八年级数学上册5.2解二元一次方程第1课时代入法教案1(新版)北师大版

合集下载

消元——解二元一次方程组 第1课时《代入法 》教案(优质)

消元——解二元一次方程组 第1课时《代入法 》教案(优质)

8.2 消元——解二元一次方程组第1课时 代入法会用代入法解二元一次方程组.(重点)一、情境导入《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?我们可以设树上有x 只鸽子,地上有y 只鸽子,得到方程组⎩⎪⎨⎪⎧x +y =3(y -1),x -1=y +1.可是这个方程组怎么解呢?有几种解法?二、合作探究探究点:用代入法解二元一次方程组【类型一】 用代入法解二元一次方程组用代入法解下列方程组:(1)⎩⎪⎨⎪⎧2x +3y =-19,①x +5y =1;②(2)⎩⎪⎨⎪⎧2x -3y =1,①y +14=x +23.②解析:对于方程组(1),比较两个方程系数的特点可知应将方程②变形为x =1-5y ,然后代入①求解;对于方程组(2),应将方程组变形为⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5,④观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x =3y +12. 解:(1)由②,得x =1-5y .③把③代入①,得2(1-5y )+3y =-19,2-10y +3y =-19,-7y =-21,y =3.把y =3代入③,得x =-14.所以原方程组的解是⎩⎪⎨⎪⎧x =-14,y =3; (2)将原方程组整理,得⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5.④由③,得x =3y +12.⑤ 把⑤代入④,得2(3y +1)-3y =-5,3y =-7,y =-73. 把y =-73代入⑤,得x =-3. 所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-73. 方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比较简单的或代入后容易消元的方程进行变形.【类型二】 整体代入法解二元一次方程组解方程组:⎩⎪⎨⎪⎧x +13=2y ,①2(x +1)-y =11.②解析:把(x +1)看作一个整体代入求解.解:由①,得x +1=6y .把x +1=6y 代入②,得2×6y -y =11.解得y =1.把y =1代入①,得x +13=2×1,x =5.所以原方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 方法总结:当所给的方程组比较复杂时,应先化简,但若两方程中含有未知数的部分相等时,可把这一部分看作一个整体求解.【类型三】 已知方程组的解,用代入法求待定系数的值已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b 的值为( ) A .1 B .-1 C .2 D .3解析:把解代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3,所以a -b =-1.故选B. 方法总结:解这类题就是根据方程组解的定义求,将解代入方程组,得到关于字母系数的方程组,解方程组即可.三、板书设计解二元一,次方程组)⎩⎪⎨⎪⎧基本思路是“消元”代入法解二元一次方程组的一般步骤回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知基础,探究显得十分自然流畅.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力。

八年级数学上册第五章二元一次方程组求解二元一次方程组1用代入消元法解二元一次方程组教案新版北师大版

八年级数学上册第五章二元一次方程组求解二元一次方程组1用代入消元法解二元一次方程组教案新版北师大版

5.2.1 用代入消元法解二元一次方程组一、教学目标知识与技能:会用代入消元法解二元一次方程组过程与方法:了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”情感态度与价值观:利用小组合作探讨学习,使学生领会朴素的辩证唯物主义思想二、教学重点用代入法解二元一次方程组,基本方法是消元化二元为一元.三、教学难点用代入法解二元一次方程组的基本思想是化归——化陌生为熟悉.四、教学过程(一)课前探究预习教材,探究如何用代入消元法解二元一次方程。

(二)课中展示x-y=2 ①x+1=2(y-1) ②二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:由①得y=x-2由于方程组相同的字母表示同一个未知数,所以方程②中的y也等于x-2,可以用x-2代替方程②中的y.这样就得到大家会解的一元一次方程了.(三)应用新知解方程组 3x+ 2y=8 ①x=23y②解:将②代入①,得3(y+3)+2y = 143y+9+2y=145y =5y=1将y=1代入②,得x=4所以原方程组的解是 x=4y=1(四)小结梳理1、解二元一次方程组的思路是消元,把二元变为一元2、解题步骤概括为三步即:①变、②代、③解、3、方程组的解的表示方法,应用大括号把一对未知数的值连在一起,表示同时成立,不要写成x=?y=?4、由一个方程变形得到的一个含有一个未知数的代数式必须代入另一个方程中去,否则会出现一个恒等式。

(五)后测达标完成教材随堂练习(六)拓展延伸。

代入法解二元一次方程教学设计

代入法解二元一次方程教学设计

8.2第一课时用代入消元法解二元一次方程组教学目标:1、知识与技能:(1)会用代入法解二元一次方程组。

(2)能体会“代入法”解二元一次方程组的基本思路。

2、过程与方法:(1)通过代入消元,使学生初步了解把“未知”转化为“已知”,和把复杂问题转化为简单问题的思想方法。

(2)培养学生的分析能力,能迅速在所给的二元一次方程组中,选择一个系数较为简单的方程进行变形。

3、情感与态度:(1)训练学生的运算技巧,养成检验的习惯。

(2)通过本节课的学习,渗透化归的数学思想。

重点:用代入消元法解二元一次方程组难点:探究如何用代入法将“二元”化为“一元”教学方式:常规课教学过程:一、问题情境导入(课件展示问题情境)同学们,上节课我们学习什么是二元一次方程组。

这节课,我们将对二元一次方程组进行更加深入的学习,现在我们看这样一个题目•例、某校现有校舍20000m2 ,计划拆除部分旧校舍,改建新校舍,使校舍总面积增加30﹪.若建造新校舍的面积为被拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,建造多少新校舍?(单位:m2 )•根据题意列方程得:•同学们,我们看看,如何来解这个方程组呢?(生答):能(师总结)同学们,通过这种等量的替换,我们把二元方程变成了一个一元方程,而一元一次方程,是我们能够解决的,这是不是给我们提供了一种解二元一次方程组的方法呢。

请同学们看下面的这道例题。

二、新课讲解例、探索:(用同样的思想方法你能否解下列方程?)解:由①得:y=7-x ③将③代入②,得3x+(7-x)=17即x=5将x=5代入③,得Y=2引导学生用第2个方程对第一个方程进行替换,从而达到消元的目标。

(师引导生板书总结):我们解二元一次方程组的基本思路是把“含有两个未知数的方程”转化为“只含有一个未知数”——“消元”。

(师板书总结):消元思想:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

(师引导生板书总结)消元基本步骤:将含一个未知数表示另一个未知数的代数式,代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。

