)求证:C1O∥平面AB1D1;(2)求证:A1C⊥平面AB1D1;(3)若AA1=2,求三棱锥A1—AB1D1的体积.解(1)证明:设B1D1的中点为O1,∵ABCD—A1B1C1D1为正方体,∴C1O1綊AO.故AOC1O1为平行四边形.∴AO1∥C1O,又AO1面AB1D1,C1O面AB1D1,∴C1O∥面AB1D1.(2)证明:∵B1D1⊥A1C1,B1D1⊥CC1,A1C1∩C1C=C1. ∴B1D1⊥面ACC1A1,A1C面ACC1A1.∴B1D1⊥A1C.同理可证A1C⊥AB1.又AB1∩B1D1=B1,∴A1C⊥面AB1D1.(3)VA1—AB1D1=VA—A1B1D1=13×12×2×2×2=43.。
2014届北师大版高中数学必修二(高一)课件 第一章§1.1
圆锥;若绕其斜边所在的直线旋转得到的是两个同底面圆锥
构成的一个几何体,如图(1).B项错误,没有说明这两个平行 截面的位置关系,当这两个平行截面与底面平行时正确,其他
情况则结论是错误的,如图 (2) . D 项错误,通过圆台侧面上
一点,只有一条母线,如图(4).C项正确,如图(3).
栏目 导引
第一章
由圆柱、圆锥、圆台定义可知,三者分别为矩形、
三角形、直角梯形旋转而得,所以其上、下底面都是圆面, 故正确; B 圆台的母线是直角梯形不垂直于旋转轴的边,不
是上、下底面圆周上任意两点的连线,故错误; C 球的截面
一定是圆,用平行于圆柱底面的面截圆柱得到的截面是圆, 其他平面截得的截面不是圆,故错误; D 以直角三角形的一 条直角边所在的直线为轴旋转,其余各边旋转而成的旋转面 形成的曲面所围成的几何体叫作圆锥,以斜边为轴旋转形成
第一章
立体几何初步
第一章 立体几何初步
栏目 导引
第一章
立体几何初步
§1 简单几何体
1.1 简单旋转体栏目 导引Fra bibliotek第一章
立体几何初步
学习导航
学习目标
理解
实例 ― ― → 旋转体
了解
― ― → 圆柱、圆锥、圆台和球的结构特征 重点难点 重点:圆柱、圆锥、圆台和球的结构特征.
难点:多面体和旋转体概念的理解及几何体形状的判断.
栏目 导引
第一章
立体几何初步
想一想 2.“ 直角三角形绕其一边旋转一周所形成的几何体必是圆
锥”,这种说法正确吗?
提示:不正确,当以斜边所在直线为轴旋转时,其余各边 旋转形成的曲面所围成的几何体不是圆锥.如图所示,是
由两个同底圆锥组成的几何体.
北师大版高中数学必修2第一章《立体几何初步》直线与平面平行的性质
下面我们来证 明这一结论. 明这一结论.
7
探研新知
已知:如图,a∥α, 已知:如图,a∥α, α∩β= a ⊂β,α∩β=b。 求证:a∥b。 求证:a∥b。 证明:∵α∩β= 证明:∵α∩β=b,∴b⊂α ∴b⊂ a∥α,∴a与 无公共点, ∵ a∥α,∴a与b无公共点, ∵a⊂ ∴a∥b。 ∵a⊂β,b⊂β,∴a∥b。 我们可以把这个结论作定理来用. 我们可以把这个结论作定理来用.
