高中数学人教A版选修1-1教学案第一章 1.1 命题及其关系 Word版含答案

合集下载

人教A版选修1-1教案:命题和四种命题(含答案)

人教A版选修1-1教案:命题和四种命题(含答案)

§1.1 .1 命題、四種命題【學情分析】:命題、四種命題是邏輯學的基本知識,數學學科包含了大量的命題,瞭解命題的基本知識,認識命題的相互關係,對於掌握具體的數學知識很有幫助。

本節首先從熟悉的例子出發,引入命題、真命題和假命題的概念,引導學生能挖掘命題中的條件和結論,從而由條件和結論的關係引入四種命題。

【教學目標】:(1)知識目標:理解命題的概念;能判斷命題的真假;能把命題寫成若P則q的形式;能寫出一個命題的另外三個命題。

(2)過程與方法目標:利用學生身邊熟悉的事物引入命題和四種命題,讓學生經歷命題的概念和四種命題形成及運用過程,領會分析、總結的方法。

(3)情感與能力目標:通過提供適當的情境資料,吸引學生的注意力,激發學生的學習興趣;在合作討論中學會交流與合作,啟迪思維,提高創新能力;通過學生的舉例,培養他們的辨析能力;以及培養他們的分析問題和解決問題的能力。

【教學重點】:判斷命題的真假, 一個命題的另外三個命題。

【教學難點】:把命題寫成若P則q的形式, 一個命題的另外三個命題。

【教學過程設計】:練習與測試:1.下列語句不是命題的是( )A .2是奇數。

B .他是學生。

C .你學過高等數學嗎?D .明天不會下雨。

2.下列語句中是命題的是( )A .語文和數學B .0sin 451= C .221x x +- D .集合與元素3.命題“內錯角相等,則兩直線平行”的否命題為( )A .兩直線平行,內錯角相等B .兩直線不平行,則內錯角不相等C .內錯角不相等,則兩直線不平行D .內錯角不相等,則兩直線平行 4.命題“若a b >,則1ab>”的逆否命題為( ) A .若1a b>,則a b > B .若a ≤b ,則b a≤1C .若a b >,則b a <D .若ba≤1,則a ≤b5.命題“正數a 的平方不等於0”是命題“若a 不是正數,則它的平方等於0”的( )A .逆命題B .否命題C .逆否命題D .否定命題 6命題”02≤x ”是____________(真, 假)命題7.命題”若1x =,則220x x +-=”的逆命題是_________(真, 假)命題; 8命題“到圓心的距離不等於半徑的直線不是圓的切線”的逆否命題是_ _______________________________________________9.寫出“若x 2+y 2=0,則x =0且y =0”的逆否命題: ;10.命題“不等式x 2+x -6>0的解x <-3或x >2”的逆否命題是 11.把下列命題寫成“若p 則q ”的形式,並判斷其真假.(1)實數的平方是非負數;(2)等底等高的兩個三角形是全等三角形;(3)能被6整除的數既能被3整除也能被2整除; (4)弦的垂直平分線經過圓心,並平分弦所對的弧.12.寫出命題“若a 和b 都是偶數,則a+b 是偶數”的否命題和逆否命題. 參考答案:1. C 2.B 3.C 4.D 5.B 6.真 ;7.假 8.逆否命題::圓的切線到圓心的距離等於圓的半徑 9.逆否命題: 若x ≠0或y ≠0,則x 2+y 2≠0; 10.若x 23≤-≥x 且,則x 2+x-60≤11.(1)原命題可以寫成:若一個數是實數,則它的平方是非負數.這個命題是真命題.(2)原命題可以寫成:若兩個三角形等底等高,則這兩個三角形是全等三角形.這個命題是假命題.(3)原命題可以寫成:若一個數能被6整除,則它既能被3整除也能被2整除.這個命題是真命題.(4)原命題可以寫成:若一條直線是弦的垂直平分線,則這條直線經過圓心且平分弦所對的弧.這個命題是真命題.12.否命題為:若a和b不都是偶數,則a+b不是偶數;逆否命題為:若a+b不是偶數,則a和b不都是偶數。

人教版高中数学选修(1-1)-1.1《命题及其关系》教学设计

人教版高中数学选修(1-1)-1.1《命题及其关系》教学设计

第一章常用逻辑用语1.1命题及其关系(夏琳)一、教学目标1.核心素养培养数学抽象,形成逻辑推理能力.2.学习目标(1)了解命题及其逆命题、否命题与逆否命题.(2)命题的四种形式.3.学习重点了解命题及其逆命题、否命题与逆否命题.4.学习难点明白四种命题之间的关系,会利用两个命题互为逆否命题的关系判别命题的真假.二、教学设计(一)课前设计1.预习任务任务:阅读教材P1-P4,思考:如何判断命题的真假?四种命题之间有什么关系?2.预习自测1.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)对数函数是增函数吗?(3)2x<15;解:(1)真命题(2)疑问句,不是命题(3)不能判断真假,不是命题2.将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.解:(1)若两条直线相交,则有且只有一个交点;(2)若两个角是对顶角,则这两个角相等;(3)若两个三角形全等,则它们的面积相等.3.命题“若a>b,则a-1>b-1”的逆否命题是()A.若a-1≤b-1,则a≤bB.若a<b,则a-1<b-1C.若a-1>b-1,则a>bD.若a≤b,则a-1≤b-1答案:A解析:命题“若p,则q”的逆否命题为“若q,则p”.(二)课堂设计1.知识回顾在生活中,我们接触了哪些具体的命题?请大家阅读教材P2中所列举的6个命题例子,并试着列举生活与学习中的命题例子.2.问题探究问题探究一命题的含义1.什么是命题?思考:三位科学家由伦敦去苏格兰参加会议,越过边境不久发现了一只黑羊.“真有意思,苏格兰的羊都是黑的”天文学家谈论道.“这种推断不可靠”数学家应道.我们只能得出”在苏格兰有一些羊是黑色的”这样的结论.逻辑学家马上接着说我们真正有把握的不过是”在苏格兰至少有一个地方有至少一只黑羊”如何判断这些话的真假呢?阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3>12;(3)3>12吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.探究:学生自我举出一些命题,并判断它们的真假.想一想:请大家根据以上结论,思考什么叫做命题?一般地,在数学中用语言、符号或式子表达的,可以__________________叫做命题(proposition),其中判断为真的语句叫做__________(true proposition),判断为假的语句叫做__________(false proposition).说明:(1)并不是任何语句都是命题,只有那些能判断真假的语句才是命题.一般来说,疑问句、祈使句、感叹句都不是命题;也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.。

人教课标版高中数学选修1-1《命题及其关系》教案-新版

人教课标版高中数学选修1-1《命题及其关系》教案-新版

第一章常用逻辑用语1.1命题及其关系一、教学目标1.核心素养培养数学抽象,形成逻辑推理能力.2.学习目标(1)了解命题及其逆命题、否命题与逆否命题.(2)命题的四种形式.3.学习重点了解命题及其逆命题、否命题与逆否命题.4.学习难点明白四种命题之间的关系,会利用两个命题互为逆否命题的关系判别命题的真假.二、教学设计(一)课前设计1.预习任务任务:阅读教材P1-P4,思考:如何判断命题的真假?四种命题之间有什么关系?2.预习自测1.判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)对数函数是增函数吗?(3)2x<15;解:(1)真命题(2)疑问句,不是命题(3)不能判断真假,不是命题2.将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.解:(1)若两条直线相交,则有且只有一个交点;(2)若两个角是对顶角,则这两个角相等;(3)若两个三角形全等,则它们的面积相等.3.命题“若a>b,则a-1>b-1”的逆否命题是()A.若a-1≤b-1,则a≤bB.若a<b,则a-1<b-1C.若a-1>b-1,则a>bD.若a≤b,则a-1≤b-1答案:A解析:命题“若p,则q”的逆否命题为“若q,则p”.(二)课堂设计1.知识回顾在生活中,我们接触了哪些具体的命题?请大家阅读教材P2中所列举的6个命题例子,并试着列举生活与学习中的命题例子.2.问题探究问题探究一命题的含义1.什么是命题?思考:三位科学家由伦敦去苏格兰参加会议,越过边境不久发现了一只黑羊.“真有意思,苏格兰的羊都是黑的”天文学家谈论道.“这种推断不可靠”数学家应道.我们只能得出”在苏格兰有一些羊是黑色的”这样的结论.逻辑学家马上接着说我们真正有把握的不过是”在苏格兰至少有一个地方有至少一只黑羊”如何判断这些话的真假呢?阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3>12;(3)3>12吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.探究:学生自我举出一些命题,并判断它们的真假.想一想:请大家根据以上结论,思考什么叫做命题?一般地,在数学中用语言、符号或式子表达的,可以__________________叫做命题(proposition),其中判断为真的语句叫做__________(true proposition),判断为假的语句叫做__________(false proposition).说明:(1)并不是任何语句都是命题,只有那些能判断真假的语句才是命题.一般来说,疑问句、祈使句、感叹句都不是命题;也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.(2)一个命题要么为真,要么为假.但不能同时既真又假,也不能模棱两可,无法判断其真假.(3)一个命题,一般可用一个小写英文字母表示,如:p 、q 、r 等. 问题探究二 命题的四种形式1.将一个命题改写成“若p ,则q ”的形式:在数学中,具有“若p 则q ”这种形式的命题是常见的,我们把这种形式命题中的p 叫做命题的 ,q 叫做命题的 .数学中有一些命题虽然表面上不是“若p 则q ”的形式,但是把它的表述作适当改变,也可以写成“若p 则q ”的形式.这样条件和结论就很清楚了. 2.四种命题的概念:原命题 逆命题 否命题 逆否命题若p 则q交换原命题的条件和结论,所得的命题是_______;同时否定原命题的条件和结论,所得的命题是_______;为了书写简便,常常把条件p 和结论q 的否定,分别记作“_______”和“_______”;交换原命题的条件和结论,并且同时否定,所得的命题是_______.这些结论用于写一个命题的逆命题、否命题与逆否命题十分方便. 问题探究三 四种命题的相互关系与真假四种命题的相互关系图:原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互一般地,四种命题的真假性,有且仅有下面四种情况:原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假四种命题的真假关系:__________和__________互为逆否命题;__________和__________互为逆否命题 互为逆否的两个命题真假__________:互逆或互否的两个命题真假__________.3.课堂总结【知识梳理】命题真假的判定:对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.【重难点突破】掌握原命题和逆否命题,否命题和逆命题的等价性,当一个命题直接判断真假性不容易进行时,可以转而判断其逆否命题的真假.4.随堂检测1.命题“若a>b,则2a>2b-1”的逆否命题是________【知识点:四种命题】答案:若2a≤2b-1,则a≤b互换条件与结论,并进行否定,得其逆否命题“若2a≤2b-1,则a≤b”.2.给定下列命题:①“若k>0,则方程x2+2x-k=0有实数根”的逆否命题;②若f(x)=cos x,则f(x)为周期函数;③“若A=B,则sin A=sin B”的逆命题;④“若xy=0,则x,y中至少有一个为零”的否命题.其中真命题的序号是________.【知识点:四种命题】答案:①②④解析:对于①,因为Δ=4-4(-k)=4+4k>0,所以原命题为真.所以①是真命题.显然②是真命题.③的逆命题:“若sin A=sin B,则A=B”.是假命题.④的否命题:“若xy≠0,则x,y都不为零”.是真命题.3.“在△ABC中,若∠C=90°,则∠A,∠B全是锐角”的否命题为()A.在△ABC中,若∠C≠90°,则∠A,∠B全不是锐角B.在△ABC中,若∠C≠90°,则∠A,∠B不全是锐角C.在△ABC中,若∠C≠90°,则∠A,∠B中必有一个钝角D.以上均不对【知识点:四种命题】答案:B解析:否命题条件与结论分别是原命题的条件与结论的否定,故选B.【误区警示】解答本题易出现选A 的错误,导致出现这种错误的原因是混淆了“全是”的否定是“不全是”,而非“全不是”.4.写出命题“若a,b 都是奇数,则a +b 是偶数”的逆命题,否命题及逆否命题,并判断它们的真假. 【知识点:命题真假的判断】解:逆命题:若a +b 是偶数,则a,b 都是奇数,是假命题; 否命题:若a,b 不都是奇数,则a +b 不是偶数,是假命题; 逆否命题:若a +b 不是偶数,则a,b 不都是奇数,是真命题. (三)课后作业 ★基础型自主突破1.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3 B .若a +b +c =3,则a 2+b 2+c 2<3 C .若a +b +c ≠3,则a 2+b 2+c 2³3 D .若a 2+b 2+c 2³3,则a +b +c =3【知识点:四种命题】 答案:A.解析:由于一个命题的否命题既否定条件又否定结论,因此原命题的否命题为“若a +b +c ≠3,则a 2+b 2+c 2<3”.2.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π4 【知识点:四种命题】 答案:C解析:命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为________. 【知识点:命题真假的判断】 答案:2个解析:由a >-3⇒a >-6,但由a >-6 a >-3,故真命题为原命题及原命题的逆否命题. 4.对于命题“若数列{a n }是等比数列,则a n ≠0”,下列说法正确的是________.(填序号) ①它的逆命题是真命题;②它的否命题是真命题; ③它的逆否命题是假命题;④它的否命题是假命题. 【知识点:命题真假的判断】 答案:④5.命题“若m >1,则mx 2-2x +1=0无实根”的等价命题是________________. 【知识点:四种命题】答案:若mx 2-2x +1=0有实根,则m ≤16.在命题“若数列{n a }是等比数列,则n a ≠0”与它的逆命题、否命题、逆否命题中,真命题的个数为________.【知识点:命题真假的判断】 答案:2个解析:原命题为真命题,故其逆否命题为真命题,它的逆命题与否命题均为假命题. 7.写出命题“已知集合A ,B ,若A ∪B ≠B ,则A 不是B 的子集.”的逆命题、否命题和逆否命题,并判断它们的真假. 【知识点:命题真假的判断】答案:逆命题:已知集合A ,B ,若A 不是B 的子集,则A ∪B ≠B ,真命题; 否命题:已知集合A ,B ,若A ∪B =B ,则A ⊆B ,真命题. 逆否命题:已知集合A ,B ,若A ⊆B ,则A ∪B =B ,真命题. 8.将下列命题改写成“若p ,则q ”的形式,并判断真假. (1)等腰梯形的两条对角线相等; (2)平行四边形的两条对角线互相垂直.答案:(1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题. (2)若一个四边形是平行四边形,则它的两条对角线互相垂直.假命题. 【知识点:命题真假的判断】 ★★能力型师生共研9.若命题p的逆命题是q,命题q的否命题是x,则x是p的()A.逆命题B.否命题C.逆否命题D.以上判断都不正确【知识点:四种命题之间的关系】答案:C 根据四种命题的关系,结合具体的例子可知,命题p与命题x是互为逆否命题10.若a,b∈R,且220a b+≠,则下列命题:①a,b全为0;②a,b不全为0;③a,b全不为0;④a,b至少有一个不为0.其中真命题的个数为()A.0B.1C.2D.3【知识点:四种命题的真假】答案:C解析:②④为真命题.11.命题“对于正数a,若a>1,则lg a>0”及其逆命题、否命题、逆否命题四种命题中真命题的个数为()A.0B.1C.2D.4【知识点:四种命题的真假】解:D.原命题“对于正数a,若a>1,则lg a>0”是真命题;逆命题“对于正数a,若lg a>0,则a>1”是真命题;否命题”对于正数a,若a≤1,则lg a≤0”是真命题;逆否命题“对于正数a,若lg a≤0,则a≤1”是真命题.12.下列四个命题:①“若xy=0,则x=0且y=0”的逆命题;②“正方形是矩形”的否命题;③若“ac2>bc2,则a>b”的逆命题;④若m>2,则不等式x2-2x+m>0.其中真命题的个数为()A.0B.1C.2D.3【知识点:四种命题的真假】答案:C 命题①的逆命题是“若x=0且y=0,则xy=0”,为真命题;命题②的否命题是“若一个四边形不是正方形,则它不是矩形”,为假命题;命题③的逆命题是“若a>b,则ac2>bc2”,为假命题;命题④为真命题,当m>2时,方程x2-2x+m=0的判别式Δ<0,对应二次函数图象开口向上且与x轴无交点,所以函数值恒大于0.13.命题“若函数f(x)=loga x(a>0,a≠1)在其定义域内是减函数,则loga2<0”的逆否命题是__________________.【知识点:四种命题】答案:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.14.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.【知识点:四种命题之间的关系】答案:[1,2]解析:由已知得,若1<x<2成立,则m-1<x<m+1也成立.∴1112mm≤⎧⎨≥⎩-+∴1≤m≤2.15.给出下列语句:①空集是任何集合的真子集;②函数y=ax+1是指数函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x∈R,则x2+4x+5>0;⑥作△ABC≌△A1B1C1.其中为命题的序号是________,为真命题的序号是________.【知识点:四种命题的真假】答案:①③⑤解析:①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x2+4x+5=(x+2)2+1>0恒成立,所以是真命题;⑥该语句是祈使句,不是命题.16.给出以下命题:①“正多边形都相似”的逆命题;②“若m>0,则x2+x-m=0有实根”的逆否命题.其中为真命题的是________.【知识点:四种命题的真假】 答案:②解析:①逆命题是“若两个多边形相似,则这两个多边形为正多边形”.假命题. ②∵Δ=1+4m ,若m >0,则Δ>0, ∴x 2+x -m =0有实根,即原命题为真命题. ∴逆否命题也为真命题. ★★★探究型多维突破 17.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ; ②函数y =x 3在R 上既是奇函数又是增函数; ③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象.其中正确命题的序号是( ) A .①② B .①②③ C .①③④ D .①②③④【知识点:命题的真假】 答案:B解析:①②③正确.18.命题“若a >0,则二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包含边界)”的条件p :________,结论q :_________.它是________命题(填“真”或“假”) 【知识点:命题 命题真假判断】答案:二元一次不等式x +ay -1≥0;表示直线x +ay -1=0的右上方区域(包含边界);真 19.命题“2230ax ax -->不成立”是真命题,则实数a 的取值范围是________. 【知识点:命题的真假;数学思想:转化与化归】 答案:[3,0]-解析:2230ax ax --≤恒成立,当0a =时,30-≤成立;当0a ≠时,24120a a a <⎧⎨∆=+≤⎩得30a -≤<;30a ∴-≤≤ 20.若方程x 2+2px -q =0(p ,q 是实数)没有实数根,则p +q <14. (1)判断上述命题的真假,并说明理由.(2)试写出上述命题的逆命题,并判断真假,说明理由. 【知识点:命题的真假;数学思想:转化与化归】 解:(1)上述命题是真命题.由题意,得方程的判别式Δ=4p 2+4q <0,得q <-p 2,∴p +q <p -p 2=-(p -12)2+14≤14,∴p +q <14.(2)逆命题:如果p ,q 是实数,p +q <14,则方程x 2+2px -q =0没有实数根.逆命题是假命题,如当p =1,q =-1时,p +q <14,但原方程有实数根x =-1. (四)自助餐1.下列语句中命题的个数为________. ①空集是任何非空集合的真子集. ②三角函数是周期函数吗? ③若x ÎR .,则x 2+4x +7>0. ④指数函数的图象真漂亮!【知识点:命题的判断;数学思想:逻辑推理】 答案:2个解析:①是命题;②是疑问句,故不是命题;③是命题;④是感叹句,所以不是命题. 2.在空间中,下列命题正确的是________.(填序号) ①平行直线的平行投影重合; ②平行于同一直线的两个平面平行; ③垂直于同一平面的两个平面平行; ④垂直于同一平面的两条直线平行.【知识点:命题真假的判断;数学思想:转化与化归】 解:④3.命题“若a ,b 都是奇数,则a +b 是偶数”的逆否命题是 .解:若a+b不是偶数,则a,b不都是奇数4.有下列四个命题,其中真命题有________.(填序号)①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.【知识点:命题真假的判断;数学思想:转化与化归】答案:①③解析:①的逆命题显然成立;②的否命题为“如果三角形不全等,则它们的面积不相等”,由三角形的面积公式可知②的否命题为假命题;③的逆命题中,因方程x2+2x+q=0有实根,则Δ=4-4q≥0,即q≤1,故③的逆命题为真命题;④的逆否命题与命题④同真假,④是假命题.5.命题“各位数字之和是3的倍数的正整数,可以被3整除”的逆否命题是________________;逆命题是____________;否命题是_______________.【知识点:四种命题;数学思想:逻辑推理】答案:不能被3整除的正整数,其各位数字之和不是3的倍数;能被3整除的正整数,它的各位数字之和是3的倍数;各位数字之和不是3的倍数的正整数,不能被3整除6.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中真命题有________.(填序号)【知识点:四种命题及其关系;数学思想:转化与化归】答案:①③7.给出下列命题:(1)命题“若b2﹣4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题(2)命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题(3)命题“若a>b>0,则>>0”的逆否命题(4)“若m>1,则mx2﹣2(m+1)x+(m﹣3)>0的解集为R”的逆命题其中真命题的序号为.【知识点:命题及其关系;数学思想:转化与化归】答案:(1)(2)(3)解析:命题“若b2﹣4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题为“若b2﹣4ac≥0,则方程ax2+bx+c=0(a≠0)有实根”为真命题;命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题为“若△ABC为等边三角形,那么AB=BC=CA”为真命题;命题“若a>b>0,则>>0”为真命题,故其逆否命题也为真;由于“mx2﹣2(m+1)x+(m﹣3)>0的解集为R”⇔m<﹣,故“若m>1,则mx2﹣2(m+1)x+(m﹣3)>0的解集为R”的逆命题为“若mx2﹣2(m+1)x+(m﹣3)>0的解集为R,则m >1”为假命题8.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)当m>14时,方程mx2-x+1=0无实根;(2)平行于同一平面的两条直线平行.【知识点:命题的形式,命题真假判断;数学思想:转化与化归】解:(1)命题可改写为:若m>14,则mx2-x+1=0无实根.因为当m>14时,Δ=1-4m<0,所以是真命题.(2)命题可改写为:若两条直线平行于同一平面,则它们互相平行.因为平行于同一平面的两条直线可能平行、相交或异面,所以是假命题9.写出下列命题的逆命题、否命题和逆否命题.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y=ax2+bx+c中,b2﹣4ac<0,则该函数图象与x轴有公共点.【知识点:四种命题;数学思想:逻辑推理】解:(1)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补;否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形;逆否命题:若四边形不是圆的内接四边形,则该四边形的对角不互补.(2)逆命题:若二次函数y=axx2+bx+c的图象与x轴有公共点,则b2﹣4ac<0;否命题:若在二次函数y=ax2+bx+c中,b2﹣4ac≥0,则该函数图象与x轴无公共点;逆否命题:若二次函数y=ax2+bx+c的图象与x轴无公共点,则b2﹣4ac≥0.10.命题:已知a、b为实数,若关于x的不等式x2+ax+b£0有非空解集,则a2-4b³0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.【知识点:命题真假的判断;数学思想:逻辑推理】解:逆命题:已知a 、b 为实数,若a 2-4b ≥0,则关于x 的不等式x 2+ax +b ≤0有非空解集. 否命题:已知a 、b 为实数,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2-4b <0. 逆否命题:已知a 、b 为实数,若a 2-4b <0,则关于x 的不等式x 2+ax +b ≤0没有非空解集. 原命题、逆命题、否命题、逆否命题均为真命题.11.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【知识点:命题真假的判断;数学思想:转化与化归】解:若命题p 为真命题,则m ≤1;若命题q 为真命题,则7-3m >1,即m <2。