北师大版数学八年级上册5.2.1解二元一次方程组代入消元法教学设计

北师大版数学八年级上册5.2.1解二元一次方程组代入消元法教学设计
3.教师巡回指导,观察学生的讨论情况,给予适当的提示和指导。
4.各小组展示解题成果,分享代入消元法的应用经验。其他小组认真倾听,互相学习,共同提高。
(四)课堂练习,500字
1.教师出示几道不同难度的课堂练习题,要求学生在规定时间内独立完成。
2.学生认真审题,运用代入消元法解答习题,教师巡回检查学生的解题过程,及时发现问题并进行个别辅导。
5.合作交流,拓展思维
组织学生进行小组讨论,分享解题心得和技巧。通过合作交流,培养学生的团队意识和沟通能力,拓展学生的思维。
6.总结反馈,查漏补缺
在课堂尾声,教师带领学生总结本节课所学内容,强调重点和难点。同时,鼓励学生提出疑问,及时解答,帮助学生查漏补缺。
7.课后作业,巩固提高
布置适量的课后作业,让学生在课后对所学知识进行巩固。作业难度要适中,既能巩固基础知识,又能提高学生的解题能力。
3.教师选取部分学生的答案进行展示,组织学生共同分析解题思路和答案的正确性。
4.针对学生在练习过程中出现的问题,教师进行总结,强调注意事项,提高学生的解题能力。
(五)总结归纳,500字
1.教师带领学生回顾本节课所学内容,总结代入消元法的概念、原理、操作步骤和应用技巧。
2.学生分享自己在学习代入消元法过程中的收获和感悟,提出疑问,教师及时解答。
3.讲解示范,突破难点
针对学生在探究过程中遇到的问题,教师进行讲解和示范,帮助学生掌握代入消元法的适用条件和计算方法。同时,强调注意事项,降低学生在解题过程中的错误率。
4.练习巩固,提高能力
设计不同难度的习题,让学生独立完成。在练习过程中,教师巡回指导,针对学生的问题进行个别辅导。通过练习,使学生熟练掌握代入消元法,提高解题能力。
2.作业难度分层,以满足不同层次学生的需求。

北师大版八年级数学上册第五章 二元一次方程组 求解二元一次方程组(第1课时)

北师大版八年级数学上册第五章 二元一次方程组 求解二元一次方程组(第1课时)
北师大版 数学 八年级 上册
5.2 求解二元一次方程组 (第1课时)
导入新知
篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,
负1场得1分.某队在10场比赛中得到16分,那么这个队胜负场
数分别是多少? (1)如果设胜的场数是x ,则负的场数是10-x,
可得一元一次方程 2x 10 x 16 ;
2
解得:x=20000
把x=20000代入③得:y=50000
所以
x 20000
y
50000
探究新知 方法点拨
用代入消元法解二元一次方程组时,尽量选取未知 数系数的绝对值是1的方程进行变形;若未知数系数的绝 对值都不是1,则选取系数的绝对值较小的方程变形.
巩固练习
变式训练
x y 2

解方程组:2(x 1) y 1 ②
连接中考
解方程组: xx
y 1 3y 9
解:
x x
y 1 3y 9
①, ②
由①得,x=y+1 ③ ,
把③代入②得,y+1+3y=9,解得y=2,
把y=2代入x=y+1得x=3.
故原方程组的解为
x 3
y
2

课堂检测
基础巩固题
1.二元一次方程组
x y 4, x y 2
的解是( D )
解:由② ,得 x=13 - 4y ③
还能直接代入吗? 变形
将③代入① ,得 2(13 - 4y)+3y=16 26 –8y +3y =16,
代入求解
-5y= -10, y=2.
再代求解
将y=2代入③ ,得x=5. x=5
所以原方程组的解是 y=2

北师大版八年级数学上册5.2.2求解二元一次方程教学设计

北师大版八年级数学上册5.2.2求解二元一次方程教学设计
三、教学重难点和教学设想
(一)教学重点
1.理解二元一次方程组的概念,掌握代入法、消元法求解二元一次方程组。
2.能够根据实际问题列出二元一次方程组,并运用所学方法解决实际问题。
3.理解二元一次方程组的几何意义,培养学生的空间想象力和直观思维能力。
(二)教学难点
1.对二元一次方程组的求解方法,尤其是消元法的掌握。
1.强化学生对二元一次方程组概念的理解,通过典型例题引导学生将实际问题转化为数学方程。
2.注重培养学生的解题思路,让学生在掌握代入法、消元法的基础上,学会灵活运用。
3.针对学生团队合作能力的不足,教学中应多设计小组讨论、合作探究的环节,提高学生的团队协作能力。
4.关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导和帮助,使全体学生都能在原有基础上得到提高。
五、作业布置
为了使学生能够更好地巩固本节课所学的知识,特布置以下作业:
1.必做题:
(1)根据课堂上讲解的代入法、消元法,求解以下二元一次方程组:
① 2x + 3y = 8,x - y = 1
② 5x - 4y = 3,3x + 2y = 19
③ 4x + 7y = 25,6x - 5y = 1
(2)运用二元一次方程组解决实际问题,例如:某商店举行促销活动,购买A商品可享受8折优惠,购买B商品满100元减20元。若小明购买A商品3件和B商品2件,总共花费360元,请问A商品和B商品的原价分别是多少?
7.跟踪辅导,关注个体差异
课后对学生的学习情况进行跟踪辅导,关注个体差异,针对学生的薄弱环节给予个性化的指导,使全体学生都能在原有基础上得到提高。
四、教学内容与过程
(一)导入新课
在这一阶段,我将通过一个生活情境的引入,激发学生对二元一次方程组的兴趣。我会讲述一个关于两个好朋友小明和小红去购物的问题:他们一起去商场,小明看中了一件衣服,小红看中了一个玩具。他们决定用自己的零花钱合买,但总共只有一定数量的钱。如果衣服的价格是x元,玩具的价格是y元,他们总共带了z元,那么如何找出x和y的值,使得他们正好用完所有的钱?

