Red-emitting cerium-based phosphor materials for solid-state lighting applications
毛细管电泳间接化学发光法分离检测儿茶酚胺及儿茶酚
% 图 &% ’( )* ( #") + 浓度对相对发光强度的影响 ),-. & % !//*01 2/ 13* 0240*41561,24 2/ 721688,9: /*55,0;64,<*
电压 ( =2>16-*) : ?@ AB; 进样时间 ( ,4C*01,24 1,:*) : &@ 8; 缓冲溶液 ( D9//*5 82>91,24) : &E ::2> F G "6? HI JK L ? M 7O P Q. E ; 7O P &(. ( ; R$: 多巴胺 &@ N ( :2> F G >9:,42>, ( <276:,4*) ;#$. 儿茶酚 ( 061*032>6:,4* ) ;!:肾上 腺素 ( !7,4*735,4*) ;"!:去甲肾上腺素 ( 425*7,4*73S 5,4*) 。
[ *, $] [ #, 1] 毛细管电泳技术用于儿茶酚胺类物质的分析主要采用紫外可见吸收 、 激光诱导荧光 、 化学发 [ 3, &] 光 等检测方式。由于生物样品成分复杂, 因此, 实际样品通常需要经过渗析、 离心及固相微萃取等
预处理后才能用于 76 分离分析。本实验根据在碱性条件下儿茶酚胺及儿茶酚猝灭铁氰化钾!鲁米诺 儿茶酚标准样品 体系发光反应的原理, 结合毛细管电泳分离技术, 在优化条件下, 实现了 $ 种儿茶酚胺、 及未经预处理的 $ 种临床药物和实际尿样的在线分离分析。
检出限 G,:,1 <*1*01,24 ( - F G) E. @ M &@ N E (. ( M &@ N I I. & M &@ &. ( M &@
219525878_超声辅助低共熔溶剂提取红松树皮原花青素及动力学研究
周佳悦,候艳丽,王凡予,等. 超声辅助低共熔溶剂提取红松树皮原花青素及动力学研究[J]. 食品工业科技,2023,44(14):229−236. doi: 10.13386/j.issn1002-0306.2022100070ZHOU Jiayue, HOU Yanli, WANG Fanyu, et al. Ultrasonic-Assisted Deep Eutectic Solvent Extraction of Proanthocyanidins from Korean Pine Bark and Its Kinetics[J]. Science and Technology of Food Industry, 2023, 44(14): 229−236. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100070· 工艺技术 ·超声辅助低共熔溶剂提取红松树皮原花青素及动力学研究周佳悦1,候艳丽1,王凡予1,郭庆启1,2,*(1.东北林业大学生命科学学院,黑龙江哈尔滨 150040;2.黑龙江省森林食品资源利用重点实验室,黑龙江哈尔滨 150040)摘 要:目的:对超声辅助低共熔溶剂法提取红松树皮原花青素的工艺条件进行优化,拟合提取动力学方程,旨在对红松树皮中原花青素的资源开发利用提供理论和技术参考。
方法:以原花青素得率为指标,筛选最佳低共熔溶剂体系,并进一步通过单因素结合响应面优化超声辅助低共熔溶剂提取红松树皮中原花青素的主要工艺参数。
通过提取过程中不同温度和不同时间条件下原花青素得率的变化,拟合出最佳的原花青素提取动力学模型并验证。
结果:氯化胆碱、丙三醇和水的摩尔比为1:1:4制备的低共熔溶剂为红松树皮原花青素的最佳提取溶剂;响应面法优化工艺参数条件为:液料比16 mL/g ,超声时间50 min ,超声温度55 ℃,超声功率480 W 时,红松树皮原花青素的提取效果最好,原花青素得率为4.11%;Boltzman 模型能够很好地拟合超声辅助低共熔溶剂提取原花青素动力学过程(R 2≥0.9768),模型验证值与预测值拟合度较高(R 2≥0.9442)。
抑制线粒体活性氧自由基可减轻高糖诱导的心肌细胞焦亡和铁死亡
抑制线粒体活性氧自由基可减轻高糖诱导的心肌细胞焦亡和铁死亡一、本文概述本文旨在探讨抑制线粒体活性氧自由基(Reactive Oxygen Species, ROS)对减轻高糖诱导的心肌细胞焦亡(Pyroptosis)和铁死亡(Ferroptosis)的影响。
我们将从线粒体ROS的产生及其在心肌细胞死亡中的角色开始讨论,然后详细阐述高糖环境下心肌细胞焦亡和铁死亡的发生机制,以及如何通过抑制线粒体ROS活性来减轻这两种死亡过程。
我们还将探讨可能的分子机制,为未来的心血管疾病治疗提供新的视角和潜在的治疗策略。
二、材料与方法本实验采用成熟的心肌细胞系(如H9c2细胞或原代心肌细胞)作为实验对象。
高糖培养基(如D-葡萄糖)、线粒体活性氧自由基抑制剂(如MitoTEMPO)、细胞焦亡检测试剂盒、铁死亡检测试剂盒、抗氧化剂(如N-乙酰半胱氨酸,NAC)、Western Blot所需抗体及试剂等。
细胞培养箱、超净工作台、倒置显微镜、流式细胞仪、Western Blot电泳及转膜设备、酶标仪等。
将心肌细胞以适当密度接种于培养瓶中,待细胞贴壁生长至适宜密度后,更换为含高糖的培养基进行诱导处理。
同时,设立对照组、抑制剂处理组(加入MitoTEMPO)及抗氧化剂处理组(加入NAC)。
根据细胞焦亡检测试剂盒和铁死亡检测试剂盒的说明书,分别进行细胞焦亡和铁死亡的检测。
通过流式细胞仪分析各组细胞焦亡和铁死亡的比例。
收集处理后的细胞,提取总蛋白并进行Western Blot分析。
检测与细胞焦亡和铁死亡相关的关键蛋白表达水平,如NLRPCaspase-Gasdermin D等。
实验数据以均数±标准差(Mean±SD)表示,采用SPSS软件进行统计分析。
多组间的比较采用单因素方差分析(ANOVA),以P<05为差异有统计学意义。
通过以上实验设计与方法,我们旨在探究抑制线粒体活性氧自由基对高糖诱导的心肌细胞焦亡和铁死亡的影响,为防治高糖环境下心肌细胞损伤提供新的思路与策略。
核黄素与脱氧核糖核酸相互作用的电化学和光谱法研究
核黄素与脱氧核糖核酸相互作用的电化学和光谱法研究倪永年3 杜姗(南昌大学化学系,南昌330047)摘 要 在实验条件接近人体生理环境的pH 7.4的Tris 2HCl 缓冲溶液中,分别采用电化学方法、紫外光谱法及荧光法并利用中性红作电化学探针,研究了核黄素和小牛胸腺DNA 的相互作用。
随着DNA 浓度逐渐增加,核黄素的峰电流减小,峰位正移;紫外光谱产生减色效应;核黄素的荧光发生猝灭以及核黄素和中性红竞争与DNA 相互作用等,采用几种方法的实验结果都表明两者能发生嵌插结合;多种计算方法得到两者作用的结合位点数为1,结合常数达到105(mol/L )-1。
关键词 核黄素,脱氧核糖核酸,嵌插,中性红,电化学探针 2005208227收稿;2005212203接受本文系国家自然科学基金(No .20365002,No .20562009)、中国科学院电分析化学重点实验室基金(No .SK LEAC200423)和江西省自然科学基金资助项目(No .0620041)1 引 言DNA 是一种重要的生物大分子,是体内抗癌药物作用的主要标靶。
药物与DNA 作用能不同程度影响DNA 的复制和合成等性质,从而抑制癌细胞的恶性生长。
因此,人们越来越重视对药物与DNA 的作用进行研究,并从中获得更方便的检测方法,使药物的初步筛选更加有效。
核黄素属于维生素类药品,常用于防治口角炎等炎症。
它有可能成为肿瘤的光敏治疗药物之一。
所以,研究核黄素和DNA 的作用在生化及临床上都具有一定的意义。
包晓玉等[1,2]研究了VB 2与DNA在pH 4.56条件下相互作用的电化学行为。
本实验应用电化学方法和光谱法并结合电化学探针中性红研究了两者在pH =7.4的Tris 2HCl 缓冲液中的相互作用,获得了该体系较全面的信息。
2 实验部分2.1 仪器与试剂CH I 660A 电化学工作站(上海辰华公司);三电极系统,玻碳电极为工作电极,Ag/AgCl 电极为参比电极,铂丝为对电极;LS 255荧光光谱仪(PE 公司);UV 28453紫外可见光度计(Agilent 公司)。
新材料词汇中英对照
·中英文新材料词汇白刚玉微粉white fused alumina powder白色光固化字符印料light solidified white symbol ink半导体超晶格材料semiconductor super lattic materials保偏光纤polarization maintaining fiber钡铁氧体磁粉Ba-ferrite powder标准单模光纤standard single mode fiber; G.625 fiber表面保护压敏粘胶带surface protect pressure sensitive adhesive tape表面组装用胶粘剂surface mounting adhesives冰醋酸acatic acid glacial丙酮acetone波峰焊剂soldering flux of wave crest玻璃纤维增强环氧膜塑料glass fiber reinforced epoxy molding薄钢带thin steel strip薄膜磁头及磁芯材料thin film magnetic heads and their cores彩色液晶colour liquid crystals蚕丝筛网natural silk bolting cloth插件胶adhesive for inserting electronic掺铥钇铝石榴石激光晶体Tm-doped YAG crystal掺铒磷酸盐激光玻璃erbium-doped phosphate glass掺铒钇铝石榴石激光晶体Er-doped YAG laser crystal掺铬氟铝锶锂氟铝钙锂可协调激光晶体/Cr-doped LiSrAlF6/LiCaAlF6 tunable laser crystal掺铬镁橄榄石晶体Cr-doped forsterite crystal掺钬、铥、铬钇铝石榴石激光晶体Ho,Tm,Cr-doped YAG laser crystal掺钬、铒、铥氟化钇锂激光晶体Ho,Er,Tm-doped YLF laser ctystal掺钕、铈、铬钇铝石榴石激光晶体Nd,Ce,Cr-doped YAG laser掺钕、铈、铽钇铝石榴石激光晶体Nd,Ce,Tb-doped YAG laser crystal掺钕掺四价铬钇铝石榴石晶体Nd, Cr-doped YAG crystal掺钕掺氧化镁铌酸锂晶体neodymium and magnesium oxide掺钕钒酸激光晶体Nd-doped YVO4 laser crystal掺钕氟化钇锂激光晶体Nd-doped YLF laser crystal掺钕铝酸钇激光晶体Nd-doped YAP laser ctystal掺钕钇铝石榴石激光晶体Nd-doped YAG laser crystal掺铈的硅酸钆闪烁晶体cerium activated scintillater掺四价铬钇铝石榴石激光晶体Cr4+-doped YAG crystal掺铁铌酸锂晶体iron dopen lithium niobate ctystal掺氧化镁铌酸锂晶体magnesium oxide doped lithium niobate crystal掺氧化锌铌酸锂晶体zinc oxide doped lithium niobate crystal掺镱钇铝石榴石激光晶体Yb- YAG laser crystal超长铜芯聚酯带super-long copper core polyester tape超细钯粉ultrafine palladium powder超细玻璃粉palladium powder超细箔粉ultrafine platinum powder超细二氧化钌粉ultrafine ruthenium oxide powder超细金粉ultrafine gold powder超细镍粉ultrafine nickel powder超细铜粉ultrafine copper powder超细银钯合金粉ultrafine silver-palladium powder超细银铋合金粉ultrafine