b a
b c a α γ d δ β
15
例题示范 有一块木料如图, 例2:有一块木料如图,已知棱BC平行于面 (1)要经过木料表面 A′C′(1)要经过木料表面A′B′C′D′ 内的 一点P和棱BC将木料锯开,应怎样画线?(2)所 BC将木料锯开 一点P和棱BC将木料锯开,应怎样画线?(2)所 画的线和面AC有什么关系? AC有什么关系 画的线和面AC有什么关系? :(1 过点P EF∥B’C , 解:(1)过点P作EF∥B C’, 分别交棱A B , D 于点 于点E 分别交棱A’B’,C’D’于点E, 连接BE CF, BE, F。连接BE,CF,则 D1 E EF,BE,CF就是应画的线 就是应画的线。 EF,BE,CF就是应画的线。
结合实例(教室内的有关例子)得出结论: 结合实例(教室内的有关例子)得出结论: 如果一条直线与平面平行, 如果一条直线与平面平行,这条直线不会 与这个平面内的所有直线都平行, 与这个平面内的所有直线都平行,但在这个 平面内却有无数条直线与这条直线平行。 平面内却有无数条直线与这条直线平行。
5
探研新知 探究2.如果一条直线与一个平面平行, 2.如果一条直线与一个平面平行 探究2.如果一条直线与一个平面平行,那么这条 直线与这个平面内的直线有哪些位置关系? 直线与这个平面内的直线有哪些位置关系?
高中数学北师大版必修二课件:第一章 立体几何初步
向量的加法运算:向量加法遵循平行四边形 法则如(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
添加 标题
向量的减法运算:向量减法遵循平行四边形 法则如(x1, y1, z1) - (x2, y2, z2) = (x1x2, y1-y2, z1-z2)
向量积的坐标表示:两个向量的向 量积的坐标表示为两个向量坐标的 乘积
添加标题
添加标题
添加标题
添加标题
混合积:三个向量的混合积是一个 向量其坐标表示为三个向量坐标的 乘积
混合积的坐标表示:三个向量的混 合积的坐标表示为三个向量坐标的 乘积
总结与展望
本章内容的总结与回顾
本章主要介绍了立体几何的基本概念和性质包括点、线、面、体等。 学习了立体几何的度量方法如长度、角度、体积等。 掌握了立体几何的证明方法如平行、垂直、相似等。 学习了立体几何的应用如空间图形的绘制、空间物体的测量等。 展望未来我们将继续深入学习立体几何掌握更多的知识和技能为未来的学习和工作打下坚实的基础。
棱锥的表面积和体积
棱锥的定义: 由一个多边 形底面和若 干个侧面组 成的几何体
棱锥的表面 积:底面积+ 侧面积
棱锥的体积: 底面积×高 ÷3
棱锥的表面 积和体积的 计算公式: S=πr²+n(l ×h)V=πr²h /3
棱锥的表面 积和体积的 应用:建筑、 工程等领域
球的表面积和体积
球的表面积:4πr^2 球的体积:4/3πr^3 球的表面积和体积公式推导 球的表面积和体积在实际生活中的应用
几何性质:立体几何具有空间位置、 形状、大小等性质平面几何具有位 置、形状等性质
2014届北师大版高中数学必修二(高一)课件 第一章本章优化总结
栏目 导引
第一章
立体几何初步
例1 (2011· 高考天津卷)一个几何体的三视图如图所示
(单位:m),则该几何体的体积为__________ m3.
【分析】 由三视图还原出直观图,然后利用体积公式求解.
栏目 导引
第一章
立体几何初步
专题三 空间中的角的求解 空间中的角主要有异面直线所成的角、直线与平面所成的角 及二面角这三种空间角,求解这三种空间角的总体思想是先 把空间角转化为平面角,再通过解三角形达到求角的值,其 一般步骤是:(1)找出或作出有关的平面角;(2)证明它符合定 义;(3)化归到某一三角形中进行计算.常见的方法有:(1)定 义法:根据相关角的定义,在已知图形中直接作出具体的平面 角.作异面直线所成的角关键是在图形中找到一个特殊点,
【分析】
其值.
(1)线线垂直→线面垂直→面面垂直;(2)利用线面
垂直,结合定义作出二面角的平面角,转化到三角形中求得
栏目 导引
第一章
立体几何初步
【解】 (1) 证明:如图,连接AC,BD,设AC∩BD=O,连接OE. 在△PAC中,E为PA的中点,O为AC的中点, ∴OE∥PC.又PC⊥平面ABCD, ∴OE⊥平面ABCD.