人教a版高中数学新课标选修课1-1教案.doc

人教a版高中数学新课标选修课1-1教案.doc

第一课时 1.1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若p,则q”的形式.教学重点:命题的改写.教学难点:命题概念的理解.教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)312>;(3)312>吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1. 教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition). 也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件.上述6个语句中,(1)(2)(4)(5)(6)是命题.②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题.③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5)215x<;(6)平面内不相交的两条直线一定平行;(7)明天下雨.(学生自练→个别回答→教师点评)④探究:学生自我举出一些命题,并判断它们的真假.2. 将一个命题改写成“若p,则q”的形式:①例1中的(2)就是一个“若p,则q”的命题形式,我们把其中的p叫做命题的条件,q叫做命题的结论.②试将例1中的命题(6)改写成“若p,则q”的形式.1③例2:将下列命题改写成“若p,则q”的形式.(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练→个别回答→教师点评)3. 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若p,则q”的形式.三、巩固练习:1. 练习:教材 P4 1、2、32. 作业:教材P9 第1题第二课时 1.1.2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.教学重点:四种命题的概念及相互关系.教学难点:四种命题的相互关系.教学过程:一、复习准备:指出下列命题中的条件与结论,并判断真假:(1)矩形的对角线互相垂直且平分;(2)函数232=-+有两个零点.y x x二、讲授新课:1. 教学四种命题的概念:原命题逆命题否命题逆否命题若p,则q若q,则p若⌝p,则⌝q若⌝q,则⌝p ①写出命题“菱形的对角线互相垂直”的逆命题、否命题及逆否命题,并判断它们的真假.(师生共析→学生说出答案→教师点评)②例1:写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)同位角相等,两直线平行;(2)正弦函数是周期函数;(3)线段垂直平分线上的点与这条线段两个端点的距离相等.(学生自练→个别回答→教师点评)2. 教学四种命题的相互关系:①讨论:例1中命题(2)与它的逆命题、否命题、逆否命题间的关系.23 原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互②四种命题的相互关系图:③讨论:例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系.④结论一:原命题与它的逆否命题同真假;结论二:两个命题为互逆命题或互否命题,它们的真假性没有关系.⑤例2 若222p q +=,则2p q +≤.(利用结论一来证明)(教师引导→学生板书→教师点评)3. 小结:四种命题的概念及相互关系.三、巩固练习:1. 练习:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假.(1)函数232y x x =-+有两个零点;(2)若a b >,则a c b c +>+;(3)若220x y +=,则,x y 全为0;(4)全等三角形一定是相似三角形;(5)相切两圆的连心线经过切点.2. 作业:教材P9页 第2(2)题 P10页 第3(1)题第一课时 1.2.1充分条件与必要条件(一)教学要求:正确理解充分条件、必要条件及充要条件的概念.教学重点:理解充分条件和必要条件的概念. 教学难点:理解必要条件的概念.教学过程:一、复习准备:写出下列命题的逆命题、否命题及逆否命题,并判断它们的真假:(1)若0ab =,则0a =;(2)若0a >时,则函数y ax b =+的值随x 的值的增加而增加.二、讲授新课:1. 认识“⇒”与“”:①在上面两个命题中,命题(1)为假命题,命题(2)为真命题. 也就是说,4 命题(1)中由“0ab =”不能得到“0a =”,即0ab=0a =;而命题(2)中由“0a >”可以得到“函数y ax b =+的值随x 的值的增加而增加”,即0a >⇒函数y ax b =+的值随x 的值的增加而增加.②练习:教材P12 第1题2. 教学充分条件和必要条件:①若p q ⇒,则p 是q 的充分条件(sufficient condition ),q 是p 的必要条件(necessary condition ).上述命题(2)中“0a >”是“函数y ax b =+的值随x 的值的增加而增加”的充分条件,而“函数y ax b =+的值随x 的值的增加而增加”则是“0a >”的必要条件.②例1:下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若1x >,则33x -<-;(2)若1x =,则2320x x -+=;(3)若()3x f x =-,则()f x 为减函数;(4)若x 为无理数,则2x 为无理数.(5)若12//l l ,则12k k =.(学生自练→个别回答→教师点评)③练习:P12页 第2题④例2:下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若0a =,则0ab =;(2)若两个三角形的面积相等,则这两个三角形全等;(3)若a b >,则ac bc >;(4)若x y =,则22x y =.(学生自练→个别回答→教师点评)⑤练习:P12页 第3题⑥例3:判断下列命题的真假:(1)“x 是6的倍数”是“x 是2的倍数”的充分条件;(2)“5x <”是“3x <”的必要条件.(学生自练→个别回答→学生点评)3. 小结:充分条件与必要条件的理解.三、巩固练习:作业:教材P14页 第1、2题5 第二课时 1.2.2充要条件教学要求:进一步理解充分条件、必要条件的概念,同时学习充要条件的概念. 教学重点:充要条件概念的理解.教学难点:理解必要条件的概念.教学过程:一、复习准备:指出下列各组命题中,p 是q 的什么条件,q 是p 的什么条件?(1):p a Q ∈,:q a R ∈;(2):p a R ∈,:q a Q ∈;(3):p 内错角相等,:q 两直线平行;(4):p 两直线平行,:q 内错角相等.二、讲授新课:1. 教学充要条件:①一般地,如果既有p q ⇒,又有q p ⇒,就记作p q ⇔. 此时,我们说,p 是q 的充分必要条件,简称充要条件(sufficientand necessary condition ). ②上述命题中(3)(4)命题都满足p q ⇔,也就是说p 是q 的充要条件,当然,也可以说q 是p 的充要条件.2. 教学典型例题:①例1:下列命题中,哪些p 是q 的充要条件?(1):p 四边形的对角线相等,:q 四边形是平行四边形;(2):p 0b =,:q 函数2()f x ax bx c =++是偶函数;(3):p 0,0x y <<,:q 0xy >;(4):p a b >,:q a c b c +>+.(学生自练→个别回答→教师点评)②练习教材P14 练习第1、2题③探究:请同学们自己举出一些p 是q 的充要条件的命题来.④例2:已知:O 的半径为r ,圆心O 到直线l 的距离为d . 求证:d r =是直线l 与O 相切的充要条件.(教师引导→学生板书→教师点评)3. 小结:充要条件概念的理解.三、巩固练习:1. 从“⇒”、“”与“⇔”中选出适当的符号填空:(1)1x >- 1x >; (2)a b >11a b <; (3)2220a ab b -+= a b =; (4)A ⊆∅ A =∅.2. 判断下列命题的真假:6 (1)“a b >”是“22a b >”的充分条件;(2)“a b >”是“22a b >”的必要条件;(3)“a b >”是“22ac bc >”的充要条件;(4)“5a +是无理数”是“a 是无理数”的充分不必要条件;(5)“1x =”是“2230x x --=”的充分条件.3. 作业:教材P14页 习题第3、4题第一课时 1.3.1简单的逻辑联结词(一)教学要求:通过教学实例,了解逻辑联结词“且”、“或”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”的含义,并能正确表述这“p q ∧”、“p q ∨”、这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”.教学过程:一、复习准备:1. 讨论:下列三个命题间有什么关系?(1)菱形的对角线互相垂直;(2)菱形的对角线互相平分;(3)菱形的对角线互相垂直且平分.2. 发现:命题(3)是由命题(1)(2)使用联结词“且”联结得到的新命题.二、讲授新课:1. 教学命题p q ∧:①一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∧,读作“p 且q ”.②规定:当p ,q 都是真命题时,p q ∧是真命题;当p ,q 两个命题中有一个命题是假命题时,p q ∧是假命题.③例1:将下列命题用“且”联结成新命题,并判断它们的真假:(1)p :正方形的四条边相等,q :正方形的四个角相等;(2)p :35是15的倍数,q :35是7的倍数;(3)p :三角形两条边的和大于第三边,q :三角形两条边的差小于第三边. (学生自练→个别回答→教师点评)④例2:用逻辑联结词“且”改写下列命题,并判断它们的真假:(1)12是48与60的公约数;(2)1既是奇数,又是素数;(3)2和3都是素数.(学生自练→个别回答→学生点评)2. 教学命题p q ∨:7 ①一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p q ∨,读作“p 或q ”.②规定:当p ,q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p ,q 两个命题都是假命题时,p q ∨是假命题.例如:“22≤”、“27是7或9的倍数”等命题都是p q ∨的命题.③例3:判断下列命题的真假:(1)34>或34<;(2)方程2340x x --=的判别式大于或等于0;(3)10或15是5的倍数;(4)集合A 是A B ⋂的子集或是A B ⋃的子集;(5)周长相等的两个三角形全等或面积相等的两个三角形全等.(学生自练→个别回答→教师点评)3. 小结:“p q ∧”、“p q ∨”命题的概念及真假三、巩固练习:1. 练习:教材P20页 练习第1、2题2. 作业:教材P20页 习题第1、2题.第二课时 1.3.2简单的逻辑联结词(二)教学要求:通过教学实例,了解逻辑联结词“且”、“或”、“非”的含义,使学生能正确地表述相关数学内容.教学重点:正确理解逻辑联结词“且”、“或”、“非”的含义,并能正确表述这“p q ∧”、“p q ∨”、“p ⌝”这些新命题.教学难点:简洁、准确地表述新命题“p q ∧”、“p q ∨”、“p ⌝”.教学过程:一、复习准备:(1)命题“6是自然数且是偶数”是 的形式;(2)命题“3大于或等于2”是 的形式;(3)命题“正数或0的平方根是实数”是 的形式.2. 下列两个命题间有什么关系?(1)7是35的约数;(2)7不是35的约数.二、讲授新课:1. 教学命题p ⌝:①一般地,对一个命题p 全盘否定,就得到一个新命题,记作p ⌝,读作“非p ”或“p 的否定.②规定:若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题. ③例1:写出下列命题的否定,并判断它们的真假:(1)p:tan=是周期函数;y x(2)p:32<;(3)p:空集是集合A的子集;(4)p:若220+=,则,a b全为0;a b(5)p:若,a b都是偶数,则a b+是偶数.(学生自练→个别回答→学生点评)④练习教材P20页练习第3题⑤例2:分别指出由下列各组命题构成的“p q⌝”形式的复∨”、“p∧”、“p q合命题的真假:(1)p:9是质数,q:8是12的约数;(2)p:1{1,2}⊂;∈,q:{1}{1,2}(3)p:{0}∅=;∅⊂,q:{0}(4)p:平行线不相交.2. 小结:逻辑联结词的理解及“p q⌝”这些新命题的正确∨”、“p∧”、“p q表述和应用.三、巩固练习:1. 练习:判断下列命题的真假:(1)23≥.≤;(2)22≤;(3)782. 分别指出由下列命题构成的“p q⌝”形式的新命题的真∨”、“p∧”、“p q假:(1)p:π是无理数,q:π是实数;(2)p:23>,q:8715+≠;(3)p:李强是短跑运动员,q:李强是篮球运动员.3. 作业:教材P20页习题第1、2、3题第一章 1.4全称量词和存在量词及其否定教学要求:了解生活和数学中经常使用的两类量词的含义,并会判断此类命题的真假.教学重点:判断全称命题和特称命题的真假.教学难点:会判断全称命题和特称命题的真假.教学过程:一、复习准备:思考:下列语句是命题吗?⑴与⑶,⑵与⑷之间有什么关系?89 ⑴3x >;⑵21x +是整数;⑶对所有的x R ∈,3x >;⑷对任意一个x Z ∈,21x +是整数.(学生回答——教师点评——引入新课)二、讲授新课:1. 全称量词:短语“对所有的”“对任意一个”在逻辑中通常叫做全称量词. 符号:∀全称命题:含有全称量词的命题. 符号:(),x M p x ∀∈例如:对任意的n Z ∈,21n +是奇数;所有的正方形都是矩形都是全称命题.2. 例1 判断下列全称命题的真假.⑴所有的素数都是奇数; ⑵2,11x M x ∀∈+≥;⑶对每一个无理数x ,2x 也是无理数;⑷每个指数函数都是单调函数. (教师分析——学生回答——教师点评)3. 思考:下列语句是命题吗?⑴与⑶,⑵与⑷之间有什么关系?⑴213x +=;⑵x 能被2 和3 整除;⑶存在一个0x R ∈,使0213x +=; ⑷至少有一个0x Z ∈,0x 能被2 和3 整除. (学生回答——教师点评——引入新课)4. 存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做全称量词. 符号:∃特称命题:含有存在量词的命题. 符号:()00,x M p x ∃∈例如:有的平行四边形是菱形;有一个素数不是奇数.5. 例2 判断下列全称命题的真假.⑴有一个实数0x ,使200230x x ++=; ⑵存在两个相交平面垂直于同一条直线;⑶有些整数只有两个正因数;⑷00,0x R x ∃∈≤;⑸有些数的平方小于0. (教师分析——学生回答——教师点评)6.思考:写出下列命题的否定:⑴所有的矩形都是平行四边形;⑵每一个素数都是奇数.7.全称命题P :(),x M p x ∀∈,它的否定P ⌝:()00,x M p x ∃∈⌝;特称命题()00:,P x M P x ∃∈,它的否定():,P x M P x ⌝∀∈⌝.8.例3写出下列命题的否定.⑴所有能被3整除的整数都是奇数;⑵每一个四边形的四个顶点共圆; ⑶对任意x Z ∈,2x 的个位数字不等于3;⑷有一个素数含有三个正因数; ⑸有的三角形是等边三角形. (教师分析——学生回答——教师点评)三、巩固练习10 1. 练习:教材26P ,28P 的练习.2. 精讲精练第6练.3. 作业:29P 1,2第二章 2.1.1椭圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程教学难点:椭圆标准方程的推导教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数.二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b a c =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b +=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -. 通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和11 222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==(教师引导——学生回答)例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c +=-=. 2. 作业:40P 第2题.第二章2.1.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例 1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程.求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为22的动点的轨迹方程.12 (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.第二章2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形.方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,13 ()()()()1212,0,,0,,0,,0A a A a B b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比ca称为离心率.记ce a=.可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹. (教师分析——示范书写) 三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程. ⑴经过点()()22,0,0,5P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.第一课时 2.2.1 双曲线及其标准方程教学要求:学生掌握双曲线的定义和标准方程,以及标准方程的推导. 教学重点:双曲线的定义和双曲线的标准方程.教学难点:在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、14 推理等能力. 教学过程: 一、新课导入: 1. 提问:椭圆的定义是什么?椭圆的标准方程是什么?(学生口答,教师板书)2. 在椭圆的标准方程22221x y a b+=中,,,a b c 有何关系,若5,3a b ==,则?c =写出符合条件的椭圆方程。