silver-bismuth powder超细银粉ultrafine silver powder传输光纤transmission fiber纯六氟化钼pure molybdenum hexafluoride纯氖pure neon纯一氧化氮pure nitric oxide瓷基有机覆铜板ceramic organic base copper clad laminate磁粉magnetic powder磁温度补偿合金magnetic temperature compensate alloy磁性液体magnetic fluid氮化镓外延材料gallium nitride epitaxial materials导电布conduction cloth导电聚苯乙烯塑料conductive high impact polustylene导电聚丙烯condutive polypropylene导电聚乙烯condutive poliethylene灯用三基色荧光粉the phosphor of rare-earth低固免清洗助焊剂soldering flux of low solid and free cleaning低温封接玻璃粉low-meiting sealing frils低温合金钎料solders of low melting point alloys涤纶薄膜电容器内包封料inside encapsulate compound for terylene film condenser涤纶薄膜电容器外包封料outside encapsulate compound for terylene film condenser涤纶丝筛网terylene fibre bolting cloth碲镉汞晶体mercury cadmium telluride(MCT) ctystal碲化铅单晶lead telluride碲锌镉衬底材料cadmium zinc tellutide substrate material电弧石英玻璃坩埚arc quartz glass crucibles电压穿透式多色荧光粉voltage penetration multicolor phosphor电子灌封料electronic potting resin电子级八氟丙烷octafluoropropane, electronic grade; perfluoropropane, electronic grade; halocarbon 218, electronic grade电子级二氯二氢硅dichlororosilane eiectronic grade电子束负性抗蚀剂electron-beam negative photoresist电子束正性抗蚀剂electron-beam positive photoresist电子元件固定密封胶sealant for set electronic companents电子专用热粘胶带hot melt masking tape丁酮butanone杜美丝dumet wire镀锡铜包钢线copper-tinlead wire; CP wire二甲苯xylene二氯甲烷dichloromethane二氧化碲单晶tellurium dioxide single crystal二氧化硅silicon dioxide二氧化硫sulohur dioxide发泡镍合金丝bubbing nickel alloy wire钒酸钇单晶yttrium vanadate single crystal防氧化焊锡条oxidation preventive tin solder wires防氧化特种焊条special solder for oxidation resistance防氧化助焊剂antioxidizing solding aid仿金刚石晶体膜diamond like coatings, DLC非晶磁头材料amorphous magnetic head materials非晶硅薄膜amorphous silicon film非晶态磁光薄膜amorphous magneto-optical thin films非晶态磁头薄膜amorphous magneto-optical thin films非晶态磁头材料amorphous magnetic alloys for magnetic head非晶态软磁合金amorphous soft magnetic alloys非零色散位移单模光纤non-zero dispersion shifted dingle mode fiber; G.655fiber非蒸散型吸气剂non-evaporable getter氟化铵溶液ammonium fluoride solution氟化钡barium fluoride氟化钙celeium fluoride氟化镁magnesium fluoride氟化镁magnesium fluoride氟化镁钾:锰potassium Magnesium fluoride activated by managanese氟化铅lead fluorede氟锗酸镁:锰magnesium fluorogermanate activated by manganese负胶漂洗液wash liquid for negative resist负胶显影液developer for negative photoresist负温度系数热敏电阻陶瓷negative temperature constant thermosensitive ceramics ; NTC thermosensitive ceramics覆不锈钢箔层压板stainlass steel clad laminate覆超厚铜箔层压板super-thick copper clad laminate覆电阻箔层压板resistance foil clad laminate覆铝箔层压板aluminum clad laminate覆镍铜带capper strip coated with nickel覆铍青铜箔层压板copper containing beryllium clad laminate覆铜箔、铝箔层压板aluminum foil copper clad laminate覆铜箔酚醛纸层压板phenolic cellulose paper copper clad laminate覆铜箔复合基层压板composite copper clad laminate覆铜箔改性聚苯醚玻璃布层压板modified polyhenylene oxide resin woven glass fabric copper clad laminate覆铜箔环氧玻璃布层压板epoxide woven glass fabric copper clad laminate覆铜箔环氧纸层压板epoxide cellulose paper copper clad laminate覆铜箔聚四氟乙烯玻璃布层压板PTEE woven glass fabric copper clad laminate覆铜箔聚酰亚胺玻璃布层压板polyimide resin woven glass fabric copper clad laminate覆铜箔聚酰亚胺芳纶布基层压板polyimide resin woven aromatic polyamide fibre clad laminate覆锡铈合金铜质带材copper strip coated with tin-cerium alloy高饱和磁感应强度铁氧体high Bs ferrite高纯氨high purity ammonia高纯氮high purity nitrogen高纯二甲基镉high purity dimethylcadmium高纯二氧化碳high purity carbon dioxide高纯二乙基碲high purity diethyltellurium高纯二乙基锌high purity diethylzinc高纯氟化氢hydrogen fluoride高纯硅烷high purity silicane高纯氦high purity helium高纯甲烷high purity methane高纯氪high purity kryton高纯磷烷high purity phosphine高纯硫化氢high purity hydrogen sulfide高纯六氟化硫high purity sulphur hexafluoride高纯六氟化钨high purity tungsten hexafluoride高纯六氟乙烷high purity hexafluroethane高纯铝带、箔strip &foil of high-purity aluminium 高纯铝线high-purity aluminium wire高纯氯high purity chlorine高纯氯化氢high purity hydrogen chloride高纯氢high purity hydrogen高纯三氟化氮high purity nitrogen trifluoride高纯三氟化磷high purity phosphorus trifluoride高纯三氟化硼high purity boron trifluoride高纯三氟化砷high purity arsenic trifluoride高纯三氟甲烷trifluoromethane高纯三甲基镓high purity trimethylgallium高纯三甲基铝high purity trimethylaluminum高纯三甲基锑high purity trimethylstibine高纯三甲基铟high purity trimethylinduum高纯三氯化硼high purity trichloride高纯三氯氢硅trichlorosilane高纯三乙基铝high purity triethyl aluminum高纯疝high purity xenon高纯砷烷high purity arsine高纯四氟化硅high purity silicon tetrafluoide高纯四氟化钛high purity titanium tetrafluoride高纯四氟化碳silicon tetrachloride高纯四氯化硅silicon tetrachloride高纯四氯化硅Ⅳsuper-purity silicon tetrachlonide ; tetrachlorosilane; silicon( ) chloride高纯溴化氢high purity hydrogan bromide高纯氩high purity argon高纯氧high purity oxygen高纯氧化亚氮high purity nitrous oxide高纯一氧化碳high purity carbon monoxide高纯乙硅烷high purity disilane高纯乙硼烷high purity diborane高功率低温度系数石榴石材料系列/high power and low temperature coefficient garnet material series高介电常数覆铜板high dielectric constant copper clad laminate高频镍锌铁氧体high frequency NiZn ferrite高强度铝焊丝high strength aluminium brazing wire高性能多用焊锡丝universal tin solder wire with high preformance锆钛酸铅镧电光陶瓷lead lanthanum zirconate titanate (PLZT) electrooptical ceramics锆钛酸铅热释电陶瓷lead zirconate titanate (PZT) pyroelectric ceramics锆钛酸铅压电陶瓷lead titanate-zirconate piezoslsctric ceramic工业纯铁industrial pure iron光固化助焊剂(单组分)light solidified antiwelding agent (single components)光固化助焊剂(双组分)light solidified antiwelding agent (two