栏目 导引
第一章
立体几何初步
例2 如图,在底面为平行四边形的四棱锥P-ABCD中, AB⊥AC,PA⊥平面ABCD,且PA=AB,点E是PD的中点. 求证:
(1)AC⊥PB; (2)PB∥平面AEC.
【分析】 运用线面平行、垂直的判定和性质定理证明.
栏目 导引
第一章
立体几何初步
【证明】
高中数学北师大版必修2第一章立体几何初步1.5.1.1直线与平面平行的判定2
题型一
题型二
题型三
【变式训练2】 已知四边形ABCD,ABEF都是正方
形,M∈AC,N∈BF,且AM=FN.求证:MN∥平面BCE.
证明:如图所示,作 MP∥AB 交 BC 于点 P,NQ∥AB 交 BE 于点
Q,连接 PQ,
∴MP∥NQ.
∵AM=FN,
∴MP=
2
2
=
2
2
= .
∴MPNQ, ∴四边形 MNQP 为平行四边形.
面不平行 直线在
平面内
——有无数个公共点
直线在平面内
②按是否在平面内分类 直线不在 直线和平面相交
平面内 直线和平面平行
【做一做1】 若直线l在平面α外且直线l上所有的点到平面α的距
离都相等,则直线l与平面α的位置关系是
.
答案:l∥α
2.直线与平面平行的判定定理
直线与平面平行的判定定理告知我们,可以通过直线间的平行来
直线与
个公共点 P,我们称直线 a 与
平面相交
平面 α 交于点 P
a∩α=P
如果直线 a 与平面 α 没有公
直线与
共点,我们称直线 a 与平面 α
平面平行
平行
a∥α
名师点拨直线与平面的位置关系有两种分类方法:
直线和
——无公共点
平面平行
①按公共点个数分类
直线和
有且只有
——
直线和平 平面相交
一个公共点
证明直线与平面平行.通常我们将其记为“若线线平行,则线面平行”.
因此,对于线面平行的问题通常转化为线线平行的问题来解决.也
就是说,证明一条直线和一个平面平行,只要在这个平面内找到一
北师大版高中数学必修2第一章 立体几何初步1
第一章 立体几何初步知识精要1.证明两条直线平行,只需证明这两条直线上的向量共线(即成倍数关系).证明两条直线平行,只需证明这两条直线上的向量的数量积等于零. 2.通过法向量,把线面、面面的角转化为线线的角.从而可以利用公式cos ||||θαβαβ=求解. 3.建立空间直角坐标系.例题1如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12PA , 点O 、D 分别是AC 、PC ABC .(Ⅰ)求证OD ∥平面PAB ;(Ⅱ) 求直线OD 与平面PBC 所成角的大小.解答OP ABC OA OC AB BC ⊥== 平面,,,arcsin30OD PBC ∴ 与平面所成的角为.练习1如图,已知长方体1111ABCD A B C D -,12,1AB AA ==,直线BD 与平面11AA B B 所成的角为030,AE 垂直BD 于,E F 为11A B 的中点.1(Ⅰ)求异面直线AE 与BF 所成的角;(Ⅱ)求平面BDF 与平面1AA B 的大小;(Ⅲ)求点A 到平面BDF 的距离解答 在长方体1111ABCD A B C D -中,以AB 所在直线为x轴,AD 所在直线为y 轴,1AA 所在直线为z 轴建立空间直 角坐标系如图.由已知12,1AB AA ==,可得(0,0,0),(2,0,0),(1,0,1)A B F .又AD ⊥平面11AA B B ,从面BD 与平面1AA为030DBA ∠=又2,,1,AB AE BD AE AD =⊥==从而易得1(,(0,223E D (Ⅰ)13(,,0),(1,0,1)22AE BF ==-cos ,AE BF AE BF AE BF∴<>=14-==即异面直线AE、BF所成的角为(Ⅱ)易知平面1AA B的一个法向量(0,1,0)m=(,,)n x y z=是平面BDF的一个法向量.(2,,0)3BD=-由n BFn BD⎧⊥⎪⎨⊥⎪⎩n BFn BD⎧=⎪⇒⎨=⎪⎩203x xx y-+=⎧⎪⇒⎨-=⎪⎩x zy=⎧⎪⇒=取(1,3,1)n=∴3cos,515m nm nm n<>===⨯即平面BDF 与平面1AA B所成二面角(锐角)大小为5(Ⅲ)点A到平面BDF的距离,即AB 在平面BDF 的法向量n上的投影的绝对值所以距离||cos ,d AB AB n=<>||||||ABnABAB n=||2||55AB nn===所以点A 到平面BDF5例题2 如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2(Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小.