人教A版高中数学高二版选修1-1 命题教案

人教A版高中数学高二版选修1-1  命题教案

选修2-1 第一章 常用逻辑用语1.1 命题及其关系1.1.1 命题教学目标分析:知识目标:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p ,则q ”的形式;过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感目标:通过学生的参与,激发学生学习数学的兴趣。

重难点分析:重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假互动探究:一、课堂探究:1、复习引入:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句 叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.说明:命题的定义的要点:能判断真假的陈述句.练习:下列语句中:(1)若直线//a b ,则直线a 和直线b 无公共点;(2)247+=(3)垂直于同一条直线的两个平面平行;(4)若21x =,则1x =;(5)两个全等三角形的面积相等;(6)3能被2整除.答案:其中真命题有(1)、(3)、(5),假命题有(2)、(4)、(6).引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。

紧接着提出问题:命题是否也是由条件和结论两部分构成呢?2、命题的数学形式:“若p ,则q ”,命题中的p 叫做命题的条件,q 叫做命题的结论.例1、下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a 是素数,则a 是奇数;(3)指数函数是增函数吗?(4)若空间有两条直线不相交,则这两条直线平行;(52;(6)15x >.答案:命题有(1)、(2)、(4)、(5),真命题有(1)、(5)假命题有(2)、(4).变式:给出下列命题:(1)函数sin()()y x k k R 不可能是偶函数;(2)已知数列{}n a 的前n 项和1(,0)n n S a a R a ,则数列{}n a 一定是等比数列;(3)若函数()f x 的定义域是R ,且满足()(2)3f x f x ,则()f x 是以4为周期的周期函数;(4)过两条异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中,正确的命题有________________(填正确命题的序号).答案:(3).小结:判断一个语句是不是命题注意两点:(1)是否是陈述句;(2)是否可以判断真假.例2、指出下列命题中的条件p 和结论q :(1)若整数a 能被2整除,则a 是偶数;(2)若四边形是菱形,则它的对角线互相垂直平分.解:(1)条件p : 结论q :(2)条件p : 结论q : 变式:将下列命题改写成“若p ,则q ”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.例3、已知三个不等式:(1)0ab ;(2)c d a b ;(3)bc ad .以其中两个作为条件,余下一个作为结论,则可以组成多少个正确命题?答案:3个.变式:有甲、乙、丙三人.命题A :甲的年龄不是最大的;命题B:丙的年龄不是最小的;命题C:乙的年龄比丙大;命题D:甲的年龄比乙的年龄大.A 、B 、C 、D 四个命题中,有一种命题是假命题的是_________.答案:D.说明:怎样判断一个数学命题的真假?(1)数学中判定一个命题是真命题,要经过证明.(2)要判断一个命题是假命题,只需举一个反例即可.二、课堂练习:教材第4页练习第2、3题1、判断下列命题的真假:(1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形;(3)二次函数的图象是一条抛物线;(4)两个内角等于45︒的三角形是等腰直角三角形.2、把下列命题改写成“若p,则q”的形式,并判断它们的真假.(1)等腰三角形两腰的中线相等;(2)偶函数的图象关于y轴对称;(3)垂直于同一个平面的两个平面平行.反思总结:1、本节课你学到了哪些知识点?2、本节课你学到了哪些思想方法?3、本节课有哪些注意事项?课外作业:(一)教材第8页习题1.1 A组第1题1、判断下列语句是不是命题:>若(1)125;(2)ax∈正弦函数是周期函数吗?(3){1,2,3,4,5};(4)(二)补充2、下列四个命题中,真命题的个数为( )(1)若两平面有三个公共点,则这两个平面重合;(2)两条直线可以确定一个平面;(3)若l M l M M ∈=∈∈则,,,βαβα ;(4)空间中,相交与同一点的三条直线在同一平面内。

人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题》优质课教案_3

人教A版高中数学选修1-1《一章 常用逻辑用语  1.1 命题及其关系  1.1.2 四种命题》优质课教案_3
二、典例分析
【典例1】写出命题“若x=2,则x2=4”的逆命题、否命题及逆否命题,并判断真假。
【典例2】写出“矩形的对角线相等”的逆命题、否命题及逆否命题,并判断真假。
生板书师纠错。
注意事项:
1、要写出一个命题的另外三个命题关键是分清命题的条件和结论(即把原命题写成“若p则q”的形式)。
词语
等于
大于
教学重点:四种命题的概念及相互关系.
教学难点:由原命题写出另外三种命题.
教学过程:
教学环节
教学活动
设计意图
1、引入新课
思考:下列命题中,命题(1)与命题(2)(3)(4)的条件与结论分别有什么关系?
(1)若一个数是负数,则这个数的立方是负数
(2)若一个数的立方是负数,则这个数是负数。
(3)若一个数不是负数,则这个数的立方不是负数。
(4)若一个数的立方不是负数,则这个数不是负数。
生思考教师总结四种命题的形式
原命题: 若p则q;
逆命题: 若q则p;
否命题: 若 p则 q
逆否命题:若 q则 p;
通过引导学生思考讨论,教师总结,对互为否命题、互为逆否命题的两命题间的相互关系、概念及表示形式进行学习,其中尤其强调注意否命题、逆否命题中条件和结论同时否定,它和命题的否定概念不同.
学生总结老师补充。
通过小结,深化学生知识理解、完善学生认知结构。
七、作业
1、下列命题中:
①若一个四边形的四条边不相等,则它不是正方形;
②正方形的四条边相等;
③若一个四边形的四条边相等,则它是正方形.
其中互为逆命题的有_____;互为否命题的有____;互为逆否命题的有___(填序号).
2.下列命题中为真命题的是( )

人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.1 命题》优质课教案_9

人教A版高中数学选修1-1《一章 常用逻辑用语  1.1 命题及其关系  1.1.1 命题》优质课教案_9

1.1.1命题一、教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题;能判断命题的真假;能把命题改写成“若p,则q”的形式。