5.2 求解二元一次方程组 第1课时 代入消元法 同步练习北师大版八年级数学上册

5.2 求解二元一次方程组 第1课时  代入消元法 同步练习北师大版八年级数学上册

5.2 求解二元一次方程组第1课时 代入消元法基础题目:1.用代入消元法解方程组 {2x +y =5,3x +4y =2 时,变形不正确的是 ( ) A.由②得 x =2−4y 3 B.由②得 y =2−3x 4 C.由①得 x =y+52 D.由①得 y=5-2x2.我们在解二元一次方程组 {2x +y =5,x =2y时,可将第二个方程代入第一个方程消去x 得 4y+y=5,从而求解,这种解法体现的数学思想是( )A.转化思想B.分类讨论思想C.数形结合思想D.函数思想3. 方程组 {2x +y =6,x −y =3的解是( ) A.{x =3,y =0 B.{x =1,y =4 C.{x =5,y =2D.{x =7,y =−4 4.若 a b =25,且2a+b=18,则a 的值为 .5. 解方程组: {x −2y =0,2x +3y =21.6.下面是小红同学解二元一次方程组的过程,请认真阅读并完成相应任务.解方程组: {4x +3y =1,2x −y =−7.解:由②,得y= .③ (第一步)将③代入①,解得x= . (第二步)将x 的值代入③,得y= .(第三步)所以原方程组的解为 . (第四步)任务:(1)将上面的解题过程补充完整;(2)本题解方程组的方法为 .综合应用题7.由方程组 {2x +m =1,m =y −3可得x 与y 的关系是 ( ) A.2x+y=4B.2x+y=-4C.2x-y=4D.2x-y=-48. 若 −2xᵐ⁻ⁿy²与 3x⁴y²ᵐ⁺ⁿ是同类项,则3n--m 的立方根是 .9. 对有理数x ,y 定义新运算,x ⊗y= ax+ by+1,其中a,b 是常数.若2⊗(-1)=-3,3⊗3=4,则a= ,b= . 10.嘉淇准备解二元一次方程组 {x −y =4,x +y =8时,发现系数“□”印刷不清楚. (1)嘉淇把“□”猜成 3,则二元一次方程组的解为 ;(2)妈妈说:“你猜错了,我看到该题标准答案中x 与 y 是一对相反数.”则原题中“□”是 . 11. 新考法 过程辨析法 用 代 入 消 元 法 解 方 程组 {3x −y =7,5x +2y =8,小马虎的解题过程如下:解:由①得y=3x-7.③ (第一步)将③代入①,得3x--(3x-7)=7, (第二步)即7=7. (第三步)所以原方程组无解. (第四步)你认为小马虎的解法有误吗? 若有误,错在第几步? 请写出正确的解法.12.甲、乙两名同学在解方程组 {ax +3y =9,bx −4y =4时,甲把字母a 看错了得到方程组的解为 {x =4,y =1,乙把字母b 看错了得到方程组的解为 {x =3,y =2.(1)求a,b 的正确值;(2)求原方程组的解.创新拓展题13. 新考法 阅读类比法 阅读材料:善于思考的小军在解方程组 {2x +5y =3,circle14x +11y =5circle2时,采用了一种“整体代换”的解法. 解:将方程②变形,得4x+10y+y=5,即2(2x+5y)+y=5.③把方程①代入③,得2×3+y=5,所以y=-1.把y=-1代入①,解得x=4.所以方程组的解为 {x =4,y =−1.请你模仿小军的“整体代换”法解方程组:{3x −2y =5,9x −4y =19.1. C2. A3. A4. 4 【 点 拨 】 由 a b =25,得 5a = 2b, 联 立 得 {5a =2b,circle12a +b =18,circle2由②,得b=-2a+18,③把③代入①,得5a=-4a+36,解得a=4.5. 【解】由①,得x=2y.③将③代入②,得4y+3y=21,解得y=3.将y=3代入③,得x=6.所以原方程组的解为 {x =6,y =3.6.(1)2x+7;-2;3 {x =−2,y =3(2)代入消元法7. A8.-2 【点拨】因为 −2xᵐ⁻ⁿy²与 3x⁴y²ᵐ⁺ⁿ是同类项,所以 {m −n =4,2m +n =2,解得 {m =2,n =−2.所以3n-m=3×(-2)-2=-8.因为-8的立方根是-2,所以3n-m 的立方根是-2.9. -1;2 【点拨】因为x ⊗y= ax+ by+1,2⊗(-1)=-3,3⊗3=4,所以 {2a −b +1=−3,3a +3b +1=4,解得 {a =−1,b =2.10.(1){x=3,1(2)511.【解】他的解法有误,错在第二步.正确的解法如下:由①得y=3x-7.③将③代入②,得5x+2(3x-7)=8,解得x=2.将x=2代入③,得y=-1.所以原方程组的解为 {x =2,y =−1.分点易错 在解二元一次方程组时,由其中一个二元一次方程变换成用含有一个未知数的式子表示另一个未知数的式子,在代入消元时,切记不可代入被变换的二元一次方程,一定要代入另一个二元一次方程.12.【解】(1)将 {x =4,y =1代入 bx-4y=4,得4b-4×1=4,解得b=2;将 {x =3,y =2代入 ax+3y=9,得3a+3×2=9,解得a=1.所以a 的值为1,b 的值为2.(2)由(1)可知,原方程组为 {x +3y =9,2x −4y =4,由①得x=9-3y.③将③代入②,得2(9-3y)-4y=4,解得 y =75.将 y =75代入③,得 x =9−3×75=245.所以原方程组的解为 {x =245,y =75,13.【解】将方程②变形,得3(3x-2y)+2y=19.③把方程①代入③,得3×5+2y=19,解得 y=2,把y=2代人方程①,解得x=3.所以方程组的解为 {x =3,y =2.。

代入法解二元一次方程组(教案)

代入法解二元一次方程组(教案)

8.2 消元-----解二元一次方程组第一课时代入法解二元一次方程一、教学目标1、会用代入消元法解简单的二元一次方程组;2、初步体会解二元一次方程组的思想是“消元”;3、在探究代入消元法的过程中体会化归思想。

二、教学重难点1、教学重点:用代入法解简单的二元一次方程组;~2、教学难点:“二元”向“一元”的转化,消元思想。

三、教学方法引导发现、练习法相结合四、教具准备多媒体设备五、教学过程(一)复习旧知、引入新课1、判断下列式子是否是二元一次方程?①03=+xy ②2=-y x ③102=+x x ④31-=+y x ⑤zy x 23-=+ 2、判断下列式子是否是二元一次方程组?①⎩⎨⎧-=+=+12103z x y x ②⎩⎨⎧=+-=121b a ab ③⎩⎨⎧-=--=+2315n m n m ④⎪⎩⎪⎨⎧=-=+11113s ts t 3、已知二元一次方程2=-y x ,如何用x 表示y ?如何用y 表示x ?(用x 表示y 即把含x 的项和常数项移到方程的右边,含y 的项移到方程的左边;再将y 的系数化为1)①用x 表示y :2=-y x ②用y 表示x :2=-y xx y -=-2 y x +=2! x y +-=2练习:课本93P 练习1把下列方程改写成用含x 的式子表示y 的形式:(1)32=-y x (2)013=-+y x(请同学板演,教师巡视并指导、讲评)(二)层层递进、探索新知探究:(回顾引例)—解法一:设这个队胜了x 场,负了y 场。

由题意得 ⎩⎨⎧=+=+16210y x y x 凑 ⎩⎨⎧==46y x 解法二:设这个队胜了x 场,则负了()x -10场。

由题意得 ()16102=-+x x 问:(1)观察问题中的一元一次方程和二元一次方程组之间有什么联系?()16102=-+x x162=+y x(2)我们可以把方程②中的y 替换为x -10吗?怎么换?'10=+y x ①→x y -=10用x -10替换方程162=+y x 中的y ,即把x y -=10代入方程162=+y x .(3)这时,二元一次方程组转换为什么方程?这个方程可以解吗?可以求哪个未知数的值?问题解决了吗?二元一次方程组转换为一元一次方程,可以求出x 的值,还需求y 的值。