解答(I )证明 由题设知OA ⊥OO 1,OB ⊥OO 1.所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB . 故可以O 为原点,OA 、OB 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图3,则相关各点的坐标是A (3,0,0),B (0,3,0),C (0,1,3)O 1(0,0,3).从而图11A .0333),3,3,0(),3,1,3(11=⋅+-=⋅-=-=BO AC BO AC所以AC ⊥BO 1.(II )解:因为,03331=⋅+-=⋅OC BO 所以BO 1⊥OC ,由(I )AC ⊥BO 1,所以BO 1⊥平面OAC ,1BO 是平面OAC 的一个法向量.设),,(z y x n =是0平面O 1AC 的一个法向量,由,3.0,033001=⎩⎨⎧==++-⇒⎪⎩⎪⎨⎧=⋅=⋅z y z y x C O n AC n 取得)3,0,1(=n .设二面角O —AC —O 1的大小为θ,由n 、1BO 的方向可知=<θn ,1BO >,所以COS <=cos θn ,1BO .43||||11=⋅BO n BO n 即二面角O —AC —O 1的大小是.43arccos练习2 如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB (Ⅰ)求证1AC BC ⊥; (Ⅱ) 求证11AC CDB 平面;(Ⅲ)求异面直线1AC 与1B C 解答∵直三棱锥111ABC A B C -底面三边长C 1A 1xz3,4,5AC BC AB ===,1,,AC BC CC 两两垂直标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),B 1(0,4,4),D (32,2,0)(Ⅰ)11(3,0,0),(0,4,4)AC BC =-=,11110,AC BC AC BC ∴⋅=∴⊥(Ⅱ)设1CB 与1C B 的交点为E ,则E (0,2,2)(Ⅲ)11(3,0,4),(0,4,4),AC CB =-=1111112cos ,5||||AC CB AC CB AC CB ∴<>==∴异面直线1AC 与1B C 例题3 在ΔABC 中,已知66cos ,364==B AB ,AC 边上的中线BD =5,求SINA .解答 以B 为坐标原点,BC 为x 轴正向建立直角坐标指法,且不妨设点A 位于第一象限由630sin =B ,则44(,sin )(,)3333BA B B ==,设BC =(x ,0),则43(,63x BD +=,由条件得5)352()634(||22=++=x BD ,从而x=2,314-=x (舍去),故2(,)33CA =-.于是 ∴1470cos 1sin 2=-=A A 练习3 在平面上给定ABC ∆,对于平面上的一点P ,建立如下的变换 :f AP 的中点为Q ,BQ 的中点为R ,CR 的中点为'P ,'()f P P =,求证 f 只有一个不动点(指P 与'P 重合的点). 解答:依提意,有12AQ AP =,且111()224AR AB AQ AB AP=+=+,'1111()2248AP AC AR AC AB AP =+=+++,要使'P 与P 重合,应111248AP AC AB AP =++,得1(42)7AP AC AB =+,对于给定的ABC ∆,满足条件的不动点P 只有一个. 例题4 如图,在四棱锥P —ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC . 已知,21,2,2===AE CD PD 求 (Ⅰ)异面直线PD 与EC 的距离; (Ⅱ)二面角E —PC —D 的大小.