components)光敏胶photosensitive光纤硅涂料silicone coating materials for optical fiber光学级晶体铌酸锂晶体optic lithium niobate crystal光学级坦酸锂晶体optic lithium niobate crystal光学石英玻璃optical quartz glass; optical quartz sheep硅单晶monocrystalline silicon硅单晶抛光片monocrystalline silicon polished wafer硅多晶policrystalline silicon硅铝合金带、箔aluminium-silicon alloy strip & fuil硅酸铋单晶bismuth silicate single crystal; BSO; bismuth silicon oxide硅酸钙:铅、锰calcium silicate activated by lead and manganese硅酸镓镧lanthanum gallium silicate single硅酸锌:锰zinc orthosilicate activated by manganese硅外延材料silicon epitaxy material硅微粉silica micropowder过氧化氢hydrogen peroxide焊料防氧化油oxidation-resistant oil for solder焊锡膏solder pastes合成石英玻璃synthetic quartz黑碳化硅涂附磨具专用微粉specid black silicon cabide powder for coated abrasive products红宝石激光晶体ruby laser crystal红色荧光粉硫氧化钇:铕(Ⅲ)-red phosphor for color TV-pigmented yttrium oxysulfide : europium phosphor红色荧光粉硫氧化钇:铕(Ⅲ)-red phosphor for color display tube-pigmented yttrium oxysulfide: europium红色荧光粉硼酸钇钆:铕(Ⅲ)-red phosphor for plasma display panel-yttrium-gadolinium borate activated by europium厚膜导体浆料thick film conductor pastes厚膜电阻浆料thick film resistance pastes厚膜介质浆料thick film dielectric paste滑石陶瓷steatite ceramics环保型阻燃环氧灌封料flame retardant and harmless to environment type of epoxy potting compound环化聚异戊二烯橡胶负性光刻胶cyclized polyisoprene rubber negative photoresist; ultraviolet negative photoresist环己烷cyclohexane环氧密封胶(单祖分)one component epoxy sealant环氧膜塑料-[1]epoxy molding compound环氧膜塑料-[2]epoxy molding compound环氧树脂diglycidyl 4,5-epoxy-tetrahydrophthalic ester环氧树脂浇铸料(光电产品用)epoxy resin casting compound (for photoelectric devices)活化剂activator活性焊剂active solder活性焊锡丝active solder wire活性松香焊锡丝activated rosin cored tin solder wire加成型硅橡胶ARCsilicone rubber ARC (additive type )加成型液体硅橡胶(单组分)additional liquid silicone rubber (one component)加速剂accelerator甲苯toluene甲醇methanol尖晶石spinel; magnesium aluminate碱性清洗液alkaline cleaner碱性蚀刻剂alkaline etchant键垫用导电硅橡胶混炼胶electically conductive silicone rubber cornpounds for key pad键合硅铝丝aluminium-silicon bonding wire键合金丝gold bonding wire胶粘剂adhesive焦磷酸锶:铕strontium pyrophosphate activated by europium结晶型低温封接玻璃粉devitrifiable low-meiting sealing frits介质陶瓷材料dielectric ceramic materials金箔gold foil金红石瓷rutile porcelain , rutile ceramics金属薄膜metal thin films金属磁粉metal magnetic powder金属基(芯)覆铜箔板metal base(core) copper clad laminate金属丝筛网metal wire bolting cloth浸涂防粘隔离剂antisticking agent晶体清洗剂crystal cleaning agent晶体粘合剂crystal adhesise局部镀银铜带capper strip coated with argentum in part聚氨酯封装料urethane potting resin聚氨酯无蜡抛光软垫polyurethane waxless polishing pad; waxless polishing pad聚酰亚胺涂层胶polyimide coatings聚乙烯醇肉桂酸酯光刻胶polyvinyl cinnamate photoresist ;1# photoresist聚脂胶粘带polyester film tape聚酯型光刻胶polyester photoresist康铜极薄带材constantan foil可伐合金kover宽频带镍铜锌系铁氧体broad band NiCuZn series ferrite蓝色荧光粉硫化锌:银-blue Phosphor For Color TV Tube-Pigmented Zinc sulfide activated by silver蓝色荧光粉硫化锌:银、铝-blue phosphor for color display tube-zinc sulfide activated by silver and aluminum蓝色荧光粉铝酸钡锶:铕(Ⅱ)Ⅱ-blue phosphor for plasma display panel-barium magnesium aluminate activated by europium()镧锆钛酸铅陶瓷lead lanthanum titanate (PLZT) ceramics锂铁氧体材料系列Li ferrite material series磷化镓单晶gallium phosphide monocrystal磷化铟单晶indium phosphide monocrustal磷化铟外延材料indium phosphide epitaxy materials磷酸phosphoric acid磷酸镓单晶gallium phosphate single crystal; gallium orthophosphate磷酸锌锶:锡、zincstrontium phosphate activated by tin磷酸氧钛钾晶体potassium titanyl phosphate crystal; KTP crystal零色散位移单模光纤zero dispersion shifted single mode fiber; G.653fiber硫化锌:铜zinc sulfide activated by copper硫化锌:铜、氯Zinc sulfide activated by copper and chlorine硫化锌:银zinc sulfide activated by silver硫化锌镉:铜zinc cadmium sulfide activated by cooper硫酸sulphuric acid硫酸钇:铈Ⅲyttrium silicate activated by cerium()六方硫化锌:银hex Zinc sulfide activated by silver六方铝酸镁镧钕晶体lanthanum magnesium hexaaluminate卤磷酸钙:锑锰.calcium halophosphate activated by antimony and manganese滤色膜用彩色树脂浆colour polymer for manufacture of color filter铝硅铁粉芯AlSiFe magnetic core铝镍钴永磁permanent magnet AINiCo铝镍钴永磁体AlNiCo permanent magnet铝镍永磁体AlNi permanent magnet铝酸镧单晶lanthanum aluminate single crystal铝酸镁单晶magnesium aluminate single crystal绿色荧光粉green phosphor for plasma display panel绿色荧光粉硫氧化锌:铜、铝-green phosphor for color TV tube-zinc sulfide activated by copper and aluminum绿色荧光粉硫氧化锌:铜、铝-green phosphor for color display tube-zinc sulfide activated by copper and aluminum绿碳化硅微粉green silicon carbide powder镁橄榄石瓷forsterite porcelain镁锌铁氧体MgZn ferrite锰白铜丝constantan wire锰锌铁氧体Mn-Zn ferrite锰锌系铁氧体材料高磁导率锰锌铁氧体μhigh i MnZn ferrite弥散强化无氧铜dispersion strengthened copper oxygen免清洗波峰焊剂free cleaning soldering flux of wave crest免清洗焊锡丝no clean solder wire免清洗助焊剂free-clean soldering flux抹音磁头环氧灌封料potting material for sound removing magnetic head of recoder ; ZM potting material钼板molybdenum sheet钼箔molybdenum foil钼封接玻璃粉molybdenum sealing glass powder钼丝molybdenum wire钼酸铅单晶lead molybdate single crystal钼钨合金丝molybdenum-tungsten alloy wire内导电石墨乳outside electric conduction graphite latices耐高温胶粘剂adhesive with high temperature resistance耐热型纸基压敏胶粘带high temperature resistance creped masking tape挠性覆铜箔材料flexible copper clad material铌酸钾晶体potassium niobate crystal; KN crystal铌酸锂单晶lithum niobate single crystal; LN铌酸锂开关Qlithium niobate Q-switch镍板nickel sheets镍带nickel strips镍合金丝nickle alloy wire镍及镍合金带nickel and nickel alloy strip镍及镍合金管nickel and nickel alloy