榆树市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

榆树市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知函数y=2sinx 的定义域为[a ,b],值域为[﹣2,1],则b ﹣a 的值不可能是( ) A

B .π
C .2π
D

2.
函数的定义域为( )
A .{x|1<x ≤4}
B .{x|1<x ≤4,且x ≠2}
C .{x|1≤x ≤4,且x ≠2}
D .{x|x ≥4}
3. 若,x y ∈R ,且1,
,230.
x y x x y ≥⎧⎪
≥⎨⎪-+≥⎩
则y z x =的最小值等于( )
A .3
B .2
C .1
D .12
4. 已知复数z 满足zi=1﹣i ,(i 为虚数单位),则|z|=( ) A .1
B .2
C .3
D

5. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为( )
A
. B .18 C
. D

6. 设x ,y
满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a
的值为( ) A .2
B

C

D .3
7. 下面各组函数中为相同函数的是( )
A .f (x )
=
,g (x )=x ﹣1
B .f (x )
=
,g (x )
=
C .f (x )=ln e x 与g (x )=e lnx
D .f (x )=(x ﹣1)0与g (x )
=
8.
10y -+=的倾斜角为( )
A .150
B .120
C .
60 D .
30 9. 函数f (x )=Asin (ωx+φ)(A >0,ω>0
,)的部分图象如图所示,则函数y=f (x )对应的
解析式为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .
B .
C .
D .
10.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )
A .2个
B .3 个
C .4 个
D .8个
11.已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )
A .7
B .14
C .28
D .56
12.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
二、填空题
13.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .
14.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = .
15.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则
圆的方程为 .
16.若函数f (x )=3sinx ﹣4cosx ,则f ′(
)= .
17.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .
18.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线x
C y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.
三、解答题
19.(本小题满分12分)
某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生 数有21人.
(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占
1
3
)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.
物理
94 91 108 96 104
101 106
已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?
附:对于一组数据
11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^
1
2
1
()()
()
n
i
i
i n
i
i u u v v u u β==--=
-∑∑,^^
a v u β=-.
20.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F . (1)求弦AB 的中点M 的轨迹方程
(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.
21.设函数f (x )=lnx ﹣ax+
﹣1.
(Ⅰ)当a=1时,求曲线f (x )在x=1处的切线方程;
(Ⅱ)当a=时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
22.设函数f(x)=e mx+x2﹣mx.
(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;
(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.
23.(本小题满分12分)
在△ABC中,∠A,∠B,∠C所对的边分别是a、b、c,不等式x2cos C+4x sin C+6≥0对一切实数x恒
成立.
(1)求cos C的取值范围;
(2)当∠C取最大值,且△ABC的周长为6时,求△ABC面积的最大值,并指出面积取最大值时△ABC的形状.
【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.
24.在中,,,.
(1)求的值;
(2)求的值。