解答 (Ⅰ)以D 为原点,DA 、DC 、DP 分别 为x 、y 、z 轴建立空间直角坐标系. 由已知可得D (0,0,0),P (0,0C (0,2,0)设0,2,(),0)(0,0,(x B x x A 则>由0=⋅⊥CE PE CE PE 得,即,0432=-x 故由DE CE DE =-⋅=⋅得0)0,23,23()0,21,23(又PD ⊥DE ,故DE 是异面直线PD 与CE 的公垂线,易得1||=DE ,故异面直线PD 、CE 的距离为1.(Ⅱ)作DG ⊥PC ,可设G (0,Y ,Z ).由0=⋅PC DG 得0)2,2,0(),,0(=-⋅z y ,即),2,1,0(,2==DG y z 故可取作EF ⊥PC 于F ,设F (0,M ,N ),则 由0212,0)2,2,0(),21,23(0=--=-⋅--=⋅n m n m PC EF 即得,111又由F 在PC 上得).22,21,23(,22,1,222-===+-=EF n m m n 故 因,,PC DG PC EF ⊥⊥故平面E —PC —D 的平面角θ的大小为向量DG EF 与的夹角. 故,4,22||||cos πθθ===EF DG 即二面角E —PC —D 的大小为.4π练习4如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,BB 1=2,BC =1,∠BCC 1=3π,求:(Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.解答(I )以B 为原点,1BB 、BA 分别为Y 、Z 轴建立空间直角坐标系. 由于BC =1,BB 1=2,∠BCC 1=3π,在三棱柱ABC —A 1B 1C 1中有B (0,0,0),A (0,0,2),B 1(0设即得由,0,),0,,23(11=⋅⊥EB EA EB EA a E 又AB ⊥面BCC 1B 1,故AB ⊥BE . 因此BE 是异面直线AB 、EB 1的公垂线,则14143||=+=BE ,故异面直线AB 、EB 1的距离为1.(II )由已知有,,1111EB A B EB EA ⊥⊥故二面角A —EB 1—A 1的平面角θ的大小为向量EA A B 与11的夹角.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章测试时间120分钟满分150分一、选择题(本大题共10小题,每小题5分,共50分.在下列四个选项中,只有一项是符合题意的)1.下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α与平面β有不同在一条直线上的三个交点解析梯形有两条边平行,过两条平行直线有且只有一个平面.答案 C2.室内有直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在的直线()A.异面B.相交C.平行D.垂直答案 D3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A.bαB.b∥αC.bα或b∥αD.b与α相交或bα或b∥α答案 D4.若三球的半径之比是1:2:3,则半径最大的球的体积是其余两球的体积和的()A.4倍B.3倍C.2倍D.1倍解析设三个球的半径依次为a,2a,3a,V最大=43π(3a)3=36πa3,V1+V2=43πa3+43π(2a)3=363πa3=12πa3,V最大V1+V2=3.答案 B5.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()答案 C6.用a,b,c表示三条不同的直线,γ表示平面,给出下列命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①②B.②③C.①④D.③④解析根据公理4,知①正确;根据垂直于同一平面的两直线平行可知④正确.答案 C7.在空间四边形ABCD中,若AD⊥BC,BD⊥AD,则有()A.面ABC⊥面DBC B.面ABC⊥面ADCC.面ABC⊥面ADB D.面ADC⊥面DBC解析如图,在四面体ABCD中,∵AD⊥BC,AD⊥BD,BD∩BC=B,∴AD⊥面BCD.又AD面ADC,∴面ADC⊥面BCD.