tube镍及镍合金丝nickel and nickel alloy wire镍铁氧体材料系列Ni ferrite material series镍铁氧体高功率材料系列Ni ferrite high power material series镍铜合金nickel-copper alloy镍线nickel wire镍锌铁氧体Ni-Zn ferrite镍锌系铁氧体材料抗电磁干扰用镍铜锌系铁氧体anti-EMI NiCuZn series ferrite钕铁硼永磁NbFeB permanent magnets钕铁硼永磁粉NdFeB permanet magnetic powder钕铁硼永磁体(烧结)NdFeB magnets(sintered)喷金丝、条metal coated solders Pl38喷涂纯锌丝pure zinc wires for spraying coating硼酸镉:锰cadmium borate activated by manganese硼酸铯锂晶体cesium lithium borate crystal; CLBO crystal铍青铜箔材beryllum bronze foil铍酸镧激光晶体lanthanum beryllate laser crystal其他锰锌铁氧体other MnZn ferrite气炼石英玻璃blouing & melting quartz气炼透明石英玻璃管gas semltime quartz glass tubs气相沉积氮化硼陶瓷CVD boron nitride ceramics; PBN ceramics氢氟酸hydrofluoric acid氢氧化铵ammonium hydroxide热风整平助熔剂flux for hot air plating人造石英晶体αsynthetic quartz crystal; -SiO2软铅焊料solder三氯甲烷chloroform三氯乙烯trichloroethylene三硼酸锂晶体lithium triborate crystal; LBO crystal三元系压电陶瓷材料ternary system piezoelectric ceramic钐钴永磁粉SmCo permanet magnetic powder钐钴永磁体(烧结)SmComagnets(sintered)闪烁锗酸铋单晶scintillation bismuth germinate single crystal烧结永磁铁氧体材料sintered permanent magnet materials砷化镓单晶gallium arsenide monocrystal砷化镓外延材料gallium arsenide epitaxy material砷酸镁:锰magnesium arsenate activated by manganese石英玻璃quartz glass石英梯度型多模光纤quartz gradient type multimode fiber室温固化环氧灌封料RTV expoxy resin compound室温硫化灌封硅橡胶(双组分)RTV-2 potting and encapsulating silicone rubber室温硫化硅橡胶(单包装)RTV silicone rubber (one package)室温硫化硅橡胶(单组分)one-component RTV silicone rubber ; RTV silicone adhesives/sealants室温硫化硅橡胶(双组分)RTV silicone rubber (two components)释汞吸气剂getter mercury dispenser树脂芯焊锡丝rosin cored tin solder wires数据石英光纤data quartz fiber双向拉伸聚丙烯薄膜biaxially oriented polypropylene film水溶性光刻胶water soluble photoresist水溶性光致变色抗蚀干膜water soluble photochromatism dry photoresist水溶性焊剂water flux水溶性助焊剂water soluble soldering flux; water cleaning soldering flux丝网感光胶silk screen photosensitive emulsion丝印塑料油墨ink for plastics silk screen printing四硼酸锂单晶lithium tetraborate single ctystal; LBO塑料光纤plastic fiber酸性清洗剂acid cleaner钛宝石激光晶体Ti-doped saphire钛箔titanium foil钛酸钡热敏电阻陶瓷barium titanate thermosensitive ceramics钛酸钡铁电陶瓷barium titanate ferroelectric ceramics钛酸铅压电陶瓷lead titanate piezoelectric ceramics钽酸锂单晶lithum tantalite single crystal;LT碳化硅外延材料silicon carbide epitaxial materials碳基铁粉芯Fe-C magnetic core碳酸盐carbonate搪锡助焊剂tin coating solding aid陶瓷基无机覆铜板陶瓷基无机覆铜板ceramic inorganic base copper clad laminate特高频软磁铁氧体VHF soft magnetic ferrite特种切削液special cutting fluids锑化镓单晶gallium antimonide monocrystal锑化铟晶体indium antimonide crystal锑锰锆钛酸铅压电陶瓷lead antimony manganese zirconia titanate(SM-PZT) piezoelectric ceramics铁封接玻璃粉iron sealing glass powder铁钴钒软磁材料FeCoV soft magnetic material铁镍合金Fe-Ni alloy; permalloy铁镍钼粉芯FeNiCo magnetic core铁镍软磁合金FeNi soft magnetic alloy铁氧体永磁permanent ferrite materials通用石榴石材料系列general garnet material series铜基覆铜箔板copper base copper clad laminate铜离子抑制剂copper ion inhibitor透明石英玻璃仪器及器皿transparent quartz glass instruments and wares脱胶液electro-conductive adhesives remover外导电石墨乳outside electric conduction graphite latices微波高值铁氧体谐振子系列Qmicroweve high-Q ferrite resonator series钨粉tungsten钨铼合金丝tungsten-rhenium alloy wire钨铈电极W-Ce electrode钨丝tungsten wire钨酸钙:铅calcium tungstate activated by lead无磁不锈钢non-magnetic stainless steel无电镀铜液electroless copper plating liquid无高效清洗剂ODShigh performance cleaning agents containing no ODS无水乙醇ethanol absolute无氧铜oxygen-free copper; high-conductivity copper; OFHC稀土钴永磁rare earth cobalt permanent magnets锡化丝印干膜dry photoresist for silk screen printing锡锑银镍封装焊料tin-antimony-silver-nickel solder for hermetical sealing锡渣还原剂solder oxide reducing reagent硝酸nitric acid形状记忆合金shape memory alloy; memory alloy研磨切割油polishing & cutting oil; PC oil盐酸hydrochloric acid厌氧胶anaerbic adhesive氧化镝dysprosium oxide氧化铥thulium oxide氧化铒erbium oxide氧化钆gadolinium oxide氧化锆zirconium oxide氧化锆陶瓷材料zirconia ceramics氧化钬holmium oxide氧化钪scandium oxide氧化镧lanthanum oxide氧化镥iutrcium oxide氧化铝瓷alumina porcelain氧化铝瓷alumina ceramics氧化镍电致变色陶瓷材料nickel oxide electrochromic ceramics氧化钕neodymium oxide氧化铍陶瓷beryllia ceramics or beryllium oxide氧化镨prasecdymium oxide氧化钐samarium oxide氧化铈cerium oxide氧化铽terbium oxide氧化铁薄膜γ-Fe2O3 thin films氧化钨电致变色陶瓷陶瓷tungsten oxide electrochromic ceramics; wolframium oxide electrochromic ceramies氧化锌zinc oxide氧化锌压电电阻陶瓷zinc oxide voltage-sensitive ceramics氧化钇yttrium oxide氧化镱ytterbium氧化铕europium oxide液晶显示材料liquid crystals for display液体钎剂soldering flux乙酸丁酯n-butyl acetate乙酸乙酯ethyl acetate异丙醇2-propanol银箔silver foil银铜焊料siliver-copper braging alloy印刷板软钎焊用钎剂soldering flux for printer circuit boayds荧光粉phosphor for monochromatic display tube硬性及软性标牌胶hard & flexible decorations adhesive永磁铁氧体料粉hard ferrite powder用氧化锌低压化的硫氧化钇Ⅲeuropium () active yttrium oxysulfide coated by zinc oxide有机硅灌封料silicone potting materials有机硅浸渍料silicone dipping compound有机活性助焊剂organic active fluxes and solders预浸盐pre-dip salt预涂助焊剂precoated soldering flux远紫外负性光刻胶deep ultraviolet negative photoresist远紫外正性光刻胶deep ultraviolet positive photoresist窄线宽石榴石材料系列narrow linewidth garnet material粘结钕铁硼磁体bonded NdFeB magnets粘结永磁铁氧体材料bonded Permanet ferrite materials照明用荧光粉LEDphosphor for LED illumination锗单晶monocrystalline germanium锗酸铋单晶bismuth germinate single ctrstal; BGO; bismuth germanium oxide蒸散型吸气剂evaporable getter正矾磷酸钇:铕yttrium vanadophosphate activated by europium正胶显影液developer for positive photoresist正性光刻胶LCDLCD positive photoresist直接键合硅片direct bonded silicon wafer中子嬗变掺杂硅单晶neutral transmutation重氮丝印感光胶diazo silk screen printing photosensitive emulsion重硅酸钡:铅barium disilicite activated by lead皱纹纸胶带crepe paper tape助焊剂solding aid紫翠宝石可调谐激光晶体alexandrite tunable laser crystal紫外碱溶抗蚀印料UV alkaline soluble etching resist ink紫外正性光刻胶ultraviolet positive photoresist自干型耐腐蚀印料self-drying etchin gresist ink棕刚玉粉brown fused alumina powder阻燃包封料flame retarding encapsulating material阻燃环氧灌封料flame retarding epoxy potting compound阻燃密封胶(高压聚焦电位器用)flame retardant sealant (for high voltage focusing potentiometer)阻燃型彩色聚酯压敏胶带flame resistant colored pressure sensitive adhesive tape阻燃型室温硫化硅橡胶(双组分)flame resistant RTV silicone rubber (two components)。
