高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)
一、高考物理精讲专题动量守恒定律
1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的
1
2
反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2
10m/s g =。求:
(1)碰撞后瞬间,小球受到的拉力是多大?
(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】
解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:
22
1111011=22
m gL m v m v μ--
解之可得:1=4m/s v 因为1v v <,说明假设合理
滑块与小球碰撞,由动量守恒定律:21111221
=+2
m v m v m v - 解之得:2=2m/s v
碰后,对小球,根据牛顿第二定律:2
22
2m v F m g l
-=
小球受到的拉力:42N F =
(2)设滑块与小球碰撞前的运动时间为1t ,则()0111
2
L v v t =+ 解之得:11s t =
在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=
设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅
⎪⎝⎭
解之得:22s t =
滑块向左运动最大位移:121122m x v t ⎛⎫
=
⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度
11
2
v <v , 说明滑块与小球碰后在传送带上的总时间为22t
在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程
22212X vt m ∆==
因此,整个过程中,因摩擦而产生的内能是
()112Q m g x x μ=∆+∆=13.5J
2.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。已知物块B 与木板间的动摩擦因数
=0.20,重力加速度g=10m/s 2,求:
(1) 物块A 沿斜槽滑下与物块B 碰撞前瞬间的速度大小; (2) 滑动摩擦力对物块B 做的功;
(3) 物块A 与物块B 碰撞过程中损失的机械能。 【答案】(1)v 0=4.0m/s (2)W=-1.6J (3)E=0.80J
【解析】试题分析: ①设物块A 滑到斜面底端与物块B 碰撞前时的速度大小为v 0,根据机
械能守恒定律有m 1gh =
12
m 12
0v (1分)v 02gh ,解得:v 0=4.0 m/s(1分) ②设物块B 受到的滑动摩擦力为f ,摩擦力做功为W ,则f =μm 2g(1分) W =-μm 2gx 解得:W =-1.6 J(1分)
③设物块A 与物块B 碰撞后的速度为v 1,物块B 受到碰撞后的速度为v ,碰撞损失的机械能为E ,根据动能定理有-μm 2gx =0-1
2
m 2v 2 解得:v =4.0 m/s(1分)
根据动量守恒定律m 1v 0=m 1v 1+m 2v(1分) 解得:v 1=2.0 m/s(1分)
能量守恒1
2
m12
v=
1
2
m12
1
v+
1
2
m2v2+E(1分)
解得:E=0.80 J(1分)
考点:考查了机械能守恒,动量守恒定律
3.如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t=5.0s后,测得两球相距s=4.5m,则刚分离时,a球、b球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.
【答案】①0.7m/s, -0.2m/s ②0.27J
【解析】
试题分析:①根据已知,由动量守恒定律得
联立得
②由能量守恒得
代入数据得
考点:考查了动量守恒,能量守恒定律的应用
【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题
4.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:
①小球脱离弹簧时的速度大小;
②在整个过程中,小车移动的距离。
【答案】(1)3m/s (2)0.1m
【解析】