代入法 公开课获奖教案

代入法  公开课获奖教案

5.2 求解二元一次方程组第1课时 代入法第一环节:情境引入内容:教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x 个成人,y 个儿童,我们得到了方程组⎩⎨⎧=+=+.3435,8y x y x 成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验⎩⎨⎧==3,5y x 是不是方程8x y +=和方程5334x y +=的解,从而得知这个解既是8x y +=的解,也是5334x y +=的解,根据二元一次方程组的解的定义,得出⎩⎨⎧==3,5y x 是方程组⎩⎨⎧=+=+3435,8y x y x 的解.所以成人和儿童分别去了5人和3人. 提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?目的:“温故而知新”,培养学生养成时时回顾已有知识的习惯,并在回顾的过程中学会思考和质疑,通过质疑,自然地引出我们要研究和解决的问题.设计效果:通过对已有知识的回顾和思考,学生知识获得既感到自然又倍添新奇,有跃跃欲试的心情.第二环节:探索新知内容:回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题? (由学生独立思考解决,教师注意指导学生规范表达)解:设去了x 个成人,则去了(8)x -个儿童,根据题意,得:()53834x x +-=解得:5x = 将5x =代入8x -,解得:8-5=3.答:去了5个成人, 3个儿童.在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.)1.列二元一次方程组设有两个未知数:x 个成人,y 个儿童.列一元一次方程只设了一个未知数:x 个成人,儿童去的个数等于去的总人数与去的成人数之差,得出(8)x -个.因此y 应该等于(8)x -.而由二元一次方程组的一个方程8x y +=,根据等式的性质可以推出8y x =-.2.发现一元一次方程中53(8)34x x +-=与方程组中的第二个方程5334x y +=相类似,只需把5334x y +=中的“y ”用“()8x -”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.(由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量.所以将⎩⎨⎧=+=+②y x ①y x 3435,8中的①变形,得8y x =-③,我们把8y x =-代入方程②,即将②中的y 用()8x -代替,这样就有()53834x x +-=.“二元”化成“一元”.教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.下面我们完整地解一下这个二元一次方程组.(教师把解答的详细过程板书在黑板上,并要求学生一起来完成)解:8,5334.x y x y +=⎧⎨+=⎩①②由 得:8y x =-. ③将③代入②得:()53834x x +-=.解得:5x =. 把5x =代入③得:3y =.所以原方程组的解为:⎩⎨⎧==.3,5y x (提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有误)下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.(放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.)目的:通过学生自己对比、思考、发现,让学生惊喜的发现“温故而知新”,将新知融入旧知,体会“化未知为已知”的化归思想的神奇,培养学生独立获取知识的愿望和能力.设计效果:通过学生自己的观察、比较、总结出二元一次方程组的解法,从中体会到解方程组中“消元”的本质.第三环节:巩固新知内容:1.例:解下列方程组:(1) ⎩⎨⎧+==+;3,1423y x y x (2)⎩⎨⎧=+=+.134,1632y x y x (根据学生的情况可以选择学生自己完成或教师指导完成)(1)解:将②代入①,得:()14233=++y y .解得:1=y .把1y =代入②,得:4=x .所以原方程组的解为:⎩⎨⎧==.1,4y x (2)由②,得:y x 413-=. ③ 将③代入①,得:()1634132=+-y y .解得:2=y .将y=2代入③,得:5=x .所以原方程组的解是⎩⎨⎧==.2,5y x (⑵题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单.让学生在解题中进行思考)(教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解.促使学生进一步理解方程组解的含义以及学会检验方程组解的方法.)2.思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)⑴给这种解方程组的方法取个什么名字好?⑵上面解方程组的基本思路是什么?⑶主要步骤有哪些?⑷我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步.你认为选择未知数有何特点的方程变形好呢?(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)1.在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代数式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的.我们将这种方法叫代入消元法.2.解二元一次方程组的基本思路是消元,把“二元”变为“一元”.3.解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来.第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:把方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立.4.用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形.目的:进一步熟悉解二元一次方程组的基本思路,熟练解二元一次方程组的基本步骤和过程,并能对二元一次方程组的解进行检验.设计效果:通过本环节的学习,学生能够独立地运用代入消元法解二元一次方程组.第四环节:练习提高内容:1.教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一.可能会出现整体代换的思想,若有条件可以提出,为下一课做点铺垫也可以)2.补充练习:用代入消元法解下列方程组:(1)⎩⎨⎧=-=+;32,42y x y x (2)⎩⎨⎧=+=-;32,1943y x y x ⑶⎪⎩⎪⎨⎧=-+=-.023,723y x y x (注:[2]题可以用整体代入法来解,把第二个方程变为23y x =-,再将它代入第一个方程,得()32319x x --=;[3]题分数线有括号功能;[4]题如果有时间,学生学有余力可作为补充题目.)目的:对本节知识进行巩固练习.设计效果:通过练习,巩固和熟练了运用代入消元法解二元一次方程组的方法.第五环节:课堂小结内容: 师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.目的:鼓励学生通过本节课的学习,谈谈自己的收获与感受,加深对 “温故而知新” 的体会,知道“学而时习之”.设计效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.第六环节:布置作业课本习题5.2教学设计反思1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.2.探究有序.回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有了很好的认知基础,探究显得十分自然流畅.3.充分体现了转化与化归思想.引导学生充分思考和体验转化与化归思想,以利于总体目标中所提出的“获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”的落实.4.值得注意的方面.在学生总结解题步骤的环节,一定要留给学生足够的观察、思考、总结、组织语言的时间,训练学生的观察归纳能力,提高学生学习能力.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5解析:……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8; (2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。

北师大版八年级数学上册求解二元一次方程组教学课件

北师大版八年级数学上册求解二元一次方程组教学课件

例题精讲
例题3
用加减消元法解二元一次方程组
3x+2y=23, ①
注意该方程组未
解方程组
知数y的系数相同
5-3x=33-23 ,
x=5 .
将x=5代入①得 15+2y=23,
y=4.
所以原方程组的解是
x=5,
y=4.
探究新知
当方程组中两个方程的某个未知数的系数互为相反数或
所以原方程组的解是
y=0.
x=2.
x=2,
y=0.
变 数的代数式表示出来;
2.将代数式代入到另一个方程中,
从而消去一个未知数,化二元一
代 次方程组为一元一次方程,求解;
将③代入①,得2(13-4y)+3y=16,
y=2 .
将y=2代入③,得
x=5.
x=5,
所以原方程组的解是
y=2.
求 3.把这个未知数的值代入上面的式
子,求得另一个未知数的值;
写 4.写出方程组的解.
未知数的代数式表示,并代入另一个方程中,从而消
去一个未知数,化二元一次方程组为一元一次方程.这
种解方程组的方法称为代入消元法,简称代入法.
例题精讲
例题2
2x+3y=16, ①
解方程组
x+4y=13.