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力以及分析问题和解决问题的能力。

3、情感态度与价值观:通过学生参与,激发学生学习数学的兴趣。

二、教学重点与难点1、教学重点:命题的概念,命题的形成。

2、教学难点: 分析命题的条件和结论,判断命题的真假。

三、教学工具:多媒体、投影、黑板四、教学方法:合作探究式、启发引导式五、教学过程1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.判断为真的语句叫做真命题.判断为假的语句叫做假命题.2.命题的结构从构成来看,所有的命题都由条件和结论两部分构成.在数学中,命题常写成“若p,则q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论.[情境导学]我们在初中已经学过许多数学命题,但还不适应我们今后学习的需要,本节开始我们深化对命题的研究.探究点一命题的定义思考1在初中,我们已学过许多数学命题,当时是如何定义命题的,你能举出一个例子吗?答判断一件事情的句子.例如,有两边相等的三角形是等腰三角形.思考2下面语句的表述形式有什么特点?(1)若直线a∥b,则直线a和直线b无公共点;(2)2+4=7;(3)平面内垂直于同一条直线的两条直线平行;(4)若x2=1,则x=1;(5)两个全等三角形的面积相等;(6)3能被2整除.答都是陈述句,都能判断真假.思考3数学中的定义、公理、定理、推论是命题吗?答是.小结用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.例1判断下面的语句是不是命题.(1)空集是任何集合的子集.(2)若整数a是素数,则a是奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)(-2)2=2.(6)x>15.解(1)(2)(4)(5)是命题.(3)(6)不是命题.反思与感悟并不是所有的语句都是命题,只有能判断真假的陈述句才是命题,命题首先是“陈述句”,其他语句如疑问句、祈使句、感叹句等一般都不是命题;其次是“能判断真假”,不能判断真假的陈述句不是命题,如“x≥2”、“小高的个子很高”等都不能判断真假,故都不是命题.因此,判断一个语句是否为命题,关键有两点:①是否为陈述句;②能否判断真假.跟踪训练1判断下列语句是不是命题.(1)求证3是无理数.(2)x2+2x+1≥0.(3)你是高二学生吗?(4)并非所有的人都喜欢吃苹果.(5)一个正整数不是质数就是合数.(6)若x∈R,则x2+4x+7>0.(7)x+3>0.解(1)(3)(7)不是命题,(2)(4)(5)(6)是命题.探究点二命题的分类思考1命题分哪几类?答真命题和假命题.小结判断为真的语句叫做真命题;判断为假的语句叫做假命题.例2请对例1给出的命题判断真假.解(1)(4)(5)是真命题,(2)是假命题.反思与感悟要判断一个命题是真命题,一般需要经过严格的推理论证,在判断时,要有理有据,有时应综合各种情况作出正确的判断,而判断一个命题是假命题,只需举出一个反例即可.跟踪训练2判断下列命题的真假:(1)已知a,b,c,d∈R,若a≠c,b≠d,则a+b≠c+d;(2)若x∈N,则x3>x2成立;(3)若m>1,则方程x2-2x+m=0无实数根;(4)存在一个三角形没有外接圆.解(1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x=0时,x3>x2不成立.(3)真命题:∵m>1⇒Δ=4-4m<0,∴方程x2-2x+m=0无实数根.(4)假命题.因为不共线的三点确定一个圆,即任何三角形都有外接圆.思考2数学中的定义、公理、定理、推论是真命题吗?答是.探究点三命题的结构思考1跟踪训练2中(2)(3)两个命题是什么形式?命题的常见形式是什么?答命题(2)(3)具有“若p,则q”的形式,即为命题的常见形式.小结命题由条件和结论两部分组成,它的结构形式为:“若p,则q”.也可写成:“如果p,那么q.其中p是命题的条件,q是命题的结论.思考2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则整数a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.答(1)条件p:整数a能被2整除,结论q:整数a是偶数.(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.思考3如何把命题改写成“若p,则q”的形式.答分清条件和结论.例3将下列命题改写成“若p,则q”的形式,并判断真假.(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.解(1)若两条直线垂直于同一条直线,则这两条直线平行.假命题.(2)若一个数是负数,则这一个数的立方是负数.真命题.(3)若两个角是对顶角,则这两个角相等.真命题.反思与感悟把一个命题改写成“若p,则q”的形式,首先要确定命题的条件和结论,若条件和结论比较隐含,要补充完整,有时一个条件有多个结论,有时一个结论需多个条件,还要注意有的命题改写形式也不唯一.跟踪训练3把下列命题改写成“若p,则q”的形式,并判断真假.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac>bc时,a>b;(4)角的平分线上的点到角的两边的距离相等.解(1)若一个数是实数,则它的平方是非负数.真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形.假命题.(3)若ac>bc,则a>b.假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等.真命题.1.下列语句是命题的是()A.2 014是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗D.a≤15答案 B解析A、D不能判断真假,不是命题;B能够判断真假而且是陈述句,是命题;C是疑问句,不是命题.2.下列命题中是真命题的是()A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角答案 C解析由平面几何知识可知A、B、D三项都是错误的.3.命题“函数y=2x+1是增函数”的条件是________,结论是________.答案函数为y=2x+1该函数是增函数4.下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是________.答案 4解析①等底等高的三角形都是面积相等的三角形,但不一定全等;②当x,y中一个为零,另一个不为零时,|x|+|y|≠0;③当c=0时不成立;④菱形的对角线互相垂直,矩形的对角线不一定垂直.[呈重点、现规律]1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题可以给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式.含有大前提的命题写成“若p,则q”的形式,大前提应保持不变.六、课堂小结1、命题的定义2、命题的分类3、命题的结构七、作业课本后习题八、板书设计1.1.1命题一、定义二、分类三、结构。

高中数学 1.1 命题及其关系 1.1.1 命题学案 新人教A版选修1-1

高中数学 1.1 命题及其关系 1.1.1 命题学案 新人教A版选修1-1

1.1.1 命题学习目标:1.了解命题的概念.(难点)2.理解命题的构成形式,能将命题改写为“若p ,则q ”的形式.(重点)3.能判断一些简单命题的真假.(难点,易错点)[自 主 预 习·探 新 知]1.命题的定义与分类(1)命题的定义:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)命题定义中的两个要点:“可以判断真假”和“陈述句”.我们学习过的定理、推论都是命题.(3)分类命题⎩⎪⎨⎪⎧真命题:判断为真的语句假命题:判断为假的语句思考1:(1)“x -1=0”是命题吗?(2)“命题一定是陈述句,但陈述句不一定是命题”这个说法正确吗? [提示] (1)“x -1=0”不是命题,因为它不能判断真假.(2)正确.根据命题的定义,命题一定是陈述句,但陈述句中只有能够判断真假的才是命题.2.命题的结构(1)命题的一般形式为“若p ,则q ”.其中p 叫做命题的条件,q 叫做命题的结论. (2)确定命题的条件和结论时,常把命题改写成“若p ,则q ”的形式. 思考2:命题“实数的平方是非负数”的条件与结论分别是什么? [提示] 条件是“一个数是实数”,结论是:“它的平方是非负数”.[基础自测]1.思考辨析(1)一个命题不是真命题就是假命题. ( ) (2)一个命题可以是感叹句. ( ) (3)x >5是命题.( )[解析] 根据命题的定义知(1)正确,(2)、(3)错误. [答案] (1)√ (2)× (3)× 2.下列语句是命题的是( ) ①三角形内角和等于180°;②2>3; ③一个数不是正数就是负数;④x >2; ⑤2018央视狗年春晚真精彩啊! A .①②③B .①③④C.①②⑤ D.②③⑤A[①、②、③是陈述句,且能判断真假,因此是命题,④不能判断真假,⑤是感叹句,故④、⑤不是命题.]3.下列命题中,真命题共有( )【导学号:97792000】①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则a+c>b+c;④矩形的对角线互相垂直.A.1个B.2个C.3个D.4个A[①、②、④是假命题,③是真命题.][合作探究·攻重难]A.x2-1=0 B.2+3=8C.你会说英语吗?D.这是一棵大树(2)下列语句为命题的有________.①x∈R,x>2;②梯形是不是平面图形呢?③22 018是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.[解析](1)A中x不确定,x2-1=0的真假无法判断;B中2+3=8是命题,且是假命题;C不是陈述句,故不是命题;D中“大”的标准不确定,无法判断真假.(2)①中x有范围,可以判断真假,因此是命题;②是疑问句,不是命题;③是陈述句,但“大”的标准不确定,无法判断真假,因此不是命题;④是陈述句且能判断真假,因此是命题;⑤是祈使句,不是命题.[答案](1)B (2)①④感叹句等都不是命题对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若1.判断下列语句是不是命题,并说明理由.(1)函数f(x)=3x(x∈R)是指数函数;(2)x2-3x+2=0;(3)若x∈R,则x2+4x+7>0.(4)垂直于同一条直线的两条直线一定平行吗?(5)一个数不是奇数就是偶数;(6)2030年6月1日上海会下雨.[解](1)是命题,满足指数函数的定义,为真命题.(2)不是命题,不能判断真假.(3)是命题.当x∈R时,x2+4x+7=(x+2)2+3>0能判断真假.(4)疑问句,不是命题.(5)是命题,能判断真假.(6)不是命题,不能判断真假.改为“若p则q”的形式,则p是________,q是________.【导学号:97792001】(2)把下列命题改写成“若p,则q”的形式,并判断命题的真假.①函数y=lg x是单调函数;②已知x,y为正整数,当y=x+1时,y=3,x=2;③当abc=0时,a=0且b=0且c=0.[思路探究] 解决此类题目的关键是找到命题的条件和结论,然后用适当的形式改写成“若p,则q的形式”.[解析](1)命题的条件是“弦的垂直平分线”,结论是“经过圆心并且平分弦所对的弧”.因此p是“一条直线是弦的垂直平分线”,q是“这条直线经过圆心并且平分弦所对的弧”.[答案]一条直线是弦的垂直平分线这条直线经过圆心且平分弦所对的弧.(2)①若函数是对数函数y=lg x,则这个函数是单调函数.②已知x,y为正整数,若y=x+1,则y=3,x=2.③若abc=0,则a=0且b=0且c=0.2.把下列命题改写成“若p ,则q ”的形式. (1)当1a >1b时,a <b ;(2)垂直于同一条直线的两个平面互相平行; (3)同弧所对的圆周角不相等. [解] (1)若1a >1b,则a <b ;(2)若两个平面垂直于同一条直线,则这两个平面平行; (3)若两个角为同弧所对的圆周角,则它们不相等.1.如何判断一个命题是真命题?提示:根据命题的条件,利用定义、定理、性质论证命题的正确性. 2.如何判断一个命题是假命题? 提示:举出一个反例即可.给定下列命题: ①若a >b ,则2a >2b;②命题“若a ,b 是无理数,则a +b 是无理数”是真命题; ③直线x =π2是函数y =sin x 的一条对称轴;④在△ABC 中,若AB →·BC →>0,则△ABC 是钝角三角形. 其中为真命题的是________.[思路探究] 命题――――――――→严格的逻辑推理真命题―――――→恰当的反例假命题 [解析] 对于①,根据函数f (x )=2x的单调性知①为真命题.对于②,若a =1+3,b =1-3,则a +b =2不是无理数,因此②是假命题. 对于③,函数y =sin x 的对称轴方程为x =π2+k π,k ∈Z ,故③为真命题.对于④,因为AB →·BC →=|AB →||BC →|cos(π-B )=-|AB →||BC →|cos B >0,故得cos B <0,从而得B 为钝角,所以④为真命题.[答案] ①③④1.下列语句不是命题的个数为( )①2<1;②x <1;③若x <1,则x <2;④函数f (x )=x 2是R 上的偶函数. A .0 B .1 C .2 D .3B [语句①、③、④都能判断真假,是命题,语句②不能判断真假,不是命题.] 2.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是( ) A .这个四边形的对角线互相平分 B .这个四边形的对角线互相垂直C .这个四边形的对角线既互相平分,也互相垂直D .这个四边形是平行四边形C [把命题改写成“若p ,则q ”的形式后可知C 正确.故选C.] 3.下列命题是真命题的为( )【导学号:97792002】A .若a >b ,则1a <1bB .若b 2=ac ,则a ,b ,c 成等比数列 C .若|x |<y ,则x 2<y 2D .若a =b ,则a =bC [对于A ,若a =1,b =-2,则1a >1b,故A 是假命题.对于B ,当a =b =0时,满足b 2=ac ,但a ,b ,c 不是等比数列,故B 是假命题. 对于C ,因为y >|x |≥0,则x 2<y 2是真命题.对于D ,当a =b =-2时,a 与b 没有意义,故D 是假命题.]4.命题“关于x 的方程ax 2+2x +1=0有两个不等实数解”为真命题,则实数a 的取值范围为________.(-∞,0)∪(0,1) [由题意知⎩⎪⎨⎪⎧a ≠0Δ=4-4a >0,解得a <1,且a ≠0.]5.把下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)末位数字是0的整数能被5整除; (2)偶函数的图象关于y 轴对称; (3)菱形的对角线互相垂直.【导学号:97792003】[解] (1)若一个整数的末位数字是0,则这个整数能被5整除,为真命题. (2)若一个函数是偶函数,则这个函数的图象关于y 轴对称,为真命题. (3)若一个四边形是菱形,则它的对角线互相垂直,为真命题.。

2017-2018学年高中数学人教A版选修1-1教学案:第一章1.1命题及其关系含答案

2017-2018学年高中数学人教A版选修1-1教学案:第一章1.1命题及其关系含答案

第1课时命题[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P4,回答下列问题.观察教材P2“思考”中的6个语句.(1)这6个语句都是陈述句吗?提示:是.(2)能否判断这6个语句的真假性?提示:能.2.归纳总结,核心必记命题及相关概念命题错误![问题思考](1)“x〉5”是命题吗?提示:不是.(2)陈述句一定是命题吗?提示:不一定.(3)命题“当x=2时,x2-3x+2=0”的条件和结论各是什么?提示:条件:x=2;结论:x2-3x+2=0.(4)“若p则q"形式的命题一定是真命题吗?提示:不一定.(5)数学中的定义、公理、定理、推论是真命题吗?提示:是.[课前反思](1)命题的定义是:;(2)真、假命题的定义是:;(3)命题的条件和结论的定义是:.[思考]一个语句是命题应具备哪两个要素?提示:(1)是陈述句;(2)可以判断真假.讲一讲1.判断下列语句中,哪些是命题?(链接教材P2-例1) (1)函数f(x)=错误!在定义域上是减函数;(2)一个整数不是质数就是合数;(3)3x2-2x〉1;(4)在平面上作一个半径为4的圆;(5)若sin α=cos α,则α=45°;(6)2100是一个大数;(7)垂直于同一个平面的两条直线一定平行吗?(8)若x∈R,则x2+2>0.[尝试解答] (1)是陈述句,且能判断真假,是命题.(2)是陈述句,且能判断真假,是命题.(3)当x∈R时,3x2-2x与1的大小关系不确定,无法判断其真假,不是命题.(4)不是陈述句,不是命题.(5)是陈述句,且能判断真假,是命题.(6)是陈述句,但是“大数"的标准不确定,所以无法判断其真假,不是命题.(7)不是陈述句,不是命题.(8)是陈述句,且能判断真假,是命题.(1)一个语句是命题应具备两个条件:一是陈述句;二是能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假.若能,就是命题;若不能,就不是命题.(3)还有一些语句,目前无法判断真假,但从事物的本质而论,这些语句是可辨别真假的,尤其是科学上的一些猜想等,这类语句也叫做命题.(4)数学中的定义、公理、定理和推论都是命题.练一练1.下列语句中是命题的有________.(填序号)①地球是太阳的一个行星.②甲型H1N1流感是怎样传播的?③若x,y都是无理数,则x+y是无理数.④若直线l不在平面α内,则直线l与平面α平行.⑤60x+9〉4。

人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_9

人教A版高中数学选修1-1《一章 常用逻辑用语  1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_9

1.1.3 四种命题的相互关系【教学目标】1.使学生理解并初步掌握四种命题及其关系2.能正确叙述一个命题的其它三种命题。

3.熟知四种命题的真假关系,理解两个互为逆否的命题是等价命题。

4.初步掌握反证法证明思想和证明步骤。

【教学重难点】重点:会熟练运用四种命题及关系解决问题难点:四种命题的等价转化【教学过程】知识点回顾1、互逆命题:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。

如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。

2、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做互否命题。

如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。

3、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。

原命题:若p 则q 逆命题:若q 则p否命题:若非p 则非q 逆否命题:若非q 则非p观察与思考四种命题之间的关系()()f x f x 1)若是正弦函数,则是周期函数。

()()f x f x 2)若是周期函数,则是正弦函数。

()()f x f x 3)若不是正弦函数,则不是周期函数。

()()f x f x 4)若不是周期函数,则不是正弦函数。

总结:(1)原命题为真,则其逆否命题一定为真。

但其逆命题、否命题不一定为真。

(2)若其逆命题为真,则其否命题一定为真。

但其原命题、逆否命题不一定为真。

原命题与逆命题未必同真假.几条结论:原命题与否命题未必同真假. 原命题与逆否命题一定同真假.原命题的逆命题与原命题的否命题一定同真假.例1:设原命题是:当c>0时,若a>b,则ac>bc. 写出它的逆命题、否命题、逆否命题。

并分别判断它们的真假。

分析:“当c>0时”是大前提,写其它命题时应该保留原命题的条件是“a>b”,结论是“ac>bc”。

高中数学 第一章 常用逻辑用语 1.1 命题及其关系导学案 新人教A版选修1-1(2021年整理)

高中数学 第一章 常用逻辑用语 1.1 命题及其关系导学案 新人教A版选修1-1(2021年整理)

河北省承德市高中数学第一章常用逻辑用语1.1 命题及其关系导学案新人教A版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第一章常用逻辑用语1.1 命题及其关系导学案新人教A版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第一章常用逻辑用语1.1 命题及其关系导学案新人教A版选修1-1的全部内容。