某拜耳法赤泥铁铝赋存工艺矿物学特性
第 54 卷第 12 期2023 年 12 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.12Dec. 2023某拜耳法赤泥铁铝赋存工艺矿物学特性柳晓1, 2, 3,韩跃新2,何发钰4,高鹏2,袁帅2(1. 山东科技大学 能源与矿业工程学院,山东 青岛,266590;2. 东北大学 资源与土木工程学院,辽宁 沈阳,110819;3. 矿物加工科学与技术国家重点实验室,北京,100070;4. 中国五矿集团有限公司,北京,100010)摘要:采用化学分析、X 射线衍射、光学显微镜和BPMA 等多种手段,从工艺矿物学角度研究山东某拜耳法赤泥的物质组成、粒度组成等,重点分析了及赤泥中铁和铝的赋存状态。
研究结果表明:赤泥的粒度微细,其矿物组成与化学成分均复杂;赤泥中所含的主要铁矿物为赤铁矿和针铁矿,主要铝矿物为一水软铝石和三水铝石;主要含铁和铝的物质有铁铝氧化物和微粒泥状硅酸盐混合物(钠硅渣),且2种物质中铁、铝含量变化较大,赤泥中铁铝氧化物质量分数为18.28%;铁铝氧化物各元素含量不均一,其中铝平均质量分数为12.78%,铁平均质量分数为45.81%。
赤泥中的赤铁矿和褐铁矿中均存在铁铝类质同象;含铝赤铁矿、铝针铁矿和铁铝氧化物的存在以及赤泥粒度微细粒钠硅渣容易聚团包裹铁、铝矿物等导致赤泥中的铁铝大部分难以分离。
关键词:拜耳法赤泥;工艺矿物学;铁铝赋存;类质同象;铁铝氧化物中图分类号:TD951 文献标志码:A 文章编号:1672-7207(2023)12-4620-11Process mineralogical characteristics of occurrence of iron andaluminum in a Bayer red mudLIU Xiao 1, 2, 3, HAN Yuexin 2, HE Fayu 4, GAO Peng 2, YUAN Shuai 2(1. College of Energy and Mining Engineering, Shandong University of Science and Technology,Qingdao 266590, China;2. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819,China;3. State Key Laboratory of Mineral Processing, Beijing 100070, China;4. China Minmetals Corporation, Beijing 100010, China)收稿日期: 2023 −02 −28; 修回日期: 2023 −06 −10基金项目(Foundation item):国家重点研发计划项目(2023YFC2909000);矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM-KJSKL-2023-22);山东科技大学菁英计划(skr21-3-C-108) (Project(2023YFC2909000) supported by the National Key Research and Development Program of China; Project(BGRIMM-KJSKL-2023-22) supported by the Open Foundation of State Key Laboratory of Mineral Processing; Project(skr21-3-C-108) supported by the Start up Fund for Talent Introduction and Scientific Research of Shandong University of Science and Technology)通信作者:高鹏,博士,教授,从事难选铁矿石清洁高效利用研究;E-mail :****************DOI: 10.11817/j.issn.1672-7207.2023.12.002引用格式: 柳晓, 韩跃新, 何发钰, 等. 某拜耳法赤泥铁铝赋存工艺矿物学特性[J]. 中南大学学报(自然科学版), 2023, 54(12): 4620−4630.Citation: LIU Xiao, HAN Yuexin, HE Fayu, et al. Process mineralogical characteristics of occurrence of iron and aluminum in a Bayer red mud[J]. Journal of Central South University(Science and Technology), 2023, 54(12): 4620−4630.第 12 期柳晓,等:某拜耳法赤泥铁铝赋存工艺矿物学特性Abstract:A study on a Bayer red mud from Shandong province from the perspective of process mineralogy was conducted through chemical analysis, XRD, optical microscope and BPMA automatic analyser. The material composition and particle size composition of red mud were studied in detail, and the occurrence state of iron and aluminum in red mud was emphatically analyzed. The results show that the particle size of red mud is fine, and its mineral composition and chemical composition are complex. The main iron minerals contained in red mud are hematite and goethite, and the main aluminum minerals are boehmite and gibbsite. The main substances containing iron and aluminum are iron-aluminum oxide and particulate muddy silicate mixture(sodium-silicate slag), and the content of iron and aluminum in the two substances varies greatly. The mass fraction of iron-aluminum oxide in red mud is 18.28%. The content of each element in iron-aluminum oxide is uneven, in which the average mass fraction of aluminum is 12.78%, and the average mass fraction of iron is 45.81%. There are iron-aluminum isomorphisms existing in hematite and limonite in red mud. Due to the existence of the isomorphism of iron and aluminum in hematite and goethite, and the existence of a considerable amount of iron-aluminum oxides, as well as the complex embedding characteristics of iron minerals, aluminum minerals and sodium-silicate slag, most of iron and aluminum in red mud are difficult to separate.Key words: Bayer red mud; process mineralogy; occurrence of iron and aluminum; isomorphism; iron-aluminum oxide赤泥是氧化铝生产过程中排放的主要废渣。
二氧化钛表面超强酸化光氧复合降解罗丹明B
第40卷第2期2021年3月Vol.40No.2Mar.2021大连工业大学学报JournalofDalianPolytechnicUniversityDOI:10.19670/ki.dlgydxxb.2021.0210二氧化钛表面超强酸化光氧复合降解罗丹明B温宇,杨大伟(大连工业大学轻工与化学工程学院,辽宁大连116034)摘要:采用共结晶方法制备了锌锆共掺杂的介孔二氧化钛,前驱体用硫酸处理使其具有超强酸性。
将制备的介孔二氧化钛用于降解废水模拟物罗丹明B,测试其光催化与氧催化降解能力。
通过紫外-可见分光光度计、X射线衍射、电镜扫描等对催化剂进行表征,实验结果表明,在强酸修饰二氧化钛前驱体的影响下,掺杂锌锆的介孔二氧化钛具有光催化与氧催化活性。
锌锆共掺杂介孔二氧化钛的光催化与氧催化效率分别达到了72%与25%o硫酸处理后在TiO2与掺杂原子表明形成酸性中心,在无光条件下氧化降解废水效率为30%,提高了降解效率。