解:由②,得 x=13-4y . ③
用代入法解二元一
次方程组的步骤:
1.将某个未知数用含有另一个未知
得另一个未知数的值;
4.检验所求的值是否正确;
5.写出方程组的值.
(5)写出方程组的解.
课堂小结
加减消元法的一般步骤:
1.方程组中两个方程的某个未知数的系数互为相反数

八年级数学上册 解二元一次方程组(第一课时)教案 北师大版

八年级数学上册 解二元一次方程组(第一课时)教案 北师大版

一、教学设计思想本节分两课时分别学习代入消元法、加减消元法.在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法.讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考核归纳概括,发现和总结出消元化归的思想方法.二、教学目标知识与技能:会用代入消元法解二元一次方程组.过程与方法:1.通过在具体问题终解二元一次方程组,体会解二元一次方程组中的“消元”思想,即通过消元把解二元一次方程组转化成解两个一元一次方程,初步体会化归思想。

情感态度价值观:通过自主探索、合作交流,感受化归的数学思想,从而享受学习数学的乐趣,提高学习数学的信心.三、教学重点1.会用代入消元法解二元一次方程组.2.了解解二元一次方程组的“消元”思想,初步体现数学研究中“化未知为已知”的化归思想.四、教学难点1.“消元”的思想.2.“化未知为已知”的化归思想.五、教学方法启发——自主探索相结合.教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程.二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤.六、教具准备投影片两张:第一张:例题(记作§7.2.1 A);第二张:问题串(记作§7.2.1 B).七、教学过程Ⅰ.提出疑问,引入新课[师生共忆]上节课我们讨论过一个“希望工程”义演的问题;没去观看义演的成人有x 个,儿童有y 个,我们得到了方程组⎩⎨⎧=+=+.3435,8y x y x 成人和儿童到底去了多少人呢? [生]在上一节课的“做一做”中,我们通过检验⎩⎨⎧==35y x 是不是方程x +y =8和方程5x +3y =34,得知这个解既是x +y =8的解,也是5x +3y =34的解,根据二元一次方程组解的定义得出⎩⎨⎧==35y x 是方程组⎩⎨⎧=+=+34358y x y x 的解.所以成人和儿童分别去了5个人和3个人. [师]但是,这个解是试出来的.我们知道二元一次方程的解有无数个.难道我们每个方程组的解都去这样试?[生]太麻烦啦.[生]不可能.[师]这就需要我们学习二元一次方程组的解法.Ⅱ.讲授新课[师]在七年级第一学期我们学过一元一次方程,也曾碰到过“希望工程”义演问题,当时是如何解的呢?[生]解:设成人去了x 个,儿童去了(8-x )个,根据题意,得:5x +3(8-x )=34解得x =5将x =5代入8-x =8-5=3答:成人去了5个,儿童去了3个.[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?[生]列二元一次方程组设出有两个未知数成人去了x 个,儿童去了y 个.列一元一次方程设成人去了x 个,儿童去了(8-x )个.y 应该等于(8-x ).而由二元一次方程组的一个方程x +y =8根据等式的性质可以推出y =8-x .[生]我还发现一元一次方程中5x +3(8-x )=34与方程组中的第二个方程5x +3y =34相比较,把5x +3y =34中的“y ”用“8-x ”代替就转化成了一元一次方程.[师]太好了.我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识转化为旧知识便可.如何转化呢? [生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的.所以将①②⎩⎨⎧=+=+34358y x y x 中的①变形,得y =8-x ③我们把y =8-x 代入方程②,即将②中的y 用8-x 代替,这样就有5x +3(8-x )=34.“二元”化成“一元”.[师]这位同学很善于思考.他用了我们在数学研究中“化未知为已知”的化归思想,从而使问题得到解决.下面我们完整地解一下这个二元一次方程组.解:⎩⎨⎧=+=+34358y x y x 由①得 y =8-x ③将③代入②得5x +3(8-x )=34解得x =5把x =5代入③得y =3. 所以原方程组的解为⎩⎨⎧==.35y x 下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题.[师生共析]解二元一次方程组:⎩⎨⎧-=+=-)1(212y x y x 分析:我们解二元一次方程组的第一步需将其中的一个方程变形用含一个未知数的代数式表示另一个未知数,把表示了的未知数代入未变形的方程中,从而将二元一次方程组转化为一元一次方程.解:由①得x =2+y ③将③代入②得(2+y )+1=2(y -1)解得y =5把y =5代入③,得 x =7.所以原方程组的解为⎩⎨⎧==57y x 即老牛驮了7个包裹,小马驮了5个包裹. [师]在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用其中一个未知数的代数式表示另一个未知数,然后代入第二个未变形的方程,从而由“二元”转化① ② ①②为“一元”而得到消元的目的.我们将这种方法叫代入消元法.这种解二元一次方程组的思想为消元思想.我们再来看两个例子.出示投影片(§7.2.1 A )(由学生自己完成,两个同学板演).解:(1)将②代入①,得3×23+y +2y =8 3y +9+4y =167y =7y =1将y =1代入②,得x =2所以原方程组的解是⎩⎨⎧==12y x (2)由②,得x =13-4y ③将③代入①,得2(13-4y )+3y =16-5y =-10y =2将y =2代入③,得x =5所以原方程组的解是⎩⎨⎧==.25y x[师]下面我们来讨论几个问题:出示投影片(§7.2.1 B)(由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法)[生]我来回答第一问:解二元一次方程组的基本思路是消元,把“二元”变为“一元”.[生]我们组总结了一下解上述方程组的步骤:第一步:在已知方程组的两个方程中选择一个适当的方程,把它变形为用一个未知数的代数式表示另一个未知数.第二步:把表示另一个未知数的代数式代入没有变形的另一个方程,可得一个一元一次方程.第三步:解这个一元一次方程,得到一个未知数的值.第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值.第五步:用“{”把原方程组的解表示出来.第六步:检验(口算或笔算在草稿纸上进行)把求得的解代入每一个方程看是否成立.[师]这个组的同学总结的步骤真棒,甚至连我们平时容易忽略的检验问题也提了出来,很值得提倡.在我们数学学习的过程中,应该养成反思自己解答过程,检验自己答案正确与否的习惯.[生]老师,我代表我们组来回答第三个问题.我们认为用代入消元法解二元一次方程组时,尽量选取一个未知数的分数是1的方程进行变形;若未知数的系数都不是1,则选取系数的绝对值较小的方程变形.但我们也有一个问题要问:在例2中,我们选择②变形这是无可厚非的,把②变形后代入①中消元得到的是一元一次方程系数都为整数也较简便.可例1中,虽然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不简便,有没有更简捷的方法呢?[师]这个问题提的太好了.下面同学们分组讨论一下.如果你发现了更好的解法,请把你的解答过程写到黑板上来.[生]解:由②得2x=y+3 ③③两边同时乘以2,得4x=2y+6 ④由④得2y =4x -6把⑤代入①得3x +(4x -6)=8解得7x =14,x =2把x =2代入③得y =1.所以原方程组的解为⎩⎨⎧==.1,2y x [师]真了不起,能把我们所学的知识灵活应用,而且不拘一格,将“2y ”整体上看作一个未知数代入方程①,这是一个“科学的发明”.Ⅲ.随堂练习课本P 1921.用代入消元法解下列方程组解:(1) ⎩⎨⎧=+=122y x x y 将①代入②,得 x +2x =12x =4.把x =4代入①,得y =8所以原方程组的解为⎩⎨⎧==84y x (2)⎩⎨⎧=++=653452y x x y 将①代入②,得4x +3(2x +5)=65解得x =5把x =5代入①得 y =15① ②① ②所以原方程组的解为⎩⎨⎧==155y x(3)⎩⎨⎧=-=+711y x y x 由①,得x =11-y ③把③代入②,得11-y -y =7 y =2把y =2代入③,得x =9所以原方程组的解为⎩⎨⎧==29y x (4)⎩⎨⎧=+=-32923y x y x由②,得x =3-2y ③把③代入①,得3(3-2y )-2y =9得y =0把y =0代入③,得x =3所以原方程组的解为⎩⎨⎧==03y x 注:在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,不必强调解答过程统一.Ⅳ.课时小结这节课我们介绍了二元一次方程组的第一种解法——代入消元法.了解到了解二元一次方程组的基本思路是“消元”即把“二元”变为“一元”.主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程的解.① ②① ②Ⅴ.课后作业1.课本P 192习题7.22.解答习题7.1第3题3.预习课本P 193~P 194Ⅵ.活动与探究已知代数式x 2+px +q ,当x =-1时,它的值是-5;当x =-2时,它的值是4,求p 、q 的值.过程:根据代数式值的意义,可得两个未知数都是p 、q 的方程,即当x =-1时,代数式的值是-5,得(-1)2+(-1)p +q =-5 ①当x =-2时,代数式的值是4,得(-2)2+(-2)p +q =4 ②将①、②两个方程整理,并组成方程组⎩⎨⎧=+--=+-026q p q p 解方程组,便可解决.结果:由④得q =2p把q =2p 代入③,得-p +2p =-6解得p =-6把p =-6代入q =2p =-12所以p 、q 的值分别为-6、-12.八、板书设计①②。