答案 D8.在直三棱柱ABC-A1B1C1中,AC=BC,D为AB的中点,下列说法中正确的个数有()①CD⊥面ABB1A1;②BC1∥面A1DC;③面ADC⊥面ABB1A1.A.0个B.1个C .2个D .3个解析 ∵ABC -A 1B 1C 1为直三棱柱,AC =BC ,D 为AB 的中点,∴CD ⊥AB ,由两平面垂直的性质定理,可知CD ⊥面ABB 1A 1,又CD 面ADC ,故面ADC ⊥面ABB 1A ,故①、③正确,对于②连接AC 1,BC 1,设A 1C ∩AC 1=O ,则O 为AC 1的中点,又D 为AB 的中点,∴OD ∥BC 1.又OD 面A 1DC ,BC 1面A 1DC ,∴BC 1∥面A 1DC ,故②正确. 答案 D9.一个几何体按比例绘制的三视图如图所示(单位:m),则该几何体的体积为( )A.73 m 3B.92 m 3C.72 m 3D.94 m 3解析 由三视图可知,原几何体如图所示,故V =3×13+12×13=3+12=72 m 3.答案 C10.如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起到A ′BD ,使面A ′BD ⊥面BCD ,连接A ′C ,则在四面体A ′BCD 的四个面中,互相垂直的平面有( )①面ABD ⊥面BCD ;②面A ′CD ⊥面ABD ;③面A ′BC ⊥面BCD ;④面ACD ⊥面ABC .A .1个B .2个C .3个D .4个解析 由于面ABD ⊥面BCD ,故①正确.又AB ⊥BD 则A ′B ⊥BD ,则A ′B ⊥BD ,∴A ′B ⊥面BCD ,故面A ′BC ⊥面BCD ,又CD ⊥BD ,∴面A ′CD ⊥面ABD ,故②③正确,④显然不正确.答案 C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中横线上)11.某几何体的三视图如图所示,则该几何体的体积是________. 解析 由三视图知,该几何体是由圆柱中间除去正四棱柱得到的,所以体积是4π×4-2×2×4=16π-16.答案 16π-1612.若正三棱台的上、下底面的边长分别为2和8,侧棱长为5,则这个棱台的高为________.解析 由题可知,上底面三角形的高为2sin60°=3,下底面三角形的高为8sin60°=43,故棱台的高h =52-⎣⎢⎡⎦⎥⎤(43-3)×232=13. 答案1313.已知圆锥的表面积为a m 2,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为________.解析 设圆锥的底面半径为r ,母线长为l ,则πl =2πr ,即l =2r ,S圆锥表=πr2+πrl=3πr2=a,则r=3πa 3π.答案3πa3πm14.如图四棱锥S-ABCD中,底面ABCD为平行四边形,E为SA 上的点,当E满足条件:________时,SC∥面EBD.解析当E为SA的中点时,设AC∩BD=O,连接EO,EB,ED,∵ABCD为平行四边形,∴O为AC的中点.∴EO∥SC,又SC面EBD,OE面EBD,∴SC∥面EBD.答案E为SA的中点15.如图所示,平面α⊥平面β,在α与β的交线l上,取线段AB =4,AC、BD分别在平面α和平面β内,AC⊥l,BD⊥l,AC=3,BD =12,则线段CD的长为________.解析 连接BC ,∵AC ⊥l ,∴∠CAB =90°, CB =AC 2+AB 2=32+42=5. 又BD ⊥l ,α⊥β, ∴BD ⊥平面α. 又BC α,∴BD ⊥BC . ∴CD =BD 2+BC 2 =122+52=13. 答案 13三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明,证明过程或演算步骤)16.(12分)已知圆台的上、下底面半径分别是2,5,且侧面积等于两底面面积之和,求该圆台的母线长.解 设圆台的母线长为l ,则圆台的上、下底面面积为S 上=π·22=4π,S 下=π·52=25π,∴圆台的两底面面积之和S =S 上+S 下=29π, 又圆台的侧面积S 侧=π(2+5)·l =7πl , 由7πl =29π,得l =297, 即母线长为297.17.