命题及其关系学习目标:1.理解什么是命题,会判断一个命题的真假.2.分清命题的条件和结论,能将明确给出条件与结论的命题写成“若p,则q”的形式.1。

教学重点:命题的定义及其真假判断.2.教学难点:.1.判断一个语句是否为命题. 2.区分命题的条件与结论.方法:自主学习合作探究师生互动新知导学:知识点1:命题及其真假1.一般地,我们把用语言、符号或式子表达的,可以__________的陈述句叫做命题.2.判断为真的语句叫__________,判断为假的语句叫__________.3.数学中的定义、公理、公式、定理都是命题,但命题不一定都是定理,因为命题有_______之分,而定理是_____命题.牛刀小试1.下列语句不是命题的是()A.地球是太阳系的行星 B.等腰三角形的两底角相等C.今天会下雪吗? D.正方形的四个内角均为直角2.已知下列语句:①一束美丽的花;②x〉3;③2是一个偶数;④若x=2,则x2-5x+6=0。

其中是命题的个数是()A.1 B.2 C.3 D.4知识点2:命题的构成形式4.命题常写成“__________”的形式,其中命题中的p叫做命题的__________,q叫做命题的__________.牛刀小试3.将下列命题写成“若p,则q”的形式,并判断是真命题还是假命题.课堂随笔:(1)面积相等的两个三角形全等; (2)实数的平方是非负数. 4.观察下列语句: (1)三角形的三个内角的和等于360°. (2)今年运动会我们班还能得第一吗? (3)2016年奥运会的举办城市是巴西里约热内卢. (4)这是一棵大树呀! (5)实数的平方是正数. (6)能被4整除的数一定能被2整除. 问题1:上述语句哪几个语句是命题. 问题2:你能判断其中命题的真假吗? 典例分析: 类型一:命题概念的理解 例1:判断下列语句是否是命题,并说明理由. (1)求证:3是无理数; (2)x 2+4x +4≥0;(3)你是高一的学生吗? (4)并非所有的人都喜欢苹果. 跟踪训练1: 下列语句中,是命题的是( ) A .x2+1>0,x ∈R B .函数y =x2是偶函数吗? C .a2=a D .平行四边形 类型二:命题真假的判断 例2:判断下列命题的真假: (1)AB →+BC →=AC →; (2)log 2x 2=2log 2x ; (3)若m >1,则方程x 2-2x +m =0无实根; (4)直线x +y =0的倾斜角是π4; (5)若α=3π4,则sin α=22;(6)若x ∈A ,则x ∈(A ∩B ).是唐代诗人王维的《相思》诗,在这4句诗中,可作为命题的是()A.红豆生南国 B.春来发几枝 C.愿君多采撷 D.此物最相思2.下列命题中的真命题是()A.二次函数的图象是一条抛物线B.若一个四边形的四条边相等,则这个四边形是正方形C.已知m、n∈R,若m2+n2≠0,则mn≠0D.平行于同一直线的两个平面平行3.下列命题中的假命题是()A.若log2x〈2,则0〈x<4 B.若a与b共线,则a与b的夹角为0°C.已知非零数列{a n}满足a n+1-2a n=0,则该数列为等比数列D.点(π,0)是函数y=sin x图象上一点4.(2015·广东文)若直线l1与l2是异面直线,l1在平面α内,l在平面β内,l是平面α与平面β的交线,则下列命题正确2的是( )A.l与l1,l2都不相交 B.l与l1,l2都相交C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交二、填空题5.设a、b、c是空间的三条直线,下面给出四个命题:①若a⊥b,b⊥c,则a∥c;②若a、b是异面直线,b、c是异面直线,则a、c也是异面直线;③若a和b相交,b和c相交,则a和c也相交;④若a和b共面,b和c共面,则a和c也共面.其中真命题的个数是________。

高中数学人教A版选修1-1课时作业:1.1命题及其关系 word版含答案

高中数学人教A版选修1-1课时作业:1.1命题及其关系 word版含答案

第一章第1节命题及其关系本节教材分析(一)三维目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(2)教学重点:命题的概念、命题的构成(3)教学难点:分清命题的条件、结论和判断命题的真假(4)教学建议:通过学生的参与,激发学生学习数学的兴趣。

(一)三维目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(2)教学重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.(3)教学难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.(4)教学建议:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力新课导入设计学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?导入二一、创设情境在我们日常生活中,经常涉及到逻辑上的问题。

无论是进行思考、交流,还是从事各项工作,都需要用逻辑用语表达自己的思想,需要用逻辑关系进行判断和推理。

因此,正确使用逻辑用语和逻辑关系是现代社会公民应该具备的基本素质。

本章我们将从命题及其关系入手,学习四种命题的相互关系、充分条件和必要条件,学习逻辑用语,了解数理逻辑的有关知识,体会逻辑用语在表述或论证中的作用,使以后的论证和表述更加准确、清楚和简洁。

人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_8

人教A版高中数学选修1-1《一章 常用逻辑用语  1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_8

课题:1.1 命题及其关系1. 教学目标1.知识与技能(1)初步理解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式.(2)初步理解四种命题间的相互关系并能判断命题的真假.(2)培养学生抽象概括能力和思维能力.(1)培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力.(2)培养学生抽象概括能力和思维能力.3.情感、态度与价值观激发学生学习数学的兴趣和积极性,优化学生的思维品质,培养学生勤于思考,勇于探索的创新意识,感受探索的乐趣.2. 教学重点/难点重点:四种命题之间相互的关系.难点:正确区分命题的否定形式及否命题.3. 教学用具多媒体4. 教学过程一、问题导思给出以下四个命题:(1)对顶角相等;(2)相等的两个角是对顶角;(3)不是对顶角的两个角不相等;(4)不相等的两个角不是对顶角.1.你能说出命题(1)与(2)的条件与结论有什么关系吗?【提示】它们的条件和结论恰好互换了.2.命题(1)与(3)的条件与结论有什么关系?命题(1)与(4)呢?【提示】命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.知识点1 四种命题的概念1.对命题的条件和结论进行“换位”和“换质”(否定)后,可以构成四种不同形式的命题:(1)原命题:如果p,则q(2)逆命题:如果q,则p(“换位”)(3)否命题:如果非p,则非q(“换质”)(4)逆否命题:如果非q,则非p(“换位”又“换质”)知识点2 四种命题的关系1.四种命题的相互关系2.四种命题的真假性关系(1)在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.(2)两个命题互为逆命题或互为否命题时,它们的真假性没有关系.二、典例精讲题型1 四种命题的概念例1.把下列命题写成“如果p,则q”的形式,并写出它们的逆命题、否命题与逆否命题:(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0.【解析】(1)原命题:“如果a是正数,则a的平方根不等于0”.逆命题:“如果a的平方根不等于0,则a是正数”.否命题:“如果a不是正数,则a的平方根等于0”.逆否命题:“如果a的平方根等于0,则a不是正数”.(2)原命题:“如果x=2,则x2+x-6=0”.逆命题:“如果x2+x-6=0,则x=2”.否命题:“如果x≠2,则x2+x-6≠0”.逆否命题:“如果x2+x-6≠0,则x≠2”.【小结】写已知命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.【变式训练】(1)对于原命题“周期函数不是单调函数”,下列陈述正确的是( )A.逆命题为“单调函数不是周期函数”B.否命题为“周期函数是单调函数”C.逆否命题为“单调函数是周期函数”D.以上三者都不对(2)命题“若α=则tan α=1”的逆否命题是______.【解析】(1)周期函数不是单调函数的逆命题为“不是单调函数的函数,就是周期函数”,A错.否命题为“不是周期函数的函数是单调函数”,B错.逆否命题为“单调函数不是周期函数,C错,所以选D.(2)根据逆否命题的定义可知命题“若α=则tan α=1”的逆否命题是:若tan α≠1,则α≠【答案】(1)D (2)若tan α≠1,则α≠题型2 四种命题的关系例2:下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中的真命题是__________.【解析】①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③.【答案】①②③【小结】要判定四种命题的真假,首先,要正确理解四种命题间的相互关系;其次,正确利用相关知识进行判断推理.若由p经逻辑推理得出q,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明.互为逆否命题等价.当一个命题的真假不易判断时,可通过判定其逆否命题的真假来判断.三、变式训练有下列四个命题:①“若b=3,则b2=9”的逆命题;②“全等三角形的面积相等”的否命题;③“若c<1,则x2+2x+c=0有实根”的逆命题;④“若A∩B=A,则A⊆B”的逆否命题.其中真命题的个数是________.【解析】①若b=3,则b2=9的逆命题为,若b2=9,则b=3,所以错误.②全等三角形的面积相等的逆命题为面积相等的三角形全等,错误.③x2+2x+c =0有实根,则有Δ=4-4c≥0,即c≤1,当c≤1时,c<1不成立,所以错误.④若A∩B=A,则A⊆B,正确,所以它的逆否命题也正确,所以正确的有1个.【答案】 1题型3 等价命题的应用例3.已知奇函数f(x)是定义域为R的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+bb≥0.【证明】假设a+b<0,则a<-b.∵f(x)在R上是增函数,∴f(a)<f(-b),又∵f(x)为奇函数.∴f(-b)=-f(b),∴f(a)<-f(b).即f(a)+f(b)<0.∴原命题的逆否命题为真,故原命题为真.【小结】由于原命题和它的逆否命题有相同的真假性,所以在证明某一个命题的真假性有困难时,可以证明它的逆否命题为真(假)命题,来间接地证明原命题为真(假)命题.四、变式训练“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a<2”,判断其逆否命题的真假.【解】∵a,x∈R,且x2+(2a+1)x+a2+2≤0的解集是空集.∴Δ=(2a+1)2-4(a2+2)<0,则4a-7<0,解得a<因此a<2,原命题是真命题.又互为逆否命题的命题等价,故逆否命题是真命题.五、当堂检测1.命题“若x与y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,是x与y都不是偶数【解析】由于“x与y都是偶数”的否定是“x与y不都是偶数”,“x+y是偶数”的否定是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数.”【答案】 C2.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数【解析】否命题既否定题设又否定结论,故选B.【答案】 B3.给出以下命题:①“若x2+y2≠0,则x、y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题.其中为真命题的是________.解析:①否命题是“若x2+y2=0,则x,y全为0”.真命题.②逆命题是“若两个多边形相似,则这两个多边形为正多边形”,假命题.③∵Δ=1+4m,若m>0时,Δ>0,∴x2+x-m=0有实根,即原命题为真.∴逆否命题为真.答案①③4.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.【解】(1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c =0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.课堂小结 :1.写四种命题时,可以按下列步骤进行:(1)找出命题的条件p和结论q;(2)写出条件p的否定綈p和结论q的否定綈q;(3)按照四种命题的结构写出所有命题.2.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.板书 :。

人教版高中选修1-1《命题及其关系》教学设计

人教版高中选修1-1《命题及其关系》教学设计

人教版高中选修1-1《命题及其关系》教学设计《人教版高中选修1-1《命题及其关系》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1. 创设情境,引导学生主动发展、提出问题生活情境:“同学们,你们好!我是邓老师,见到你们真高兴呀!”(用课件展示这段话)请学生思考:我的开场白中,有哪些语句是命题?设计意图:(1)以简洁明了的开场白让学生迅速进入问题情境,平实的语言拉近了教师和学生之间的距离,让学生有亲切感并较快进入新知探究。

(2)学习逻辑用语的目的不仅要了解数理逻辑的有关知识,还要让学生通过学习逻辑用语的基本知识,体会逻辑用语在表述论证中的作用,使以后的论证和表述更加准确、清楚和简洁。

因此,在教学过程中应避免对逻辑用语的机械记忆和抽象解释,而应该通过具体、生动的实例让学生体会常用的逻辑用语,这样比较符合学生从具体到抽象的认知规律。

因此,我想用非常简单的命题作探索新知的引入。

另外,值得说明的是,让学生来寻找哪些语句是命题是基于他们原来学过命题这一实际情况。

对学生来说,这既是复习,也是一种探索,从而激发他们的学习热情和信心,同时也符合学生的实际。

2. 重视举例,引导学生不断发现并解决问题(1)对四种命题的概念和结构关系的探讨(活动1)给学生活动空间,让他们举出一些命题的例子,并指出它们的条件和结论。

让同学们从举出的命题中选出一个命题为代表,将其改写成“如果…,那么…”的形式。

围绕这个命题,写出三个相关命题,和学生一起探究这三个命题在条件和结论上的关系。

由此归纳出互逆命题、互否命题、互为逆否命题的概念,并进一步指出逆命题、否命题、逆否命题的概念。

设计意图:这些具体命题来源于学生的生活,对四种命题概念的理解都是在具体命题的基础上完成的,这样,就坚持了教学“贴近教材,贴近学生,贴近生活”的教学原则。

同时,他们自己解决自己提出的问题,也能有效激发他们学习的兴趣。

[例1]写出命题“若a=0,则ab=0”的逆命题、否命题和逆否命题。

人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.1 命题》优质课教案_2

人教A版高中数学选修1-1《一章 常用逻辑用语  1.1 命题及其关系  1.1.1 命题》优质课教案_2

教学准备1. 教学目标1.知识与技能(1)理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假.(2)能把命题改写成“若p,则q”的形式.(1)多列举命题的例子,培养学生的辨析能力.(2)培养学生分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.2. 教学重点/难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.3. 教学用具多媒体4. 标签教学过程一、问题导思观察下列实例:①4是集合{1,2,3,4}的元素;②若x∈R,方程x2-x+2=0无实根;③2013年中国发射了嫦娥三号;④作△ABC∽△A′B′C′.上述语句中,哪些能判断真假?【提示】①,②,③能判断真假,④是祈使句不能判断真假二、典例精讲题型1 命题的判断例1.判断下列语句是否是命题,若是,判断其真假,并说明理由:(1)求证是无理数.(2)若x∈R,x2+4x+4≥0.(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.(5)若x+y和xy都是有理数,则x、y都是有理数.(6)60x+9>4.【解析】(1)是祈使句,不是命题.(2)x2+4x+4=(x+2)2≥0,可以判断真假,是命题,且是真命题.(3)是疑问句,不是命题.(4)是真命题,有的人喜欢苹果,有的人不喜欢苹果.(5)是假命题,如)都是有理数,但都是无理数.(6)不是命题,这种含有未知数的语句,未知数的取值能否使不等式成立,无法确定.【小结】判断一个语句是否是命题关键看它是否符合两个条件:“是陈述句”和“可以判断真假”,而祈使句、疑问句、感叹句等都不是命题.【变式训练】判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作平行四边形ABCD.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.题型2 命题真假的判定例2.判断下列语句是否为命题,若是,判断其真假,并说明理由.(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【解析】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4时,2x+1>0,是假命题.命题(3)中,若等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(4)是一个祈使句,没有作出判断,不是命题.小结1.真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑论证的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.2.假命题的判定方法:通过构造一个反例来否定命题的正确性,这是判断一个命题为假命题的常用方法.【变式训练】在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.例3.把下列命题写成“若p,则q”的形式:(1)ac>bc⇒a>b;(2)已知x、y为正整数,当y=x+1时,y=3,x=2;(3)当m>时,mx2-x+1=0无实数根;(4)负数的立方是负数.【解析】(1)若ac>bc,则a>b.(2)已知x、y为正整数,若y=x+1,则y=3且x=2.(3)若m>,则mx2-x+1=0无实数根.【小结】1.解决本例问题的关键是找准命题的条件和结论,进而化成“如果p,则q”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.三、变式训练将下列命题改写成“若p,则q”的形式,并判断真假.(1)6是12和18的公约数.(2)当a>-1时,方程ax2+2x-1=0有两个不等实根.(3)负数的立方仍是负数.【解】(1)若一个数为6,则它是12和18的公约数.真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根.假命题.(3)若一个数是负数,则它的立方仍是负数.真命题.四、当堂检测1.下列语句为命题的是 ( )A.对角线相等的四边形 B.同位角相等C.x≥2 D.x2-2x -3<0【解析】A不是陈述句,C、D无法判断真假.【答案】 B2.下列命题中是假命题的是()A.5是15的约数B.对任意实数x,有x2<0 C.对顶角相等D.0不是奇数【解析】对任意实数x,有x2≥0,所以B为假命题.A,C,D均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p,则q”的形式为________.【答案】若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)x2+2x-3<0;(2)二次函数的图象太完美了!(3)4是集合{1,2,3}的元素.【解】(1)不是命题,因为在x未赋值之前,不能判断其真假;(2)感叹句,不是命题;(3)是命题,且是假命题.由于4∉{1,2,3},所以为假命题.课堂小结1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题可以给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式.含有大前提的命题写成“若p,则q”的形式,大前提应保持不变.板书命题。