北师大版数学八年级上册2《求解二元一次方程组》说课稿1

北师大版数学八年级上册2《求解二元一次方程组》说课稿1

北师大版数学八年级上册2《求解二元一次方程组》说课稿1一. 教材分析《求解二元一次方程组》是人教版初中数学八年级上册第二章《二元一次方程组》的一部分。

这部分内容是在学生已经掌握了二元一次方程、一元一次方程的解法的基础上进行学习的。

通过这部分的学习,使学生能够掌握二元一次方程组的解法,并能够应用到实际问题中。

本节课的主要内容有:二元一次方程组的定义、二元一次方程组的解法(代入法、加减法)、二元一次方程组的应用。

在教材的安排上,首先是引导学生通过实际问题抽象出二元一次方程组,然后通过合作交流,探索二元一次方程组的解法,最后通过应用题,巩固二元一次方程组的解法。

二. 学情分析八年级的学生已经具备了一定的数学基础,对一元一次方程的解法有一定的了解。

但是,对于二元一次方程组,学生还比较陌生,需要通过实例来引导学生理解。

在学生的学习过程中,我发现学生对于数学问题的生活情境比较感兴趣,因此,我在教学过程中,会尽量结合生活实例,激发学生的学习兴趣。

三. 说教学目标1.知识与技能目标:理解二元一次方程组的定义,掌握二元一次方程组的解法(代入法、加减法),能够应用到实际问题中。

2.过程与方法目标:通过合作交流,探索二元一次方程组的解法,提高学生的合作交流能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心。

四. 说教学重难点1.教学重点:二元一次方程组的解法(代入法、加减法)。

2.教学难点:如何引导学生理解二元一次方程组的解法,并能够应用到实际问题中。

五. 说教学方法与手段1.教学方法:采用启发式教学法、合作交流法、实例教学法。

2.教学手段:利用多媒体课件,帮助学生直观地理解二元一次方程组的概念和解法。

六. 说教学过程1.导入:通过一个实际问题,引导学生抽象出二元一次方程组,激发学生的学习兴趣。

2.探究:让学生通过合作交流,探索二元一次方程组的解法,教师给予适当的引导和点拨。

3.讲解:教师讲解二元一次方程组的解法(代入法、加减法),并通过实例进行说明。

北师版数学八年级上册5 第1课时 代入法课件

北师版数学八年级上册5  第1课时 代入法课件

新课讲解
3x+2y=14 ① 【例1】解方程组
x=y+3 ② 解:将②代入①,得 3(y+3)+2y=14,
3检y +验9+可2y以=口14算, 或 在草稿纸上验算, 以后可以5不y=必5, 写出.
y=1. 将y=1代入② ,得 x=4. 经检验, x=4,y=1适合原方程组. 所以原方程组的解是 x=5,
用代入法解二元一次方程组
新课讲解
用一元一次方程求解
解:设去了x个成人,则去了 (8-x)个儿童,根据题意,得
5x+3(8-x)=34
用二元一次方程组求解
解:设去了x个成人,去了 y个儿童,根据题意,得
y=8-x
x+y=8,
5x+3y=34
将x=5代入 8-x=8-5=3. 答:去了5个成人, 3个儿童.
►一个没有几分诗人气的数学家永远成不了一个完全的数学家。—— 维尔斯特拉斯 ►历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人 深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。——培根 ►在现实中,不存在像数学那样有如此多的东西,持续了几千年依然是 确实的如此美好。——苏利文确。 ►宇宙的伟大建筑是现在开始以纯数学家的面目出现了。J·H·京斯 ►新的数学方法和概念,常常比解决数学问题本身更重要。——华罗 庚 ►数学是无穷的科学。――赫尔曼外尔 ►上帝是一位算术家。——雅克比






程 组
代入法解二元一 次方程组的一般
步骤
课堂总结
变:用含一个未知数的 式子表示另一个未知数 代:用这个式子替代另 一个方程中相应未知数 求:求出两个未知数的 值