关键词:二氧化钛;光催化;酸催化;罗丹明B中图分类号:X703.5文献标志码:A文章编号:1674-1404(2021)02-0136-04Composite degradation of rhodamine B using TiO2withphotocatalytic oxygen and super acidWEN Yu,YANG Dawei(SchoolofLightndustryandChemicalEngineering,DalianPolytechnicUniversity,Dalian116034,China) Abstract:The mesoporous titania doped with zinc oxide,zirconium dioxide,zinc and zirconium were prepared by the co-crystallization method and the precursor of mesoporous titania was pretreated with sulfuric acid to endowed it super acidic.The mesoporous titania was used for degradation of rhodamine B in simulated wastewater and its photocatalytic activity and oxygen catalytic ability was analyzed by UV-visible spectrophotometer,X ray diffraction,scanning electron microscopy.The results showed that the T1O2doped metal oxides and super acid exhibited excellent photocatalytic and oxygen catalytic ability.The degradation rate of rhodamine B photocatalyzed and oxygen catalyzed by the prepared catalysts were72%and25%,respectively.After treatment with sulfuric acid,the acidic centers were formed between the doped atoms and the surface of titanium dioxide,which improved the oxygen degrading efficiency of wastewater to30%.Keywords:TiO2;photocatalytic;acidic catalysis;rhodamine B0引言工业生产中生成的有机废水对环境造成严重污染,国家对废水排放标准执行越来越严格,如何降低或消除有机废水中大分子有机物成为研究的重点。
2000年以来天然放射增敏剂概览(英文)
2000年以来天然放射增敏剂概览(英文)
卢佳;邵宏
【期刊名称】《中国药学:英文版》
【年(卷),期】2003(12)3
【总页数】4页(P160-163)
【关键词】放射增敏剂;天然产物;肿瘤;放射疗法
【作者】卢佳;邵宏
【作者单位】北京大学基础医学院放射医学基础教研室;北京大学药学院药事管理与临床药学系
【正文语种】中文
【中图分类】R979.19;R730.55
【相关文献】
1.肿瘤放射增敏剂及增敏机制研究进展 [J], 周厚清;邢成;李伯南
2.放射增敏剂的增敏机制 [J], 高春玲;高春丽;宋维芳;谢立青
3.2000年以来放射增敏剂 (化学合成剂和基因治疗剂 )概览(英文) [J], 邵宏;卢佳因版权原因,仅展示原文概要,查看原文内容请购买。
血红铆钉菇多糖分离纯化及抗氧化活性研究
第20卷第1期北华大学学报(自然科学版)Vol.20No.12019年1月JOURNAL OF BEIHUA UNIVERSITY(Natural Science)Jan.2019文章编号:1009-4822(2019)01-0064-04DOI :10.11713/j.issn.1009-4822.2019.01.013血红铆钉菇多糖分离纯化及抗氧化活性研究王㊀贺,宋文刚,任㊀婷,牟莹莹(北华大学药学院,吉林吉林㊀132013)摘要:目的㊀探讨血红铆钉菇的多糖分离纯化及抗氧化活性方法.方法㊀应用传统热水浸提法提取粗多糖,进行反复冻融后初步去除蛋白,再用sevage 法除蛋白,纯化后苯酚-硫酸法测糖含量,考马斯亮蓝法测蛋白含量,对多糖进行超氧阴离子自由基㊁羟基自由基和DPPH 等体外抗氧化能力试验.结果㊀传统热水浸提方法得糖率为4.19%,除蛋白后蛋白含量为10.71%,并且血红铆钉菇多糖对超氧阴离子清除效果最好,而对DPPH 和羟自由基的清除效果也较为明显.结论㊀血红铆钉菇有较强的体外抗氧化活性,并且清除率随多糖的浓度增大而增加.关键词:血红铆钉菇;分离纯化;体外抗氧化中图分类号:R923文献标志码:A收稿日期:2018-10-26基金项目:吉林农业大学博士后基金项目.作者简介:王㊀贺(1993-),女,硕士研究生,主要从事药物化学研究,E-mail:2305030554@;通信作者:宋文刚(1968-),男,博士,教授,硕士生导师,主要从事天然药物化学研究,E-mail:1049538768@.Isolation ,Purification and Antioxidant Activity ofChroogomphus rutilus PolysaccharidesWang He,Song Wengang,Ren Ting,Mu Yingying(College of Pharmacy ,Beihua University ,Jilin 132013,China )Abstract :Objective To study isolation,purification and antioxidant activity of Chroogomphus rutilus Polys-accharides.Method Polysaccharides with water extracted by traditional method was repeated freezing and thawing in order to remove protein.Purified polysaccharides were tested for sugar content by phenol-sulfuric acid method.Determination of protein content was measured by using the Bradford method.Experiment on the effect of polysaccharides scavenging DPPH,hydroxyl radicals and superoxide anion.Results The probability of obtaining polysaccharide by the traditional method is 4.19%.After protein removal,the protein content was 10.71%,and the polysaccharide has the best effect on superoxide anion removal,and the effect of DPPH and hydroxyl radical scavenging is also obvious.Conclusion Chroogomphus rutilus has great antioxidant activity in vitro,and the clearance rate increases with the concentration of the polysaccharide increase.Key words :Chroogomphus rutilus ;separation and purification;in vitro antioxidant ㊀㊀多糖是广泛存在于植物㊁动物㊁微生物组织中的一类天然高分子化合物,是维持生命正常运转的基本物质之一,具有抗氧化㊁抗衰老㊁调节免疫等多种生理活性[1],且无毒副作用,已被广泛应用于医药和保健食品领域.真菌多糖是由各种真菌的子实体和菌丝体所产生的一类代谢产物[2].在国际上,真菌多糖被称为生物反应调节物,简称BRM,可作为免疫增强剂和免疫激活剂.目前,在全球范围内约有数千种真菌,其中不仅有许多具有食用价值的美味真菌,还有许多具有保健功能的真菌,也有不少是具有毒性的真菌.研究表明:药用菌的活性多糖具有抗菌㊁抗病毒和抗凝作用,可提高肝脏的解毒功能,提高动物的氧利用率,降低血黏稠度,并具有强心㊁降糖㊁镇静㊁镇痛㊁平喘㊁止咳㊁化痰的功效.20世纪中后期,有学者通过数次重复实验证明了食用真菌多糖的抗肿瘤活性,自此以后,真菌多糖逐渐成为国内和国际各个学科领域研究的热点之一[3].血红铆钉菇(Chroogomphus rutilus(Schaeff.) l.)属担子菌亚门㊁牛肝菌目㊁铆钉菇科㊁铆钉菇属,多分布于黑龙江㊁吉林㊁辽宁㊁四川㊁山西㊁湖南㊁西藏㊁云南㊁广东㊁河北等地区[4],东北地区俗称红蘑㊁松树伞㊁松蘑等.血红铆钉菇是膳食纤维㊁天然抗癌及抗氧化物质的重要来源[5],在健胃㊁抗癌㊁防病㊁治疗糖尿病方面有辅助治疗的作用,另外,血红铆钉菇还有预防早衰及抗辐射功效.本研究以血红铆钉菇多糖为主要研究对象,对铆钉菇多糖进行了提取和纯化,此结果为血红铆钉菇的深入研究奠定基础.目前,对血红铆钉菇的研究多数集中在对它的分类㊁形态和培养等方面,而国内外对血红铆钉菇的提取工艺㊁抗氧化活性研究较少[6],血红铆钉菇的多糖功效具有广阔的开发利用前景,有必要对其多糖进行系统研究,并针对其抗氧化作用进行更深入的探讨.1㊀材料与方法1.1㊀材料与试剂血红铆钉菇(市售);无水乙醇(天津市致远化学试剂有限公司);正丁醇(辽宁泉瑞试剂有限公司);三氯甲烷(北京化工厂);硫酸(天津市凯信化学有限公司);苯酚(北京化工厂);葡萄糖(辽宁泉瑞试剂有限公司).1.2㊀试验方法1.2.1㊀基本工艺样品的制备:血红铆钉菇浸泡过夜,撕碎,用热水浸法提取3次后合并提取液.浓缩提取液至1000mL 后,缓慢加入4倍体积无水乙醇进行醇沉,隔夜.去上清后,用乙醚乙醇反复脱水干燥3次,离心,将沉淀放入真空干燥器干燥,得粗多糖.样品除蛋白:将粗多糖溶于三蒸水,放入-80ħ冰箱中进行反复冻融至没有沉淀,再用sevage法除蛋白,除净沉淀后冻干,作为下一试验的样品. 1.2.2㊀血红铆钉菇多糖的鉴定应用苯酚-硫酸法测定多糖含量.1)葡糖糖标准液配置(100μg/mL):取50mg葡萄糖,加入适量水溶解,定容至500mL;2)标准曲线制作:精取葡萄糖溶液5,10,15,20,25,30μL,用水补至50μL,加入5%苯酚25μL及硫酸125μL,室温放置30min,在490nm测吸光度;3)糖含量测定:取多糖20mg,加入适量蒸馏水溶解,定容至500mL,按照2)的方法测量吸光度.利用所得方程式计算出糖含量,然后代入下列公式计算提取率:多糖提取率=VˑCˑfˑW2W3ˑW1ˑ100%,式中:W1为血红铆钉菇的质量(g);W2为由W1提取的血红铆钉菇多糖质量(g);W3为从W2中称取的实验用的粗多糖质量(g);V为溶解W3定容后所得体积(L);f为校正系数;C为所得方程式计算结果,即多糖浓度(g/L).应用考马斯亮蓝法测定蛋白含量.1)考马斯亮蓝试剂配制:称取考马斯亮蓝0.01g,溶解于5mL的95%乙醇中,加入10mL的85%的磷酸,用蒸馏水稀释至100mL,过滤备用;2)蛋白质标准溶液配制:将5mg/mL的牛血清白蛋白加水稀释至50μg/mL;3)标准曲线的制作:分别量取标准品0,0.2,0.4,0.6,0.8,1.0mL装入玻璃试管中,加蒸馏水补至1.0mL.加考马斯亮蓝4mL,静置5min后在波长595nm处测定吸光度;4)蛋白含量测定:取0.1g/L样品5mL,按照标准曲线方法操作,测定吸光度.1.2.3㊀多糖抗氧化活性的研究1)超氧阴离子自由基清除试验:取Tris-HCl缓冲溶液(pH=8.2)加入不同浓度(50,100,200, 400,800μg/mL)的多糖溶液,混匀后保温,然后加入邻苯三酚反应,25ħ水浴反应4min,最后加入HCl终止反应,在325nm处测吸光度,以蒸馏水作为对照,计算出样品对O2-㊃的清除率.计算公式: O2-㊃清除率=(V1-V0)/V1ˑ100%,式中:V1为样品组吸光度;V0为对照组吸光度. 2)羟自由基清除试验:96孔板中加入50μL 0.15mmol/L的FeSO4㊁20μL2mmol/L的水杨酸㊁10μL不同浓度(50,100,200,400,800μg/mL)的多糖溶液㊁50μL6mmol/L的H2O和20μL蒸馏水;空白组将多糖溶液替换为蒸馏水,对照组将水杨酸替换为蒸馏水;将96孔板放入37ħ水浴中, 1h后冷却,用三蒸水调零,在510nm处测吸光度,做3组平行实验,取吸光度平均值,吸光值越小,清除羟基自由基的效果越好.