新课标人教A版数学选修1-1全套教案

新课标人教A版数学选修1-1全套教案

第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

人教A版高中数学选修1-1 教师用书

人教A版高中数学选修1-1 教师用书

第一章常用逻辑用语1.1命题及其关系1.1.1命题目标导学1.了解命题的有关概念.2.会判断命题的真假.3.理解若p,则q形式的命题的条件和结论.能指出此类命题的条件和结论.‖知识梳理‖1.命题的概念一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.命题的分类判断为真的语句为真命题,判断为假的语句为假命题.3.命题的结构命题的结构形式是“若p,则q”,其中p是条件,q是结论.1.对于命题概念的理解(1)并不是任何语句都是命题,一个语句是命题应具备两个条件:①该语句是陈述句;②能够判断真假.一般来说,疑问句、祈使句、感叹句等都不是命题.(2)对于含有字母变量的语句,根据字母的取值范围,若能判断真假,则是命题;若不能判断真假,则不是命题.2.命题的结构形式(1)在数学中,一般用小写字母p,q,r,…等表示命题.如命题p:2是无理数;命题q:π是有理数.(2)常见的命题形式为:“若p,则q”,其中p称为命题的条件,q称为命题的结论.当一个命题不是“若p,则q”的形式时,为了找出命题的条件和结论,可以对命题改写为“若p,则q”的形式.如命题“菱形的对角线互相垂直且平分”,可以改写为:“若一个四边形是菱形,则它的对角线互相垂直且平分”.题型一命题及其真假的判断判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)垂直于同一直线的两条直线必平行吗?(2)x2+4x+5>0(x∈R);(3)x2+3x-2=0;(4)一个数不是正数就是负数;(5)4是集合{1,2,3,4}中的元素;(6)求证y=sin 2x的最小正周期为π.【思路探索】解答本题,首先要根据命题的概念,判断是否是命题,若是,再根据条件和结论的逻辑关系判断真假.【解】(1)是疑问句,不是命题.(2)是命题.因为当x∈R时,x2+4x+5=(x+2)2+1>0恒成立,可判断真假,所以是命题,而且是真命题.(3)不是命题.因为语句中含有变量x,在没给定x的值之前,无法判断语句的真假,所以不是命题.(4)是命题.因为数0既不是正数也不是负数,所以是假命题.(5)是命题.因为4∈{1,2,3,4},且是真命题.(6)是祈使句,不是命题.[名师点拨]判断一个语句是否是命题,关键在于能否判断其真假.一般地,陈述句“π是无理数”,反意疑问句“难道矩形不是平行四边形吗?”都是命题;而祈使句“求证2是无理数”,疑问句“你是高一的学生吗?”,感叹句等都不是命题.(2019·陆良八中月考)下面命题中是真命题的是() A.函数y=sin2x的最小正周期是2πB.等差数列一定是单调数列C.直线y=ax+a过定点(-1,0)D .在△ABC 中,若AB →·BC →>0,则角B 为锐角解析:A 中,y =sin 2x =12-12cos 2x ,周期T =π,A 为假命题;B 中,当公差为0时,等差数列为常数列,B 为假命题;D 中,若AB→·BC →>0,则AB →与BC →的夹角为锐角,角B 为钝角,D 为假命题,故C 正确.答案:C题型二 命题的结构形式把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)ac >bc ⇒a >b ;(2)当x 2-2x -3=0时,x =-1或x =3;(3)有两个内角之和大于90°的三角形是锐角三角形;(4)实数的平方是非负数;(5)平行于同一平面的两条直线互相平行.【思路探索】 本例所给的命题都不具备“若p ,则q ”的形式,解决这类题型既要找准命题的条件和结论,还要注意表述的完整性.【解】 (1)若ac >bc ,则a >b ,是假命题.(2)若x 2-2x -3=0,则x =-1或x =3,是真命题.(3)若一个三角形中,有两个内角之和大于90°,则这个三角形是锐角三角形,是假命题.(4)若一个数是实数,则它的平方是非负数,是真命题.(5)若两条直线平行于同一个平面,则它们互相平行,是假命题.[名 师 点 拨](1)把命题改写成“若p ,则q ”(或“如果p ,那么q ”)的形式,其中p 为命题的条件,q 为命题的结论,要注意条件及结论的完整性,将条件写在前面,结论写在后面.“若p ,则q ”是原来命题的另一种叙述形式,它的真假性等同于原来的命题.(2)不要认为假命题没有条件和结论,对于一个命题无论是真命题还是假命题,它必须由条件和结论两个部分组成,只是有些命题的条件或结论不十分明显.(3)判断一个命题的真假.“若p ,则q ”为真命题,则需要由p 经过严格推理得出q.“若p,则q”为假命题,只需举出一个反例说明即可.把下列命题改写成“若p,则q”的形式,并判断其真假.(1)能被9整除的数是偶数;(2)当x2+(y-1)2=0时,有x=0,y=1;(3)如果a>1, 那么函数f(x)=(a-1)x是增函数.解:(1)若一个数能被9整除,则这个数是偶数,是假命题.(2)若x2+(y-1)2=0,则x=0,y=1,是真命题.(3)若a>1,则函数f(x)=(a-1)x是增函数,是假命题.1.下列语句为命题的个数有()①一个数不是正数就是负数;②梯形是不是平面图形呢?③22 019是一个很大的数;④4是集合{2,3,4}中的元素;⑤作△ABC≌△A′B′C′.A.1个B.2个C.3个D.4个解析:①④是命题,故选B.答案:B2.(2019·莆田月考)下列命题中是假命题的是()A.若a·b=0,则a⊥b(a≠0,b≠0)B.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.5>3解析:B中两个向量模相等,方向不一定相同,故B为假命题.答案:B3.(2019·杭高期末)已知α,β是两个不同平面,m,n,l是三条不同直线,则下列命题正确的是()A.若m∥α,n⊥β且m⊥n,则α⊥βB.若m⊂α,n⊂α,l⊥n,l⊥m,则l⊥αC.若m∥α,n⊥β且α⊥β,则m⊥nD.若l⊥α且l⊥β,则α∥β解析:A中,α与β有可能平行,A错;B中,m与n不一定相交,B错;C 中,m与n的关系不确定,C错;D中,垂直于同一条直线的两个平面互相平行,D正确.故选D.答案:D4.指出下列命题中的条件p和结论q.(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分.解:(1)条件p:整数a能被2整除,结论q:整数a是偶数.(2)条件p:四边形是菱形,结论q:四边形的对角线互相垂直且平分.5.把下列命题改写为“若p,则q”的形式,并判断其真假.(1)函数y=x3是奇函数;(2)奇数不能被2整除;(3)与同一直线平行的两个平面平行;(4)已知x,y是正整数,当y=x+1时,y=3,x=2.解:(1)若一个函数是y=x3,则它是奇函数,它是真命题.(2)若一个数是奇数,则它不能被2整除,它是真命题.(3)若两个平面都与同一直线平行,则这两个平面平行,它是假命题.(4)已知x,y是正整数,若y=x+1,则y=3,x=2,它是假命题.一、选择题1.下列语句中命题的个数是()①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0 B.1C.2 D.3解析:①③④是命题,②不是命题.答案:D2.下面的命题中是真命题的是()A.y=sin2x的最小正周期为2πB .若方程ax 2+bx +c =0(a ≠0)的两根同号,则c a >0C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB→·BC →>0,则△ABC 是锐角三角形 解析:B 正确,由韦达定理知,x 1x 2=c a >0.答案:B3.(2019·商丘联考)给出下列命题:①若直线l ⊥平面α,直线m ⊥平面α,则l ⊥m ;②若a ,b 都是正实数,则a +b ≥2ab ;③若x 2>x ,则x >1;④函数y =x 3是指数函数.其中假命题为( )A .①③B .①②③C .①③④D .①④解析:①中,l ∥m ,①错;②为真命题;③中,由x 2>x ,得x >1或x <0,③错;④中,y =x 3是幂函数,④错.故选C.答案:C4.(2019·海林月考)已知命题“非空集合M 中的元素都是集合P 的元素”是假命题,那么下列命题:①M 中的元素都不是P 的元素;②M 中有不属于P 的元素;③M 中有P 的元素;④M 中的元素不都是P 的元素.其中真命题的个数为( )A .1B .2C .3D .4解析:“非空集合M 中的元素都是集合P 的元素”是假命题,则集合M 中有不属于P 的元素,故②④正确,故选B.答案:B5.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“相等”和“直角”B .语句“当a >4时,方程x 2-4x +a =0有实根”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题解析:D 中,当a >4时,判别式Δ=16-4a <0,此方程无实根,故是假命题. 答案:D6.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③解析:对于①,设球的半径为R ,则43π⎝ ⎛⎭⎪⎫R 23=18·43πR 3,故体积缩小到原来的18,故①正确;对于②,可举例1,3,5和3,3,3两组数据的平均数相等,但它们的标准差不同,故②错;对于③,圆心(0,0)到直线x +y +1=0的距离d =|0+0+1|2=22,等于圆x 2+y 2=12的半径,所以直线与圆相切,故③正确.答案:C二、填空题7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗;③x ,y 都是无理数,则x +y 是无理数;④若直线l 不在平面α内,则直线l 与平面α平行;⑤60x +9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句,所以②不是命题;因为⑤中自变量x 的值不确定,所以无法判断其真假,所以⑤不是命题;因为⑥是祈使句,所以不是命题.①③④是命题.答案:①③④8.(2019·长春月考)下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π;②终边在y 轴上的角的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫α⎪⎪⎪ α=k π2,k ∈Z ; ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点;④把函数y =3sin ⎝⎛⎭⎪⎫2x +π3的图象向右平移π6,得到y =3sin 2x 的图象; ⑤函数y =sin ⎝ ⎛⎭⎪⎫x -π2在[0,π]上是减函数. 其中,真命题的序号是________(写出所有真命题的序号).解析:由y =sin 4x -cos 4x =sin 2x -cos 2x =-cos 2x ,得T =2π2=π,①为真命题;终边在y 轴上的角的集合是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =π2+k π,k ∈Z ,②为假命题;在同一坐标系中,函数y =sin x 的图象和y =x 的图象只有一个公共点,③为假命题;把函数y =3sin ⎝ ⎛⎭⎪⎫2x +π3的图象向右平移π6,得到y =3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π3=3sin 2x 的图象,④为真命题;函数y =sin ⎝ ⎛⎭⎪⎫x -π2在[0,π]上是增函数,⑤为假命题,故真命题有①④. 答案:①④9.若命题“ax 2-2ax +3>2”是真命题,则实数a 的取值范围是________. 解析:令f (x )=ax 2-2ax +1,当a =0时,f (x )=1>0成立;当a ≠0时,要使f (x )>0恒成立,只要Δ=(-2a )2-4a =4a (a -1)<0,且a >0,即0<a <1.综上知,a 的取值范围是[0,1).答案:[0,1)三、解答题10.将下列命题改写成“若p ,则q ”的形式,并判断其真假.(1)当ab =0时,a =0或b =0;(2)等腰三角形的两个底角相等;(3)末位数字是0或5的整数,能被5整除;(4)方程x 2+x +1=0有两个实数根.解:(1)若ab =0,则a =0或b =0,是真命题.(2)若一个三角形是等腰三角形,则两个底角相等,是真命题.(3)若一个整数的末位数字是0或5,则能被5整除,是真命题.(4)若一个方程为x 2+x +1=0,则它有两个实数根,是假命题.11.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解:由x 2-2x -2≥1,得x 2-2x -3≥0,解得x ≤-1或x ≥3,即命题p :x ≤-1或x ≥3.而命题q :0<x <4,由命题p 是真命题,命题q 是假命题,得⎩⎨⎧x ≤-1或x ≥3,x ≤0或x ≥4,所以x ≤-1或x ≥4.故实数x 的取值范围是(-∞,-1]∪[4,+∞).12.已知命题A :2x -1>a ;命题B :x >3.试确定实数a 的一个值,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若A 为条件,则命题“若p ,则q ”为“若x >1+a 2,则x >3”,由命题为真命题,得1+a 2≥3,即a ≥5.若B 为条件,则命题“若p ,则q ”为“若x >3,则x >1+a 2”,由命题是真命题,得1+a 2≤3,即a ≤5.由以上分析知,取a =5,符合题意.13.(2019·上海七宝月考)已知函数f (x )=cos x -|sin x |,那么下列命题中假命题是( )A .f (x )是偶函数B .f (x )在[-π,0]上恰有一个零点C .f (x )是周期函数D .f (x )在[-π,0]上是单调函数解析:∵f (-x )=cos(-x )-|sin(-x )|=cos x -|sin x |=f (x ),∴f (x )为偶函数,A正确;由f (x )=cos x -|sin x |=0,x ∈[-π,0]时,可得cos x =-sin x ,∴x =-π4,即f (x )在[-π,0]上恰有一个零点,B 正确;∵f (x +2π)=cos(x +2π)-|sin(x +2π)|=cos x -|sin x |=f (x ),∴f (x )为周期函数,C 正确;当x ∈[-π,0]f (x )=cos x +sinx =2sin ⎝ ⎛⎭⎪⎫x +π4,f (x )在[-π,0]上不单调,D 为假命题,故选D. 答案:D1.1.2 四种命题1.1.3 四种命题间的相互关系目 标 导 学1.了解四种命题的概念.2.认识四种命题的结构形式,会写某命题的逆命题、否命题和逆否命题.3.认识四种命题之间的关系以及真假性之间的关系.4.能利用命题的等价性解决简单问题.‖知识梳理‖1.四种命题的概念名称栏目内容定义 表示形式 互逆命题 对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题原命题为“若p ,则q ”;逆命题为“若q ,则p ” 互否命题 对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p ,则q ”;否命题为“若﹁p ,则﹁q ” 互为逆否对于两个命题,其中一个命题的条原命题为“若p ,则2.四种命题的相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.1.