北师大版初中八年级数学上册第5章2第1课时代入法解二元一次方程组课件

北师大版初中八年级数学上册第5章2第1课时代入法解二元一次方程组课件
入③求出y即可.
解 把①变形为y=3x-5.③
把③代入②,得2x+3(3x-5)=7,解得x=2.
把x=2代入③,得y=1.
= 2,
所以原方程组的解为
= 1.
【规律技巧】
当有一个方程的某个未知数的系数为1或-1时,选择该方程变形,把这个未
知数用含有另一个未知数的代数式表示.
2-7 = 3, ①
【例 2】 解方程组:
3-8 = 10. ②
思路分析 这两个方程中未知数的系数都不是1,那么如何求解呢?消哪一个
未知数呢?如果将2x-7y=3写成用一个未知数来表示另一个未知数,那么用x
表示y,还是用y表示x好呢?观察方程组,因为x的系数为正数,且系数也较小,
所以应用y来表示x较好.
7+3
解 由①,得 x=
+ = 7,
= 1,
解 把
代入方程组

=2
2-3 = 4
+ 2 = 7, ①
2-6 = 4. ②
由①,得m=7-2n.③
把③代入②,得2(7-2n)-6n=4,解得n=1.
把n=1代入③,得m=5.
= 5,
所以
= 1.
所以m-2n=5-2=3.
.③
2
7+3
11
把③代入②,得 3× 2 -8y=10,解得 y= 5 .
11
46
把 y= 5 代入③,得 x= 5 .
46
= 5 ,
所以原方程组的解是
11
= 5 .
【规律技巧】
用代入法解方程组时,应首先选择一个未知数的系数比较简单的方程,把其
中一个未知数用含另一个未知数的代数式表示出来.

解二元一次方程组(代入消元法)第1课时教案1

解二元一次方程组(代入消元法)第1课时教案1

课 题第十章二元一次方程组课时分配本课(章节)需 2 课时 本 节 课 为 第 1 课时 为 本 学期总第 课时 **解二元一次方程组(代入消元法)教学目标1.学生会用代入法解二元一次方程组。

2.学生通过解决问题,了解解二元一次方程组的必要性。

重 点 探寻用代入法解二元一次的方程组的进程。

难 点 消元转化的过程 教学方法讲练结合、探索交流课型新授课教具 投影仪 教 师 活 动学 生 活 动 情景设置:从学生熟悉的情景引入课题。

(1) 根据篮球比赛规则:赢一场得2分,输一场得1分,在一次中学生篮球联赛中,某球队赛了12场。

设赢了x 场,输了y 场,积20分,列出方程。

(2) 小亮在“智力快车”竞赛中回答10个问题,答对一题得4分,答错一题扣1分,他共得25分,设小亮答对x 题、答错y 题,列出二元一次方程。

新课讲解:(1)解方程组⎩⎨⎧><=+><=+2202112y x y x分析:如何解出x,y ?设想能把二元化为一元,由学生自己讨论。

解:由〈1〉得:y=12-x 〈3〉 把〈3〉代入〈2〉,得 2x+12-x=20 解这个一元一次方程得 x=8学生列方程语言表达为何不代入〈2〉 学生议一议。

把x=8代入〈3〉,得 y=4所以原方程的解是⎩⎨⎧==48y x(2)解方程:⎩⎨⎧><=-><=+2204110y x y x老师板演:解:由〈1〉得x=10-y 〈3〉 把〈3〉代入〈2〉,得 4(10-y )-y=20 解这个一元一次方程,得 y=4 把y=4代入〈3〉,得 x=6所以原方程组的解是⎩⎨⎧==46y x练一练:小结:代入消元法的方法。

通过“议一议”、“说一说”让学生切实体会到代入消元法的思想“二元转化为一元”。

教学素材:A 组题:代入法解下列方程组:(1)⎩⎨⎧-=-=4327y x x为何代入〈3〉? 学生议一议。

学生讨论 学生口述P110 试一试P110“练一练”1(2)⎩⎨⎧=-=122310y x y x(3)⎩⎨⎧==+yx y x 2322(4)⎩⎨⎧=-=+93112y x y x(5)⎩⎨⎧⨯=+=+%922800%64%962800y x y xB 组题1.已知:⎩⎨⎧=+-=--030334z y x z y x ,并且0≠z求:x:y 与y:z.2.编写一道以(-3,1)为解的二元一次方程组。

《第五章2求解二元一次方程组》作业设计方案-初中数学北师大版12八年级上册

《第五章2求解二元一次方程组》作业设计方案-初中数学北师大版12八年级上册

《求解二元一次方程组》作业设计方案(第一课时)一、作业目标本作业设计旨在通过实践操作,使学生掌握二元一次方程组的基本概念和求解方法,能够运用消元法或代入法解决简单的二元一次方程组问题,并培养学生的逻辑思维能力和解决问题的能力。

二、作业内容作业内容主要分为以下几个部分:1. 理论知识回顾:要求学生复习二元一次方程组的基本概念,包括方程组的形式、解的概念等。

2. 练习消元法:提供几个二元一次方程组的实例,要求学生运用消元法求解,并记录下每一步的运算过程。

3. 练习代入法:同样提供几个二元一次方程组的实例,要求学生运用代入法求解,并比较两种方法的优劣。

4. 实际应用:设置几个与实际生活相关的问题,如购物找零、分配任务等,将这些问题抽象为二元一次方程组,并要求学生求解。

5. 自主探究:鼓励学生对自己设立的二元一次方程组进行求解,培养学生自主探究的能力。

三、作业要求针对此作业设计,具体作业要求如下:三、作业要求学生应认真对待每一项作业内容,并严格按照以下要求完成作业:1. 理论知识回顾:要求学生对二元一次方程组的基本概念进行全面复习,并能够准确阐述其含义。

2. 练习消元法与代入法:在求解过程中,学生需详细记录每一步的运算过程,确保解题步骤清晰、准确。

对于每种方法,都应尝试至少两个实例,并比较其优劣。

3. 实际应用:学生需将实际问题抽象为二元一次方程组,并运用所学知识进行求解。

在解题过程中,应注重实际问题的背景,理解问题的实际含义。

4. 自主探究:学生需自行设立二元一次方程组,并尝试求解。

此环节旨在培养学生的自主探究能力和创新能力。

以上作业要求旨在使学生通过实践操作,真正掌握二元一次方程组的求解方法,提高其解决问题的能力。

希望学生能够认真对待每一次作业,不断提高自己的学习能力和解题能力。

四、作业评价...五、作业反馈通过作业的批改与讲解,教师将对学生的作业进行全面评价,并及时给予反馈。

对于存在的问题,教师将指导学生进行改正,并给出相应的建议。

北师大版八年级数学上册《求解二元一次方程组》第1课时示范课教学设计

北师大版八年级数学上册《求解二元一次方程组》第1课时示范课教学设计

第五章 二元一次方程组
2 解二元一次方程组
第1课时
一、教学目标
1.会用代入消元法解二元一次方程组.
2.了解解二元一次方程组的“消元”思想,初步体会化未知为已知的化归思想.
3.经历将二元一次方程组变形为一元一次方程的过程,学会将未知数的个数由多化少,逐一解决,体会消元思想在解方程中的应用.
4.通过探究二元一次方程组的解法,经历解二元一次方程组的过程,提高学生逻辑思维能力、计算能力、解决实际问题的能力.
二、教学重难点
重点:会用代入消元法解二元一次方程组.
难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.
三、教学用具
多媒体课件
四、教学过程设计
【情境导入】
话说有一天,一头牛和一匹马驮着包裹赶路. 下面请同学们认真分析他们的对话,然后回答问题:
提问:它们各驮了多少包裹呢?
预设答案:设老牛驮了x 个包裹,小马驮了y 个包裹.
212(1)
x y x y -=⎧⎨
+=-⎩ 你能列一元一次方程解决这个问题吗?
-5y=-10,
y= 2.
将y=2代入③,得x=5.
所以原方程组的解是
5,
2. x
y
=⎧