以抗坏血酸(V C)替换多糖样品,作阳性对照.用下面公式计算多糖对羟基自由基的清除率:㊃OH清除率=A空白-(A样品-A对照)A空白ˑ100%.3)DPPH清除试验:样品组在96孔板中加入100μL不同浓度(50,100,200,400,800μg/mL)的多糖溶液与100μL的DPPH溶液,做3组平行实验;56第1期王㊀贺,等:血红铆钉菇多糖分离纯化及抗氧化活性研究对照组DPPH 溶液用95%乙醇替换,空白组的多糖溶液替换为蒸馏水.将96孔板28ħ水浴30min 后,用50μL 蒸馏水和150μL 95%的乙醇调零,于515nm 处测定吸光值,结果取平均值.用抗坏血酸(Vc)做阳性对照,计算DPPH 清除率:DPPH 清除率=A空白-(A 样品-A 对照)A 空白ˑ100%.2㊀结果与分析2.1㊀多糖的鉴定2.1.1㊀糖含量测定结果应用苯酚-硫酸法测定多糖的含量,用葡萄糖作为标准品,吸光度为纵坐标y ,葡萄糖质量(μg)为横坐标x ,绘制标准曲线(见图1),计算回归方程和糖含量,得到回归方程为y =0.0798x +0.0746,相关系数R 2=0.9926.代入公式,计算得糖率为4.19%.图1苯酚-硫酸法标准曲线Fig.1Standard curve of phenol-sulfuric acid method2.1.2㊀蛋白含量测定结果蛋白含量测定标准曲线见图2.回归方程为y =0.0056x +0.2855,R 2=0.9922.将血红铆钉菇多糖的吸光度值代入方程,计算出多糖中蛋白质含量为10.71%.图2考马斯亮蓝法标准曲线Fig.2Standard curve of Bradford method2.2㊀体外抗氧化试验2.2.1㊀超氧阴离子自由基清除试验结果超氧阴离子是生成直接与生物大分子反应的自由基如过氧化氢㊁羟自由基等的前体,因此,抗氧化物对超氧阴离子的清除能够去除潜在的氧化作用[7].图3显示:铆钉菇多糖对超氧阴离子表现出明显的浓度相关性,其清除率随浓度的增加而增强.在800μg /mL 时清除率达90.06%,与V C 的清除率相近,表现出很好地清除活性.图3多糖对超氧阴离子(O 2-㊃)抑制作用Fig.3Inhibition of polysaccharides on O 2-㊃2.2.2㊀羟自由基清除试验结果羟自由基被认为是毒性最强的活性氧自由基,辐射㊁损伤等物理㊁化学因素都会促进其形成,是造成生物有机体过氧化损伤的主要因素[8].图4显示:不同浓度的铆钉菇多糖对羟自由基的清除能力随铆钉菇多糖的浓度增大而增强,呈现明显的量效关系.在浓度800μg /mL 时,其清除能力为66.84%.Vc 在浓度为200μg /mL 时清除能力达到饱和,说明铆钉菇多糖对㊃OH 对清除作用较明显,但不及Vc.图4多糖对羟基自由基(㊃OH )清除能力Fig.4㊃OH-scavenging activity of polysaccharides2.2.3㊀DPPH 清除试验结果DPPH 是有机溶剂中一种稳定的自由基,在517nm 处有吸收峰,呈紫色.当自由基清除剂存在时,DPPH 的孤电子被配对,颜色变浅,在最大吸收波长处吸光度变小,且颜色变化与配对电子数成化学剂量关系.因此,可用来评价自由基的清除情况[8].结果见图5.血红铆钉菇对自由基清除作用较强,在浓度为800μg /mL 时清除率达到最大,为75.58%,呈明显的剂量依赖性关系.66北华大学学报(自然科学版)第20卷图5多糖对自由基的清除能力Fig.5Free radical scavenging activity of polysaccharides 3㊀结㊀㊀论血红铆钉菇的子实体一般较小,为浅咖啡色[9],肉为暗红色,呈铆钉状,因形状似铆钉而得名,肉质厚,味道鲜,是营养价值很高的食用菌之王.现对血红铆钉菇多糖的分离纯化及抗氧化作用做了初步的试验研究,可为后续工作奠定基础.多糖提取方法是对多糖研究的基础[10],在对血红铆钉菇的分离纯化试验中,使用传统热水浸提方法提取多糖的得糖率为4.19%.血红铆钉菇的蛋白质含量较高,在试验过程中,行sevage法除蛋白达数十次,反复冻融十几次.纯化后测得蛋白含量为10.71%,这说明传统热水浸提方法对血红铆钉菇多糖的提取效果较好,使用sevage法纯化后蛋白含量也较低.在体外抗氧化试验中,铆钉菇多糖对几种自由基都表现有清除活性,其中清除超氧阴离子的能力最强,虽然对超氧阴离子的清除效果相比Vc仍不足,但是其清除率在800μg/mL时达90.06%,表现出很好的生物活性.超氧阴离子是人体内的是一种对机体有破坏性的自由基,超氧阴离子能结合机体内含有的羟基(㊃OH)继而生成能够损伤细胞DNA,铆钉菇多糖对超氧阴离子的清除功能,大大降低了超氧阴离子对人体机能的损伤作用. DPPH是一种很稳定的自由基,使用DPPH测定样品对自由基清除能力其灵敏度较高,因此,通过使用DPPH来观察某一化学反应的速度是否有所下降,作为试验是否存在自由基反应的标志.在此次试验中,使用DPPH自由基清除试验来测定血红铆钉菇对自由基的清除能力,对比样品对超氧阴离子清除的能力,结果显示血红铆钉菇对自由基对清除能力稍弱,但仍显示出良好的自由基清除能力,在浓度达到400μg/mL时趋于平稳,在浓度为800μg/mL时对自由基对清除率为75.58%.羟基自由基属于活性氧化物,因其本身携带的未配对电子抢夺其他分子的电子后,使其他分子出现单电子继而发生自由基的连锁反应,对机体造成损伤,主要原因是其抢夺细胞膜的电子,能够杀死细胞,并降解DNA㊁细胞膜和多糖化合物,具有很强的攻击性.同时,在加入羟自由基的抑制剂后,羟基自由基引起的很多负面效应都会明显减少.在3组体外抗氧化试验中,血红铆钉菇对羟基自由基的清除能力最弱,在浓度达到800μg/mL时,其清除能力为66.84%,这表明血红铆钉菇虽然对羟基自由基有一定的抑制作用,但并不明显.以上实验表明:血红铆钉菇多糖是一种作用很强的抗氧化剂,表现出较好的抗氧化活性,是一种既有食用价值又有药用价值的多用真菌.目前国内外对血红铆钉菇多糖的研究成果有限,对多糖的研究方法涉及许多学科领域,对于血红铆钉菇多糖的分离纯化和抗氧化生物活性的研究还有待于进一步深入.参考文献:[1]张利民.夏至草多糖的提取㊁分离纯化及抗氧化活性研究[D].张家口:河北北方学院,2013. [2]郭宇.桦褐孔菌液体发酵和多糖提取工艺的研究[D].合肥:安徽农业大学,2012.[3]秦俊哲,陈明,陈合,等.食药用真菌多糖的研究现状与展望[J].中国食用菌,2004,23(2):6-9. [4]高婵娟.血红铆钉菇多糖的制备及生物学活性分析[D].沈阳:辽宁石油化工大学,2012.[5]李贞卓.血红铆钉菇化学成分及其抗肿瘤活性的研究[D].长春:吉林农业大学,2014.[6]张海悦,杨雪,李震,等.血红铆钉菇黄酮体外抗氧化活性的研究[J].食品研究与开发,2016,37(19): 109-113.[7]李云,黄荣城,许俊凰.红菇子实体多糖抑菌活性研究[J].福建林业科技,2015,42(2):98-102.[8]鲍素华.铁皮石斛多糖体外抗氧化活性的研究[D].合肥:合肥工业大学,2009.[9]董化研,郝册,牛玉蓉,等.血红铆钉菇生态学初步研究[J].中国农学通报,2010,26(7):191-194. [10]李佳,管燕莲,陈扣群,等.响应面法优化血红铆钉菇子实体多糖提取工艺[J].湖北农业科学,2016,55(15):3952-3954,3957.ʌ责任编辑:陈丽华ɔ76第1期王㊀贺,等:血红铆钉菇多糖分离纯化及抗氧化活性研究。
一种氧化酶制备具有抗肿瘤活性的靛玉红的方法[发明专利]
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810227846.7(22)申请日 2018.03.20(71)申请人 合肥皖为生物科技有限公司地址 230601 安徽省合肥市经济技术开发区青龙潭路西、肥光路东、滨河小区出口加工区公租房1栋114室(72)发明人 罗学才 王林 尹若春 (74)专利代理机构 合肥中谷知识产权代理事务所(普通合伙) 34146代理人 洪玲(51)Int.Cl.C12P 17/16(2006.01)C12N 9/04(2006.01)(54)发明名称一种氧化酶制备具有抗肿瘤活性的靛玉红的方法(57)摘要本发明涉及一种氧化酶制备具有抗肿瘤活性的靛玉红的方法,通过将吲哚溶于双水相体系,以氧化酶为催化剂进行合成反应;合成反应结束后用乙醇复溶,过滤后即得具有抗肿瘤活性的靛玉红。
该方法在常温常压下反应,具有工艺操作简单易行、成本低、环保、靛玉红产率高等优点。
权利要求书1页 说明书4页 附图4页CN 108486186 A 2018.09.04C N 108486186A1.一种氧化酶制备具有抗肿瘤活性的靛玉红的方法,其特征在于包括以下步骤:步骤(a)、将吲哚溶于双水相体系,以氧化酶为催化剂进行合成反应;步骤(b)、合成反应结束后用乙醇复溶,过滤后即得具有抗肿瘤活性的靛玉红。
2.根据权利要求1所述的一种氧化酶制备具有抗肿瘤活性的靛玉红的方法,其特征在于:步骤(a)中所述的氧化酶是葡萄糖氧化酶、血浆铜蓝蛋白中的一种或数种。
3.根据权利要求1所述的一种氧化酶制备具有抗肿瘤活性的靛玉红的方法,其特征在于:步骤(a)中所述双水相为有机相-水相,所述有机相是乙酸乙酯、甲醇、乙醇、丙酮、乙腈中的一种。
4.根据权利要求1所述的一种氧化酶制备具有抗肿瘤活性的靛玉红的方法,其特征在于:步骤(a)中所述的反应条件为反应温度是20~60℃,加入介体钙离子,反应时间是6~36h。
烟台希尔德新材料有限公司等与国家知识产权局专利复审委员会专利裁决纠纷上诉案
烟台希尔德新材料有限公司等与国家知识产权局专利复审委员会专利裁决纠纷上诉案【案由】行政行政管理范围行政作为专利行政行政行为种类行政裁决【审理法院】北京市高级人民法院【审理法院】北京市高级人民法院【审结日期】2020.04.29【案件字号】(2019)京行终1960号【审理程序】二审【审理法官】马军王东勇苏志甫【审理法官】马军王东勇苏志甫【文书类型】判决书【当事人】烟台希尔德新材料有限公司;中华人民共和国国家知识产权局;三菱化学株式会社;国立研究开发法人物质材料研究机构【当事人】烟台希尔德新材料有限公司中华人民共和国国家知识产权局三菱化学株式会社国立研究开发法人物质材料研究机构【当事人-公司】烟台希尔德新材料有限公司中华人民共和国国家知识产权局三菱化学株式会社国立研究开发法人物质材料研究机构【代理律师/律所】李超北京市金杜律师事务所;宋新月北京市金杜律师事务所;刘宝荣北京市金杜律师事务所;许良瑞北京市金杜律师事务所【代理律师/律所】李超北京市金杜律师事务所宋新月北京市金杜律师事务所刘宝荣北京市金杜律师事务所许良瑞北京市金杜律师事务所【代理律师】李超宋新月刘宝荣许良瑞【代理律所】北京市金杜律师事务所【法院级别】高级人民法院【终审结果】二审维持原判【字号名称】行终字【原告】烟台希尔德新材料有限公司;三菱化学株式会社;国立研究开发法人物质材料研究机构【被告】中华人民共和国国家知识产权局【本院观点】根据本专利说明书记载,本专利实际要解决的技术问题是提供一种不同于现有技术中晶型的替代的荧光体。
【权责关键词】合法第三人反证合法性维持原判【指导案例标记】0【指导案例排序】0【更新时间】2022-09-24 21:16:40烟台希尔德新材料有限公司等与国家知识产权局专利复审委员会专利裁决纠纷上诉案北京市高级人民法院行政判决书(2019)京行终1960号上诉人(原审原告):烟台希尔德新材料有限公司,住所地中华人民共和国山东省烟台市。
木犀草素在电沉积石墨烯修饰电极上的电化学研究及测定