榆树市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:函数y=2sinx在R上有﹣2≤y≤2
函数的周期T=2π
值域[﹣2,1]含最小值不含最大值,故定义域[a,b]小于一个周期
b﹣a<2π
故选C
【点评】本题考查了正弦函数的图象及利用图象求函数的值域,解题的关键是熟悉三角函数y=2sinx的值域[﹣2,2],而在区间[a,b]上的值域[﹣2,1],可得函数的定义域与周期的关系,从而可求结果.
2.【答案】B
【解析】解:要使函数有意义,只须,
即,
解得1<x≤4且x≠2,
∴函数f(x)的定义域为{x|1<x≤4且x≠2}.
故选B
3.【答案】B
4.【答案】D
【解析】解:∵复数z满足zi=1﹣i,(i为虚数单位),
∴z==﹣i﹣1,
∴|z|==.
故选:D.
【点评】本题考查了复数的化简与运算问题,是基础题目.
5.【答案】D
【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:
故该几何体的表面积为:3×22
+3×(
)+=,
故选:D .
6. 【答案】B
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由z=ax ﹣y (a >0)得y=ax ﹣z , ∵a >0,∴目标函数的斜率k=a >0. 平移直线y=ax ﹣z ,
由图象可知当直线y=ax ﹣z 和直线2x ﹣y+2=0平行时,当直线经过B 时,此时目标函数取得最大值时最优解只有一个,不满足条件.
当直线y=ax ﹣z 和直线x ﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.
此时a=. 故选:B .
7. 【答案】D
【解析】解:对于A :f (x )=|x ﹣1|,g (x )=x ﹣1,表达式不同,不是相同函数;
对于B :f (x )的定义域是:{x|x ≥1或x ≤﹣1},g (x )的定义域是{x}x ≥1},定义域不同,不是相同函数;
对于C :f (x )的定义域是R ,g (x )的定义域是{x|x >0},定义域不同,不是相同函数; 对于D :f (x )=1,g (x )=1,定义域都是{x|x ≠1},是相同函数;
故选:D .
【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题. 8. 【答案】C 【解析】
10y -+=,可得直线的斜率为k =tan 60αα==,故选C.1 考点:直线的斜率与倾斜角.
9.【答案】A
【解析】解:由函数的图象可得A=1,=•=﹣,
解得ω=2,
再把点(,1)代入函数的解析式可得sin(2×+φ)=1,
结合,可得φ=,
故有,
故选:A.
10.【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},
∴集合S=A∩B={1,3},
则集合S的子集有22=4个,
故选:C.
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.
11.【答案】C
【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.
∴函数f(x)关于直线x=1对称,
∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),
∴a6+a23=2.
则{a n}的前28项之和S28==14(a6+a23)=28.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.
12.【答案】B
【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;
对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,
且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,
故命题B正确.
对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;
对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.
故选B.
【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.
二、填空题
13.【答案】.
【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),
故斜率为=,
∴由斜截式可得直线l的方程为,
故答案为.
【点评】本题考查直线的斜率公式,直线方程的斜截式.
14.【答案】5
【解析】
试题分析:'2'
=++∴-=∴=.
()323,(3)0,5
f x x ax f a
考点:导数与极值.
15.【答案】(x﹣1)2+(y+1)2=5.
【解析】解:设所求圆的圆心为(a,b),半径为r,
∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,
∴圆心(a,b)在直线x+y=0上,
∴a+b=0,①
且(2﹣a)2+(1﹣b)2=r2;②
又直线x﹣y+1=0截圆所得的弦长为,
且圆心(a,b)到直线x﹣y+1=0的距离为d==,
根据垂径定理得:r2﹣d2=,
即r2﹣()2=③;
由方程①②③组成方程组,解得;
∴所求圆的方程为(x﹣1)2+(y+1)2=5.
故答案为:(x﹣1)2+(y+1)2=5.
16.【答案】4.
【解析】解:∵f′(x)=3cosx+4sinx,
∴f′()=3cos+4sin=4.
故答案为:4.
【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.
π
17.【答案】
4
【解析】
考点:正弦定理.
【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用
180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒
角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出
现.
18.【答案】-4-ln2
【解析】
点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,
再根据点在线上(或点在曲线上),就可以求出对应的参数值。

三、解答题
19.【答案】(1)60N =,6n =;(2)8
15
P =;(3)115. 【解析】

题解析:
(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21
600.35
N =
=, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.
(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A
A ,24(,)A A ,21(,)A
B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.
其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,
31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为8
15
P =
. (3)1217178812
1001007
x --+-++=+
=;
6984416
1001007
y --+-+++=+=;
由于与y 之间具有线性相关关系,根据回归系数公式得到
^497
0.5994
b ==,^1000.510050a =-⨯=,
∴线性回归方程为0.550y x =+,
∴当130x =时,115y =.1
考点:1.古典概型;2.频率分布直方图;3.线性回归方程.
【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同. 20.【答案】
【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,
两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,
∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,
∴=,
∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),
∴,
化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣
(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)
由已知OA⊥OB得:x1x2+y1y2=0,
∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①

所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②
联立①②得:k2+1=0无解
所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
21.【答案】
【解析】解:函数f(x)的定义域为(0,+∞),(2分)
(Ⅰ)当a=1时,f(x)=lnx﹣x﹣1,∴f(1)=﹣2,,
∴f′(1)=0,∴f(x)在x=1处的切线方程为y=﹣2(5分)
(Ⅱ)=(6分)
令f′(x)<0,可得0<x<1,或x>2;令f'(x)>0,可得1<x<2
故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).
(Ⅲ)当时,由(Ⅱ)可知函数f(x)在(1,2)上为增函数,
∴函数f(x)在[1,2]上的最小值为f(1)=(9分)
若对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,
e]上的最小值(*)(10分)
又,x∈[0,1]
①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾
②当0≤b≤1时,,由及0≤b≤1得,
③当b>1时,g(x)在[0,1]上为减函数,,
此时b>1(11分)
综上,b的取值范围是(12分)
【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.
22.【答案】
【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.
若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.
所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是

设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.
当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.
当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;
当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.
当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.
综上,m的取值范围是
23.【答案】
【解析】
24.【答案】
【解析】
解:(Ⅰ)在中,根据正弦定理,,于是
(Ⅱ)在中,根据余弦定理,得
于是
所以。

相关文档
最新文档