四种命题的表示形式一般地,用p 和q 分别表示一个命题的条件和结论,用﹁p 和﹁q 分别表示p 和q 的否定,于是四种命题的形式为:原命题:若p ,则q (p ⇒q );逆命题:若q ,则p (q ⇒p );否命题:若﹁p,则﹁q (﹁p ⇒﹁q );逆否命题:若﹁q ,则﹁p (﹁q ⇒﹁p ).注:命题的四种形式中,哪一个为原命题是相对的,而不是绝对的.2.命题的真假判断一个命题要么是真命题,要么是假命题,不能既真又假,也不能模棱两可,无法判断其真假.判断一个命题为真命题,需要逻辑推理(证明),判断一个命题是假命题,只需举出一个反例即可.在四种命题中,互为逆否的两个命题同真或同假,称为等价命题.原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题中真假命题的个数一定为偶数个.题型一四种命题的概念写出下列命题的逆命题、否命题、逆否命题.(1)若a<1,则方程x2+2x+a=0有实根;(2)若ab是正整数,则a,b都是正整数;(3)若a+5是有理数,则a是无理数.【思路探索】首先弄清楚原命题的条件和结论,再写出其逆命题、否命题、逆否命题.【解】(1)原命题的逆命题为:若方程x2+2x+a=0有实根,则a<1.否命题为:若a≥1,则方程x2+2x+a=0没有实根.逆否命题为:若方程x2+2x+a=0没有实根,则a≥1.(2)原命题的逆命题为:若a,b都是正整数,则ab是正整数;否命题为:若ab不是正整数,则a,b不都是正整数;逆否命题为:若a,b不都是正整数,则ab不是正整数.(3)原命题的逆命题为:若a是无理数,则a+5是有理数.否命题为:若a+ 5 不是有理数,则a不是无理数.逆否命题为:若a不是无理数,则a+5不是有理数.[名师点拨]若一个命题不是“若p,则q”的形式,则先改写为“若p,则q”的形式,然后再按定义写出其逆命题、否命题和逆否命题.(2019·江门月考)“若a≥2,则a2≥4”的否命题是() A.若a≤2,则a2≤4B.若a≥2,则a2≤4C.若a<2,则a2<4D.若a≥2,则a2<4解析:否命题既否定条件,又否定结论,所以“若a≥2,则a2≥4”的否命题为“若a<2,则a2<4”,故选C.答案:C题型二四种命题的相互关系下列说法中,不正确的是()A.“若p,则q”与“若q,则p”互为逆命题B.“若﹁p,则﹁q”与“若q,则p”互为逆否命题C.“若﹁p,则﹁q”是“若p,则q”的逆否命题D.“若﹁p,则﹁q”与“若p,则q”互为否命题【思路探索】题目中每个选项都给了两个命题,应从四种命题的概念入手进行判断.【解析】根据四种命题的概念知,A、B、D正确;C错误.【答案】C[名师点拨]原命题:若p,则q,逆命题:若q,则p,否命题:若﹁p,则﹁q,逆否命题:若﹁q,则﹁p,熟记四种命题的形式,是解决此类问题的关键.若命题A的否命题为B,命题A的逆否命题为C,则B与C的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确解析:设命题A为:“若p,则q”,依题意得,命题B为:“若﹁p,则﹁q”,命题C为:“若﹁q,则﹁p”,所以B与C为互逆命题.答案:A题型三四种命题的真假判断有下列四个命题:①“若b2=ac,则a,b,c成等比数列”的否命题;②“若m=2,则直线x+y=0与直线2x+my+1=0平行”的逆命题;③“已知a,b是非零向量,若a·b>0,则a与b方向相同”的逆否命题;④“若x≤3,则x2-x-6>0”的逆否命题.其中为真命题的个数是()A.1B.2C.3D.4【思路探索】先正确的写出相对应的命题,再判断真假.也可以根据互为逆否命题同真同假直接进行判断.【解析】命题“若b2=ac,则a,b,c成等比数列”的逆命题为:“若a,b,c成等比数列,则b2=ac”,是真命题.因为逆命题与否命题等价,所以①正确;因为②中原命题的逆命题为:“若直线x+y=0与直线2x+my+1=0平行,则m=2”,是真命题,故②正确;对于③可考虑原命题.设a=(0,1),b=(1,1),则a·b=1>0,但a与b不同向,所以原命题为假命题,故③为假命题;④中命题“若x≤3,则x2-x+6>0”的逆否命题为:“若x2-x+6≤0,则x>3”,是假命题,故④为假命题.【答案】B[名师点拨](1)判断四种命题的真假,可以通过逻辑证明或举反例进行判断.(2)判断四种命题的真假可以利用真假性关系:原命题与逆否命题等价,逆命题与否命题等价,它们同真同假,在只要求判断真假的题目中,可以不一一写出逐个判断,利用等价性判断更为方便简捷.(2019·铜陵一中期中)下列命题中为真命题的是() A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题解析:A中,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,为真命题;B中,命题“若x>1,则x2>1”的逆命题为“若x2>1,则x>1”,为假命题,所以其否命题为假命题;C中,命题的逆命题为“若x2+x-2=0,则x=1”,为假命题,所以其否命题为假命题;D中,命题“若x2>1,则x>1”为假命题,则逆否命题为假命题,故选A.答案:A题型四等价命题的应用判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.【思路探索】解法一:由已知命题,写出逆否命题,再判断真假;解法二:判断原命题的真假,即得逆否命题的真假.【解】解法一:原命题的逆否命题:已知a,x为实数,若a<1,则关于x 的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断过程如下:抛物线y=x2+(2a+1)x+a2+2开口向上,Δ=(2a+1)2-4(a2+2)=4a-7.若a<1,则4a-7<0.所以抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故逆否命题为真命题.解法二:判断原命题的真假.已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,得a≥74,从而a≥1成立.所以原命题为真命题.又因为原命题与其逆否命题等价,所以逆否命题为真命题.[名师点拨]由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的两个命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题.已知奇函数f(x)是定义在R上的增函数,a,b∈R,若f(a)+f(b)≥0,求证:a+b≥0.证明:原命题的逆否命题是:若a+b<0,则f(a)+f(b)<0.∵a+b<0,∴a<-b.又∵f(x)在R上为增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b).∴f(a)<-f(b),即f(a)+f(b)<0.∴原命题的逆否命题为真命题.故原命题成立.1.(2019·分宜中学月考)命题“若a>b,则a-1>b-1”的否命题是() A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-1解析:否命题应同时否定条件和结论.答案:C2.命题“若p不正确,则q不正确”的逆命题的等价命题是() A.若q不正确,则p不正确B.若q不正确,则p正确C.若p正确,则q不正确D.若p正确,则q正确解析:由于原命题的逆命题与否命题互为等价命题,故D正确.答案:D3.(2019·贵阳月考)下列有关命题的说法正确的是()A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x≠0”B.“若sin α=12,则α=π6”的逆否命题为真命题C.“若x+y=0,则x,y互为相反数”的逆命题为真命题D.命题“若cos x=cos y,则x=y”的逆否命题为真命题解析:C中,原命题的逆命题为“若x,y互为相反数,则x+y=0”,是真命题.答案:C4.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②若一个四边形对角互补,则它内接于圆;③正方形的四条边相等;④圆内接四边形对角互补;⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有____________;互为否命题的有____________;互为逆否命题的有____________.解析:命题③可以改写为:若一个四边形是正方形,则它的四条边相等;命题④可以改写为:若一个四边形是圆内接四边形,则它的对角互补;命题⑤可以改写为:若一个四边形的对角不互补,则它不内接于圆.其中②和④,③和⑥互为逆命题;①和⑥,②和⑤互为否命题;①和③,④和⑤互为逆否命题.答案:②和④,③和⑥①和⑥,②和⑤①和③,④和⑤5.写出命题“如果|x-2|+(y-1)2=0,则x=2且y=1”的逆命题、否命题、逆否命题,并判断它们的真假.解:逆命题:如果x=2且y=1,则|x-2|+(y-1)2=0.真命题.否命题:如果|x-2|+(y-1)2≠0,则x≠2或y≠1.真命题.逆否命题:如果x≠2或y≠1,则|x-2|+(y-1)2≠0.真命题.一、选择题1.下列说法中正确的是()A.若一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“若a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.若一个命题的否命题为真,则它的逆命题为真解析:一个命题的否命题与逆命题互为逆否命题,同真同假.答案:D2.与命题“若实数a>1,则函数y=a x是增函数”互为逆否命题的是() A.若实数a<1,则函数y=a x不是增函数B.若实数a≤1,则函数y=a x不是增函数C.若函数y=a x是增函数,则实数a>1D.若函数y=a x不是增函数,则实数a≤1解析:写逆否命题否定并交换条件和结论即可.答案:D3.有以下命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B =B,则A⊆B”的逆否命题.其中真命题为()A.①②B.②③C.④D.①②③解析:①②③显然正确;若A∩B=B,则B⊆A,原命题为假命题,故其逆否命题也为假命题.答案:D4.原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是() A.真、真、真B.假、假、真C.真、真、假D.假、假、假解析:∵a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,∴原命题与其逆命题都是真命题,所以逆否命题与否命题也是真命题,故选A.答案:A5.下列有关命题的说法正确的是()A.“若x>1,则2x>1”的否命题为真命题B.“若cos β=1,则sin β=0”的逆命题是真命题C.“若平面向量a,b共线,则a,b方向相同”的逆否命题为假命题D.命题“若x>1,则x>a”的逆命题为真命题,则a>0解析:在A中,“若x≤1,则2x≤1”,是假命题,故A不正确;在B中,“若sin β=0,则cos β=1”,是假命题,故B不正确;在C中,原命题为假命题,所以其逆否命题也为假命题,故C正确;在D中,由x>a⇒x>1,则a>1,故D不正确.答案:C6.下列判断中不正确的是()A.命题“若A∩B=B,则A∪B=A”的逆否命题为真命题B .“矩形的两条对角线相等”的否命题为假命题C .“已知a ,b ,m ∈R ,若am 2<bm 2,则a <b ”的逆命题是真命题D .“若x ∈N *,则(x -1)2>0”是假命题解析:A 中原命题为真,故其逆否命题为真;B 中否命题为“若四边形不是矩形,则对角线不相等”为假命题;C 中逆命题为“已知a ,b ,m ∈R ,若a <b ,则am 2<bm 2”为假命题;D 中当x =1时,(x -1)2=0,是假命题.答案:C二、填空题7.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:当m =3,n =4时,m >-n ,但m 2<n 2,故原命题为假命题,所以其逆否命题为假命题;当m =-4,n =3时,m 2>n 2,但m <-n ,故逆命题为假命题,所以其否命题为假命题,所以假命题的个数是3.答案:38.设有两个命题:p :关于x 的不等式mx 2+1≥0的解集是R ;q :函数f (x )=log m x 是减函数(m >0,且m =0,m ≥1).若这两个命题中有且仅有一个是真命题,则实数m 的取值范围是________. 解析:若p 为真,则m ≥0,若q 为真,则0<m <1,若p 与q 中一真一假,则实数m 的取值范围是m =0或m ≥1.答案:[1,+∞)∪{0}9.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范围是____________.解析:由题意得⎩⎨⎧1+2-m ≤0,4+4-m >0,∴3≤m <8. 答案:[3,8)三、解答题10.判断命题“若m >0,则方程x 2+2x -3m =0有实数根”的逆否命题的真假.解:∵m >0,∴方程x2+2x-3m=0的判别式Δ=12m+4>0.∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.11.设M是一个命题,它的结论是q:x1或x2是方程x2+2x-3=0的两个根,M的逆否命题的结论是﹁p:x1+x2≠-2,或x1x2≠-3.(1)写出M;(2)写出M的逆命题、否命题、逆否命题.解:(1)设命题M表述为:若p,则q,那么由题意知,其中的结论q为:x1或x2是方程x2+2x-3=0的两个根.而条件p的否定形式﹁p为:x1+x2≠-2或x1x2≠-3,故﹁p的否定形式,即p为:x1+x2=-2且x1x2=-3.所以命题M为:若x1+x2=-2且x1x2=-3,则x1或x2是方程x2+2x-3=0的两个根.(2)M的逆命题为:若x1或x2是方程x2+2x-3=0的两个根,则x1+x2=-2且x1x2=-3.否命题为:若x1+x2≠-2或x1x2≠-3,则x1或x2不是方程x2+2x-3=0的两个根.逆否命题为:若x1或x2不是方程x2+2x-3=0的两个根,则x1+x2≠-2或x1x2≠-3.12.设p:m-2m-3≥2,q:关于x的不等式x2-6x+m2≤0的解集为空集,试确定m的值,使p与q同时成立.解:由m-2m-3≥2,得m-2m-3-2≥0,即m-4m-3≤0,∴3<m≤4,∴当3<m≤4时,p成立.∵关于x的不等式x2-6x+m2≤0的解集为空集.∴Δ=(-6)2-4m2<0,即m2>9,∴m<-3或m>3.∴当m<-3或m>3时,q成立.若p与q同时成立,则3<m≤4.即当3<m≤4时,使p与q同时成立.13.设△ABC的三边分别为a,b,c,在命题“若a2+b2≠c2,则△ABC不是直角三角形”及其逆命题中()A.原命题真,逆命题假B.原命题假,逆命题真C.两个命题都真D.两个命题都假解析:原命题“若a2+b2≠c2,则△ABC不是直角三角形”是假命题,而逆命题“若△ABC不是直角三角形,则a2+b2≠c2”是真命题.故选B.答案:B1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件目标导学1.理解充分条件、必要条件、充要条件的意义.2.会判断所给条件是充分条件、必要条件还是充要条件.3.会求或证明命题的充要条件.‖知识梳理‖1.推出关系一般地,命题“若p,则q”为真,可记作“p⇒q”;“若p,则q”为假,可记作p q.2.充分条件与必要条件一般地,如果p⇒q,那么称p是q的充分条件,同时称q是p的必要条件.3.充要条件如果p⇒q且q⇒p,那么称p是q的充分必要条件,简称p是q的充要条件,记作p⇔q.同时q也是p的充要条件.1.对充分条件,必要条件的理解若p⇒q,则说p是q的充分条件,所谓“充分”,即要使q成立,有p成立就足够了;q是p的必要条件,所谓“必要”,即q是p成立的必不可少的条件,。