(12分)如图所示,已知E ,F ,G ,H 分别为空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且EH ∥FG .求证:EH ∥BD .证明 ∵EH ∥FG ,EH ⃘面BDC ,FG 面BDC , ∴EH ∥面BDC ,又EH 面ABD ,面ABD ∩面BDC =BD , ∴EH ∥BD .18.(12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C=6,求三棱柱ABC-A1B1C1的体积.解(1)取AB的中点O,连接OC,OA1,A1B.因为CA=CB,所以OC⊥AB.由于AB=AA1,∠BAA1=60°,故△AA1B为等边三角形,所以OA1⊥AB.因为OC∩OA1=O,所以AB⊥平面OA1C.又A1C平面OA1C,故AB⊥A1C.(2)由题设知△ABC与△AA1B都是边长为2的等边三角形,所以OC=OA1= 3.又A1C=6,则A1C2=OC2+OA21,故OA1⊥OC.因为OC∩AB=O,所以OA1⊥平面ABC,OA1为三棱柱ABC-A1B1C1的高.又△ABC的面积S△ABC=3,故三棱柱ABC-A1B1C1的体积V=S△ABC×OA 1=3.19.(13分)如图,已知P A 垂直于正方形ABCD 所在平面,E ,F分别是AB ,PC 的中点,∠PDA =45°.(1)求证:EF ∥面P AD ; (2)求证:面PCE ⊥面PCD .证明 (1)设PD 中点为G ,连接FG ,AG ,∵F ,G 分别为PC ,PD 的中点, ∴FG 綊12CD .又E 为AB 的中点, ∴AE 綊FG .即四边形EFGA 为平行四边形. ∴EF ∥AG .又EF面P AD,AG面P AD,∴EF∥面P AD.(2)P A⊥面ABCD,∴P A⊥AD,P A⊥CD.又∵在Rt△P AD中,∠PDA=45°,∴P A=AD,∴AG⊥PD.又CD⊥AD,CD⊥P A,且P A∩AD=A,∴CD⊥面P AD,CD⊥AG,又PD∩CD=D,∴AG⊥面PCD.由(1)知EF∥AG,∴EF⊥面PCD,又EF面PCE,∴面PCE⊥面PCD.20.(13分)如图①,△ABC是等腰直角三角形,AC=BC=4,E,F分别为AC,AB的中点,将△AEF沿EF折起,使A′在平面BCEF 上的射影O恰为EC的中点,得到图②.(1)求证:EF⊥A′C;(2)求三棱锥F—A′BC的体积.解(1)证法1:在△ABC中,EF是等腰直角△ABC的中位线,在四棱锥A′—BCEF中,EF⊥A′E,EF⊥EC,∴EF⊥平面A′EC,又A′C平面A′EC,∴EF⊥A′C.证法2:同证法1 EF⊥EC,∴A′O⊥EF,∴EF⊥平面A′EC.又A ′C 平面A ′EC ,∴EF ⊥A ′C . (2)在直角梯形EFBC 中,EC =2,BC =4, ∴S △FBC =12BC ·EC =4. 又∵A ′O 垂直平分EC , ∴A ′O =A ′E 2-EO 2=3,∴三棱锥F —A ′BC 的体积V F —A ′BC =V A ′—FBC =13S △FBC ·A ′O =13×4×3=433.21.(13分)如图所示,已知正方体ABCD —A 1B 1C 1D 1,O 是底面ABCD 对角线的交点.(1)求证:C 1O ∥平面AB 1D 1; (2)求证:A 1C ⊥平面AB 1D 1;(3)若AA 1=2,求三棱锥A 1—AB 1D 1的体积. 解 (1)证明:设B 1D 1的中点为O 1,∵ABCD —A 1B 1C 1D 1为正方体, ∴C 1O 1綊AO .故AOC 1O 1为平行四边形.∴AO 1∥C 1O ,又AO 1面AB 1D 1,C 1O 面AB 1D 1,∴C 1O ∥面AB 1D 1.(2)证明:∵B 1D 1⊥A 1C 1,B 1D 1⊥CC 1,A 1C 1∩C 1C =C 1. ∴B 1D 1⊥面ACC 1A 1,A 1C 面ACC 1A 1.∴B 1D 1⊥A 1C . 同理可证A 1C ⊥AB 1.又AB 1∩B 1D 1=B 1,∴A 1C ⊥面AB 1D 1.(3)VA 1—AB 1D 1=VA —A 1B 1D 1=13×12×2×2×2=43.。