=⎩
【问题】
1.将③代入②可以吗?
不可以,因为③是由②得出的,再代回②中,恒成立.
2.上面解方程组的基本思路是什么?
归纳:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.
3.主要步骤有哪些?
预设答案:
把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,从而求得方程组的解,这种解方程组的方法叫做代入消元法.。

2024解二元一次方程组北师大版数学初二上册教案

2024解二元一次方程组北师大版数学初二上册教案

2024解二元一次方程组北师大版数学初二上册教案一、教学目标1.知识与技能:(1)理解二元一次方程组的定义,掌握解二元一次方程组的基本方法。

(2)能够运用消元法、代入法、图解法等方法解二元一次方程组。

2.过程与方法:(1)通过实际例子,让学生感受二元一次方程组在生活中的应用。

(2)培养学生运用数学方法解决问题的能力。

3.情感态度与价值观:(1)激发学生对数学的兴趣,提高学生的数学素养。

(2)培养学生合作、交流、探究的精神。

二、教学重点与难点1.教学重点:(1)理解二元一次方程组的定义。

(2)掌握解二元一次方程组的基本方法。

2.教学难点:(1)消元法、代入法的运用。

(2)二元一次方程组在实际问题中的应用。

三、教学过程1.导入新课(1)引导学生回顾一元一次方程的解法。

(2)提出问题:当我们遇到两个未知数的问题时,如何解决?2.讲解二元一次方程组的定义(1)讲解二元一次方程组的定义。

(2)举例说明二元一次方程组在实际问题中的应用。

3.讲解解二元一次方程组的基本方法(1)消元法①讲解消元法的原理。

②举例演示消元法的步骤。

(2)代入法①讲解代入法的原理。

②举例演示代入法的步骤。

4.实例讲解(1)给出实例,引导学生运用所学的解法解决问题。

(2)讲解解题过程,强调注意事项。

5.练习与讨论(1)布置练习题,让学生独立完成。

(2)组织学生讨论解题过程中遇到的问题,共同解决。

(2)布置拓展题,让学生课下自主探究。

四、教学案例案例1:解二元一次方程组$$\begin{cases}2x+3y=8\\xy=1\end{cases}$$步骤1:将第二个方程变形为$x=y+1$。

步骤2:将$x=y+1$代入第一个方程,得到$2(y+1)+3y=8$。

步骤3:解一元一次方程$2y+2+3y=8$,得到$y=1$。

步骤4:将$y=1$代入$x=y+1$,得到$x=2$。

案例2:解二元一次方程组$$\begin{cases}3x+2y=12\\2xy=1\end{cases}$$步骤1:将第二个方程变形为$y=2x1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2 求解二元一次方程组
第1课时 代入法
1.会用代入法解二元一次方程组.(重点)
一、情境导入
《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?
我们可以设树上有x 只鸽子,地上有y
只鸽子,得到方程组⎩
⎪⎨⎪⎧x +y =3(y -1),
x -1=y +1.可
是这个方程组怎么解呢?有几种解法?
二、合作探究
探究点:用代入法解二元一次方程组 【类型一】 用代入法解二元一次方程

用代入法解下列方程组:
(1)⎩⎪⎨⎪⎧2x +3y =-19,①x +5y =1;②
(2)⎩⎪⎨⎪
⎧2x -3y =1,①y +14
=x +23.②
解析:对于方程组(1),比较两个方程
系数的特点可知应将方程②变形为x =1-5y ,然后代入①求解;对于方程组(2),应
将方程组变形为⎩
⎪⎨⎪⎧2x -3y =1,③
4x -3y =-5,④观察③
和④中未知数的系数,绝对值最小的是2,
一般应选取方程③变形,得x =3y +1
2
.
解:(1)由②,得x =1-5y.③
把③代入①,得2(1-5y)+3y =-19, 2-10y +3y =-19,-7y =-21,y =3.
把y =3代入③,得x =-14.所以原方
程组的解是⎩
⎪⎨⎪⎧x =-14,
y =3.
(2)将原方程组整理,得

⎪⎨⎪⎧2x -3y =1,③4x -3y =-5.④ 由③,得x =3y +1
2
.⑤
把⑤代入④,得2(3y +1)-3y =-5, 3y =-7,y =-7
3
.
把y =-7
3代入⑤,得x =-3.
所以原方程组的解是⎩⎪⎨⎪
⎧x =-3,y =-73.
方法总结:用代入法解二元一次方程
组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比较简单的或代入后容易消元的方程进行变形.
【类型二】 整体代入法解二元一次方程组
解方程组:
⎩⎪⎨
⎪⎧x +13=2y ,①2(x +1)-y =11.②
解析:把(x +1)看作一个整体代入求
解.
解:由①,得x +1=6y.把x +1=6y
代入②,得2×6y-y =11.解得y =1.把y =1代入①,得x +1
3
=2×1,x =5.所以原方
程组的解为⎩⎪⎨⎪⎧x =5,
y =1.
方法总结:当所给的方程组比较复杂
时,应先化简,但若两方程中含有未知数的部分相等时,可把这一部分看作一个整体求解.
【类型三】 已知方程组的解,用代入
法求待定系数的值
已知⎩
⎪⎨⎪⎧x =2,y =1是二元一次方程组

⎪⎨⎪⎧ax +by =7,
ax -by =1的解,则a -b 的值为( ) A .1 B .-1 C .2 D .3
解析:把解代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩
⎪⎨⎪⎧a =2,
b =3,所以a -b =-1.故选B.
方法总结:解这类题就是根据方程组解的定义求,即将解代入方程组,得到关于字母系数的方程组,解方程组即可.
三、板书设计
解二元一,次方程
组)⎩
⎪⎨⎪⎧
基本思路是“消元”代入法解二元一次方程组的一般步骤
回顾一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知基础,探究显得十分自然流畅.充分体现了转化与化归思想.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力.。

相关文档
最新文档