高二数学人教A版选修1-1学案第一章1-11-1-1命题Word版含答案

高二数学人教A版选修1-1学案第一章1-11-1-1命题Word版含答案

温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word 文档返回原板块。

第一章 常用逻辑用语1.1 命题及其关系1.1.1 命 题导思 1.命题、真命题、假命题的概念分别是什么?2.在命题“若p ,则q”的形式中,p ,q 分别叫做命题的什么?1.命题(1)一般地,在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.(1)祈使句、疑问句、感叹句是不是命题?提示:根据命题的定义,祈使句、疑问句、感叹句不是命题.(2)命题一定能够判断真假吗?提示:命题必须是“用语言、符号或式子表达的,可以判断真假的陈述句”,故命题一定能够判断真假.2.命题的形式命题的一般形式为“若p,则q”,其中p叫做命题的条件,q叫做命题的结论.如何确定命题的条件和结论?提示:命题中已知的事项为条件,由已知推出的事项为结论.1.辨析记忆(对的打“√”,错的打“×”)(1)“作一个三角形”是命题.(×)提示:语句是祈使句,不是命题.(2)“一个数不是正数就是负数”是真命题.(×)提示:因为数0既不是正数也不是负数.(3)“在一个三角形中,大角所对的边大于小角所对的边”是真命题.(√)提示:在同一个三角形中,大边对大角,大角对大边,判断为真,是真命题.2.下列语句中不是命题的为()A.闪光的东西并非都是金子B.指数函数是增函数吗?C.空集是任何集合的子集D.3-5=-1【解析】选B.根据命题的定义:把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.ACD 选项均可以判断真假,且均为陈述句,故是命题,B 选项不是陈述句,故不是命题.3.命题“不等式x +1x -2 <0与(x +1)(x -2)<0同解”是________命题(填“真”“假”).【解析】不等式x +1x -2<0与(x +1)(x -2)<0的解集都是{x|-1<x <2},所以是真命题.答案:真4.(教材二次开发:练习改编)已知命题:弦的垂直平分线经过圆心并且平分弦所对的弧,若把上述命题改为“若p ,则q”的形式,则p 是________,q 是________.【解析】已知中的命题改为“若p ,则q”的形式为“若一条直线是弦的垂直平分线,则这条直线经过圆心且平分弦所对的弧”,p :一条直线是弦的垂直平分线;q :这条直线经过圆心且平分弦所对的弧.答案:一条直线是弦的垂直平分线 这条直线经过圆心且平分弦所对的弧类型一 命题的概念(数学抽象)1.(2021·洛阳高二检测)下列语句中,不能作为命题的是() A.地球上有四大洋B.-5∈ZC.π∉R D.|x+a|【解析】选D.对于A,能判断对错,是命题;对于B,能判断对错,是命题;对于C,能判断对错,是命题;对于D,不能判断对错,不是命题.2.下列语句中:①π3是有理数;②3x2≤5;③梯形是不是平面图形呢?④一个数的算术平方根一定是负数.是命题的序号有______.【解析】①“π3是有理数”是陈述句,并且它是假的,所以它是命题.②因为无法判断“3x2≤5”的真假,所以它不是命题.③“梯形是不是平面图形呢”是疑问句,所以它不是命题.④“一个数的算术平方根一定是负数”是陈述句,并且它是假的,所以它是命题.答案:①④判断语句是否是命题的策略(1)命题是可以判断真假的陈述句,因此,疑问句、祈使句、感叹句等都不是命题.(2)对于含变量的语句,要注意根据变量的取值范围,看能否判断其真假,若能,就是命题;若不能,就不是命题.提醒:若语句中含有变量,但变量没有给出范围,则该语句不是命题.【补偿训练】判断下列语句是否为命题,并说明理由.(1)若平面四边形的边都相等,则它是菱形;(2)任何集合都是它自己的子集.【解析】(1)是陈述句,能判断真假,是命题.(2)是陈述句,能判断真假,是命题.类型二命题真假的判断(逻辑推理)1.下列命题中,假命题的个数为()①2不是素数;②自然数不都大于0;③2 013能被3整除;④常数函数不是奇函数.A.1B.2C.3D.4【解析】选B.因为2是素数,所以①是假命题;由于0是自然数,不大于0,所以②是真命题;2 013能被3整除,所以③是真命题;常数函数f(x)=0,x∈R,既是奇函数又是偶函数,所以④是假命题.2.下列命题为真命题的是()A.若a x=a y(a>0,且a≠1),则x=yB.若x2=1,则x=1C.若sin x=sin y,则x=yD.若x<y,则x2<y2【解析】选A.根据指数函数的单调性,知A正确,即A是真命题;B中,由x2=1,得x=±1,所以B是假命题;C中,例如sin π3=sin 2π3,但π3≠2π3,所以C是假命题;D中,当x=-1,y=1时,结论不成立,所以D是假命题.3.判断命题的真假:不等式-3x2+x-6≤0的解集为空集.【解析】由题得不等式-3x2+x-6≤0可以化为3x2-x+6≥0,由于f(x)=3x2-x+6的抛物线开口向上,且Δ=1-72<0,所以3x2-x+6≥0的解集为R,所以命题是假命题.命题真假的判断方法(1)真命题的判断方法要判断一个命题是真命题,一般依据已学过的定义、公理、定理证明或根据已知的正确结论推证.(2)假命题的判断方法通过构造一个反例,否定命题的正确性,这是判断一个命题为假命题的常用方法.【补偿训练】判断下列语句是否为命题,并判断命题的真假.(1)一个正整数不是素数就是合数;(2)60x+9>4;(3)若x∈N,则x2+4x+7>0.【解析】(1)该语句是命题.由于整数1既不是素数,也不是合数,所以它是假命题.(2)该语句不是命题.这种含有未知数的语句中,不等式是否恒成立无法确定,即不能判断其真假,所以它不是命题.(3)该语句是命题.因为当x∈N时,x2+4x+7>0恒成立,所以该语句是命题,且是真命题.类型三命题的结构形式(数学抽象)1.命题“三角形中,大边对大角”,改成“若p,则q”的形式,则() A.三角形中,若一边较大,则其对的角也大,真命题B.三角形中,若一边较大,则其对的角也大,假命题C.若一个平面图形是三角形,则大边对大角,真命题D.若一个平面图形是三角形,则大边对大角,假命题【解析】选A.命题中“三角形中”是大前提,条件应该是“大边”,结论是“对大角”,所以正确选项为A.2.指出下列命题中的条件p和结论q,并判断各命题的真假:(1)若2b=a+c,则a,b,c成等差数列.(2)正角的正弦值是正数.(3)函数f(x)=2|x|的图象关于y 轴对称.(4)两个正数的算术平均数不小于它们的几何平均数.【解析】(1)命题的条件p 为“2b =a +c”,结论q 为“a ,b ,c 成等差数列”,是真命题.(2)命题的条件p 为“一个角是正角”,结论q 为“它的正弦值是正数”,由于sin π=0,所以是假命题.(3)命题的条件p 为“f(x)=2|x|”,结论q 为“该函数的图象关于y 轴对称”.由于f(-x)=f(x)=2|x|,所以f(x)=2|x|是偶函数,所以函数的图象关于y 轴对称,是真命题.(4)命题的条件p 为“两个正数”,结论q 为“它们的算术平均数不小于它们的几何平均数”.基本不等式a +b 2 ≥ab (a>0,b>0)一定成立,而a +b 2 表示两个正数的算术平均数,ab 表示两个正数的几何平均数,所以此命题是真命题.将命题改写为“若p ,则q”形式的方法及原则【补偿训练】将下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)6是12和18的公约数;(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;(3)平行四边形的对角线互相平分;(4)已知x,y为非零自然数,当y-x=2时,y=4,x=2.【解析】(1)若一个数是6,则它是12和18的公约数,是真命题.(2)若a>-1,则方程ax2+2x-1=0有两个不等实根,是假命题.(3)若一个四边形是平行四边形,则它的对角线互相平分,是真命题.(4)已知x,y为非零自然数,若y-x=2,则y=4,x=2,是假命题.1.(2021·安阳高二检测)有下列陈述句:①2+4=7 ;②两个全等三角形的面积相等;③x>1.其中是命题的个数为()A.0 B.1 C.2 D.3【解析】选C.对①②,都是可以判断真假的陈述句,故①②是命题,对③,x>1不能判断真假,故③不是命题.2.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“标准大气压下,100 ℃时水沸腾”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题【解析】选D.对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.D中方程有实根的条件是Δ=42-4a≥0,即a≤4,故是假命题.3.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【解析】选C.若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交,选项A错;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,则经过这三个点的平面与这个平面平行或相交,选项B不正确;如图,平面α∩β=b,a∥α,a∥β,过直线a作平面ε∩α=c,过直线a 作平面γ∩β=d,因为a∥α,所以a∥c,因为a∥β,所以a∥d,所以d∥c,因为c⊂α,d⊄α,所以d∥α,又因为d⊂β,所以d∥b,所以a∥b,选项C正确;若两个平面都垂直于第三个平面,则这两个平面可平行、可相交,选项D不正确.4.(教材二次开发:练习改编)把命题“末位数字是4的整数一定能被2整除”改写成“若p,则q”的形式为__________________________________________.答案:若一个整数的末位数字是4,则它一定能被2整除5.将下列命题改写为“若p,则q”的形式,并判断真假.(1)偶数能被2整除;(2)奇函数的图象关于原点对称.【解析】(1)偶数能被2整除.改为:若一个数是偶数,则这个数能被2整除;(2)奇函数的图象关于原点对称.改为:若一个函数是奇函数,则这个函数的图象关于原点对称.关闭Word文档返回原板块11。

人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_3

人教A版高中数学选修1-1《一章 常用逻辑用语  1.1 命题及其关系 1.1.3 四种命题间的相互关系》优质课教案_3

1.1.3四种命题间的相互关系学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题2.认识四种命题之间的关系以及真假性之间的联系.3.会利用命题的等价性解决问题.一、知识点梳理思考给出以下四个命题:(1)当x=2时,x2-3x+2=0;(2)若x2-3x+2=0,则x=2;(3)若x≠2,则x2-3x+2≠0;(4)若x2-3x+2≠0,则x≠2.你能说出命题(1)与其他三个命题的条件与结论有什么关系吗?答案命题(1)的条件和结论与命题(2)的条件和结论恰好互换了.命题(1)的条件与结论恰好是命题(3)条件的否定和结论的否定.命题(1)的条件和结论恰好是命题(4)结论的否定和条件的否定.一般地,对于两个命题,如果一个命题的条件与结论分别是另一个命题的结论和条件,那么把这两个命题叫做互逆命题.如果是另一个命题条件的否定和结论的否定,那么把这两个命题叫做互否命题.如果是另一个命题结论的否定和条件的否定,那么把这两个命题叫做互为逆否命题.把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.知识点二四种命题的关系思考1为了书写方便常把p与q的否定分别记作“綈p”和“綈q”,如果原命题是“若p,则q”,那么它的逆命题、否命题、逆否命题该如何表示?答案逆命题:若q,则p.否命题:若綈p,则綈q.逆否命题:若綈q,则綈p.思考2原命题的否命题与原命题的逆否命题之间是什么关系?原命题的逆命题与其逆否命题之间是什么关系?原命题的逆命题与其否命题呢?答案互逆、互否、互为逆否.四种命题的相互关系知识点三四种命题的真假关系思考1知识点一的“思考1”中四个命题的真假性是怎样的?答案(1)真命题,(2)假命题,(3)假命题,(4)真命题.思考2如果原命题是真命题,它的逆命题是真命题吗?它的否命题呢?它的逆否命题呢?答案原命题为真,其逆命题不一定为真,其否命题不一定为真,其逆否命题一定是真命题.(1)在原命题的逆命题、否命题、逆否命题中,一定与原命题真假性相同的是逆否命题.(2)两个命题互为逆命题或互为否命题时,它们的真假性没有关系.(3)一般地,四种命题的真假性有且仅有下面四种情况:(4).二、典型例题类型一原命题的其他三种命题例1写出以下命题的逆命题、否命题和逆否命题.(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于平面;(2)如果x>10,那么x>0;(3)当x=2时,x2+x-6=0.解(1)逆命题:如果一条直线垂直于平面,那么该直线垂直于平面内的两条相交直线;否命题:如果一条直线不垂直于平面内的两条相交直线,那么该直线不垂直于平面;逆否命题:如果一条直线不垂直于平面,那么该直线不垂直于平面内的两条相交直线. (2)逆命题:如果x>0,那么x>10;否命题:如果x≤10,那么x≤0;逆否命题:如果x≤0,那么x≤10.(3)逆命题:如果x2+x-6=0,那么x=2;否命题:如果x≠2,那么x2+x-6≠0;逆否命题:如果x2+x-6≠0,那么x≠2.反思与感悟由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其他三种命题的定义,确定所写命题的条件和结论.跟踪训练1分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)实数的平方是非负数;(2)若x、y都是奇数,则x+y是偶数.解(1)原命题是真命题.逆命题:若一个数的平方是非负数,则这个数是实数.真命题.否命题:若一个数不是实数,则它的平方不是非负数.真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.(2)原命题是真命题.逆命题:若x+y是偶数,则x、y都是奇数,是假命题;否命题:若x、y不都是奇数,则x+y不是偶数,是假命题;逆否命题:若x+y不是偶数,则x、y不都是奇数,是真命题.类型二四种命题的关系例2(1)命题“若函数y=f(x)是幂函数,则它的图象不过第四象限”与命题“若函数y=f(x)不是幂函数,则它的图象过第四象限”的关系是________.(2) 命题“等底等高的两个三角形是全等三角形”与命题“全等三角形是等底等高的两个三角形”的关系是______________.(3)命题“若a>b,则c-2a<c-2b”与命题“若c-2a≥c-2b,则a≤b”的关系是________________.(4)若命题p的否命题是q,命题q的逆命题是r,则p的逆命题是r的________(填“逆命题”“否命题”或“逆否命题”).答案(1)互否命题(2)互逆命题(3)互为逆否命题(4)否命题解析(1)已知两命题的条件和结论分别否定,故它们是互否命题.(2)已知两命题的条件和结论正好互换,故它们是互逆命题.(3)已知两命题的条件和结论分别否定且正好交换,故它们是互为逆否命题.(4)由四种命题的关系可知,命题p的逆命题是r的否命题.反思与感悟四种命题关系判断的两个要领(1)在判断四种命题之间的关系时,首先要分清命题的条件和结论,再比较每个命题的条件和结论之间的关系.(2)原命题与逆否命题互为逆否命题,逆命题与否命题也互为逆否命题.跟踪训练2有下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“同位角相等”的逆命题.其中真命题的个数是________.答案 1解析①“若x+y≠0,则x,y不是相反数”,是真命题.②“若a2≤b2,则a≤b”,取a=0,b=-1,a2≤b2,但a>b,故是假命题.③“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,故是假命题.④“相等的角是同位角”是假命题.类型三等价命题的应用例3判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.解方法一原命题的逆否命题:已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断如下:因为抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,若a<1,则4a-7<0.即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.故原命题的逆否命题为真.方法二先判断原命题的真假.因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,所以Δ=(2a+1)2-4(a2+2)≥0,即4a-7≥0,所以a≥1.所以原命题成立.又因为原命题与其逆否命题等价,所以逆否命题为真.反思与感悟由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.跟踪训练3证明:若a2-4b2-2a+1≠0,则a≠2b+1.证明 “若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若a =2b +1,则a 2-4b 2-2a +1=0”. ∵a =2b +1,∴a 2-4b 2-2a +1=(2b +1)2-4b 2-2(2b +1)+1 =4b 2+1+4b -4b 2-4b -2+1 =0.∴命题“若a =2b +1,则a 2-4b 2-2a +1=0”为真命题. 由原命题与逆否命题具有相同的真假性可知,结论正确. 三、课堂检测1.命题“实数的平方是非负数”的逆命题是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第课时命题
[核心必知]
.预习教材,问题导入根据以下提纲,预习教材~,回答下列问题.
观察教材“思考”中的个语句.
()这个语句都是陈述句吗?
提示
是.

()能否判断这个语句的真假性?

提示


.归纳总结,核心必记
命题及相关概念命题“若,则”.其中叫做命题的条件,叫做,命题的结论)) [问题思考]
()“>”是命题吗?

提示
不是.
()陈述句一定是命题吗?
提示
不一定.
:()命题“当=时,-+=”的条件和结论各是什么?
提示

条件:=;结论:-+=

()“若则”形式的命题一定是真命题吗?
提示:
不一定.()数学中的定义、公理、定理、推论是真命题吗?
提示:
是.
[课前反思]
()命题的定义是:

()真、假命题的定义是:

()命题的条件和结论的定义是:

[思考]一个语句是命题应具备哪两个要素?

提示
()
是陈述句;
可以判断真假.
()
讲一讲
.判断下列语句中,哪些是命题?(链接教材-例)
()函数()=在定义域上是减函数;
()一个整数不是质数就是合数;
()->;
()在平面上作一个半径为的圆;
()若α=α,则α=°;
()是一个大数;
()垂直于同一个平面的两条直线一定平行吗?
()若∈,则+>.
[尝试解答]()是陈述句,且能判断真假,是命题.
()是陈述句,且能判断真假,是命题.
()当∈时,-与的大小关系不确定,无法判断其真假,不是命题.
()不是陈述句,不是命题.
()是陈述句,且能判断真假,是命题.()是陈述句,但是“大数”的标准不确定,所以无法判断其真假,不是命题.
()不是陈述句,不是命题.
()是陈述句,且能判断真假,是命题.
()一个语句是命题应具备两个条件:一是陈述句;二是能够判断真假.一般来说,疑问
句、祈使句、感叹句等都不是命题.。

相关文档
最新文档