木犀草素在电沉积石墨烯修饰电极上的电化学研究及测定赖文婷;李小宝;王文成;田鑫;温校勇;范德方;马重;孙伟【摘要】In this paper carbon ionic liquid electrode(CILE)was prepared by mixing liquid 1-hexylpyridinium hexafluo⁃ro-phosphate and carbon powder. Then graphene oxide was electroreduced and deposited on the surface of CILE to get a new kind of modified electrode denoted asGR/CILE. Electrochemical behaviors of luteolin on GR/CILE were investigated by cyclic voltammetry and differential pulse voltammetry. In pH 2.0 PBS solution luteolin exhibited a pair of well-defined redox peak, and the influences of scan rate and buffer pH were optimized. Under the optimal conditions the oxidation peak currents had a good linear relationship with luteolin concentration in the range from 4.0×10-8 mol/L to 4.0×10-6 mol/L with the detec⁃tion limit as 1.0×10-8 mol/L.%将正己基吡啶六氟磷酸盐与石墨粉混合制备一种离子液体修饰碳糊电极,用电化学还原的方法将氧化石墨烯沉积于该电极表面得到电化学沉积石墨烯修饰电极.通过循环伏安法和示差脉冲伏安法研究了木犀草素在该修饰电极上的电化学行为.在pH为2.0的磷酸缓冲液中对木犀草素溶液进行循环伏安扫描,出现了一对良好的氧化还原峰,考察了扫速和pH等条件对电化学反应的影响.在最佳条件下木犀草素的浓度在4.0×10-8 mol/L~4.0×10-6 mol/L之间与氧化峰电流呈良好的线性关系,检测限为1.0×10-8 mol/L.【期刊名称】《海南师范大学学报(自然科学版)》【年(卷),期】2015(000)002【总页数】4页(P172-175)【关键词】电化学沉积石墨烯;离子液体修饰碳糊电极;木犀草素;示差脉冲伏安法;循环伏安法【作者】赖文婷;李小宝;王文成;田鑫;温校勇;范德方;马重;孙伟【作者单位】热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158;热带药用植物化学教育部重点实验室海南师范大学化学与化工学院,海南海口 571158【正文语种】中文【中图分类】O657木犀草素(Luteolin,3,4,5,7-四羟基黄酮)是一种天然黄酮类化合物,在自然界中分布广泛,存在于许多植物中如菊花,金银花,紫苏叶,落花生等[1].木犀草素具有许多生化和药理作用,包括抗氧化、抗菌、抗病毒、抗炎和抗癌作用,它不仅可用于体外抗炎作用,而且具有抗肿瘤细胞增殖及增敏抗肿瘤药物作用[2].目前已经有多种检测木犀草素的方法[3-5],例如高效液相色谱法、毛细管电泳法、紫外光谱法、气相色谱法、分光光度法等,然而这些方法存在操作繁琐、灵敏度差、仪器昂贵、准确度不高等缺点.在木犀草素的结构中带有4个酚羟基结构,因此可以采用电化学的方法进行研究,而且电化学方法具有操作简单、成本低廉等优点,所以用电化学方法对木犀草素的研究具有重要意义.Lunte等人对木犀草素的电化学行为进行了研究[6];Zhao等制作了多壁碳纳米管修饰电极用于花生壳中木犀草素含量的测定[7];Zeng等将多孔碳修饰于电极表面用电化学方法测定了木犀草素[8].石墨烯(GR)是一种具有二维结构的纳米碳材料,具有独特的几何结构,其机械和电子性能,已经引起了人们极大的兴趣[9].由于GR具有良好的导电性,可以加快电极表面的电子传递速率,因此其被广泛应用于电化学分析和电化学传感检测[10].离子液体修饰碳糊电极(CILE)是一种新型的修饰电极,它以离子液体为粘合剂和修饰剂的碳糊电极,表现出良好的电化学性能,已被广泛应用于制备各种电化学传感器[11].本文以CILE为工作电极利用电沉积的方法制备了石墨烯修饰电极,进而建立了一种检测木犀草素的简单灵敏的电化学分析新方法.由于电极表面石墨烯的存在,木犀草素在修饰电极上出现了一对明显的氧化还原峰,电化学信号与裸电极相对显著增大,将该电极应用于木犀草素含量的测定,取得了良好的效果.1.1 仪器与试剂CHI 1210A型电化学工作站(上海辰华仪器有限公司);三电极系统:CILE或GR/CILE为工作电极,铂电极为辅助电极,参比电极为饱和甘汞电极.1.0 mmol/L木犀草素储备液(西安玉泉生物科技有限公司)以无水乙醇配制备用,正己基吡啶六氟磷酸盐(HPPF6,中国科学院兰州化学物理研究所绿色化学与研究中心),氧化石墨烯(太原炭美有限公司),石墨粉(上海胶体化工厂),支持电解质为0.10mol/L PBS所用其它试剂均为分析纯,试验用水均为二次蒸馏水. 1.2 修饰电极的制备根据文献的方法制备CILE[12],具体是将1.6 g石墨粉和0.8 g HPPF6混合,研磨均匀后填入空心玻璃管中压实,以铜丝作为导线,使用前将电极表面在硫酸纸上打磨平整.GR/CILE的制备方法是将CILE浸在含有3.0mg/mL GO和0.15mol/L LiClO4的混合溶液中,在-1.3 V(vs.SCE)电位下恒电位法沉积300 s后取出,用超纯水冲洗后N2吹干即可得到GR/CILE.1.3 实验过程在电位窗口0~1.0 V之间利用三电极系统对木犀草素的标准溶液进行循环伏安扫描,研究木犀草素的电化学行为;考察缓冲液pH以及扫描速度等实验条件对木犀草素的电化学行为的影响;利用示差脉冲伏安法测定不同浓度的木犀草素溶液,进而绘制出工作曲线.2.1 木犀草素在修饰电极上的循环伏安行为考察了1.0×10-6μmol/L的木犀草素在0.1mol/L pH 2.0的PBS缓冲液中不同电极上的循环伏安曲线,结果见图1.从图中可以看出在CILE和GR/CILE上均出现了一对氧化还原峰,为木犀草素的电化学行为[7].木犀草素是一种具有电化学活性的黄酮类化合物,可以在电极上直接发生氧化还原反应而出现一对氧化还原峰.木犀草素在CILE上的氧化峰电位(Epa)为0.603 V,还原峰电位(Epc)为0.555 V,氧化峰电流(Ipa)为10.26 μA,还原峰电流(Ipc)为9.96 μA.在GR/CILE上木犀草素的氧化还原峰电流明显增大,Ipa为22.10 μA,Ipc为21.04 μA,这是由于GR具有高比表面积和良好的导电性能,促进了木犀草素的电化学反应,因此GR/CILE可以用于木犀草素的高灵敏检测.2.2 缓冲液pH对木犀草素的电化学行为的影响在pH 1.5~6.0范围内考察了不同pH的PBS缓冲溶液对木犀草素测定的影响,结果见图2A,从图中可以看出氧化还原峰的峰电流和峰电位随着pH的改变而变化.当pH为2.0时氧化峰电流达到最大值(见图2B),因此本实验选择pH为2.0为测定酸度.随着pH的增大,氧化还原峰电位发生负移,表明有质子参与电极的反应.氧化峰电位和pH呈现良好的线性关系(见图2C),线性回归方程为Epa (V)=-0.055pH+0.675,方程的斜率为-55 mV/pH,接近于理论值-59 mV/pH,这说明木犀草素在修饰电极上的发生等质子等电子的反应.2.3 氧化还原峰电流和扫速的关系如图3A所示在pH为2.0的PBS缓冲液中,1.0×10-6mol/L的木犀草素溶液在不同扫速(10~280 mV/s)下的循环伏安图.从图中可以看出氧化还原峰电流随着扫速的增大而增大,电流与扫速之间呈现出良好的线性关系(见图3B),其线性回归方程为Ipa(μA)=14.47+435.34υ(V/s)(γ=-0.999)和Ipc(μA)=-17.30-558.98υ(V/s)(γ=-0.9996),说明木犀草素在电极上的氧化还原反应为吸附控制过程.随着扫描速度的增大,氧化峰正移,还原峰负移,电位差变大,这说明木犀草素在电极上的反应为一个准可逆的过程.氧化还原峰的电位和扫速作图得到两条线性直线(见图3C),其线性回归方程为Epa(V)=0.71+0.024 lnυ(γ=0.9988)和Epc=0.48-0.034lnυ(γ=-0.992).2.4 线性范围和检出限在最佳实验条件下,记录不同浓度的木犀草素在GR/CILE上的示差脉冲伏安曲线(见图4 A)及浓度与氧化峰电流的关系图(见图4 B).当木犀草素的浓度在4.0×10-8μmol/L~4.0×10-6μmol/L范围内氧化峰电流与浓度呈良好线性关系,线性方程为I(μA)=-20.21-99.77 C(μmol/L)(γ=-0.999),检测限为1.0×10-8μmol/L(3S0/S).2.5 重现性、稳定性和干扰离子的影响GR/CILE在1.0×10-6mol/L的木犀草素溶液中循环伏安扫描500圈后,峰电流能够保持原来的93.4%,由此说明GR/CILE在pH2.0 PBS缓冲液中能够有较好的稳定性.该修饰电极在1.0×10-6mol/L的木犀草素溶液平行测定5次之后,相对偏差在4.1%,说明有较好的稳定性.在含有1.0×10-6μmol/L的木犀草素溶液中分别加入100倍的干扰物质(钡离子,镉离子,钴离子,钾离子,锰离子,钠离子,丙氨酸,赖氨酸,胱氨酸,苏氨酸)进行干扰测定,结果表明相对偏差均小于5%,说明该方法有较好的选择性.制备了CILE和GR修饰CILE,以其为工作电极利用循环伏安法和示差脉冲伏安法研究了木犀草素的电化学行为.GR在电极表面的存在大大的改善了电极的性能,并由此建立了一种检测木犀草素的高灵敏度的电化学方法.在所选实验条件下木犀草素浓度在4.0×10-8mol/L~4.0×10-6mol/L范围内氧化峰电流与浓度之间有着良好的线性关系,检测限为1.0×10-8mol/L(3S0/S).【相关文献】[1]Haminiuk C W I,Maciel G M,Plata-Oviedo M S V,et al.Phenolic compounds in fruits–an overview[J].Food Sci Technol,2012,47(10):2023-2044.[2]Katarna H A,Ivan C,Livia S A,et al.Protective effect of quercetin and luteolin in human melanoma HMB-2 cells[J].Mutation Research,2005,565(2,3):105-112.[3]Areias F M,Valentao P,Andrade P B,et al.Phenolic finger⁃print of peppermintleaves[J].Food Chem,2001,73(3):307-311.[4]Wittemer S M,Veit M J.Validated method for the determi⁃nation of six metabolites derived from artichoke leaf extract in human plasma by high-performance liquid chromatogra⁃phy-coulometric-array detection[J].J Chromatogr B,2003,793(2):367-375. [5]Gutierrez F,Ortega G,Cabrera J L,et al.Quantification of quercetin using glassy carbon electrodes modified with multi⁃walled carbon nanotubes dispersed in polyethylenimine and polyacrylic acid[J].Electroanalysis,2010,22(22):2650-2657.[6]Hendrickson H P,Kaufman A D,Lunte C E.Electrochemis⁃try of catechol-containing flavonoids[J].J Pharm Biomed Anal,1994,12(3):325-334.[7]Zhao D M,Zhang X H,Feng L J,et al.Sensitive electro⁃chemical determination of luteolinin peanut hulls using multi-walled carbon nanotubes modified electrode[J].FoodChem,2011,127(2):694-698.[8]Zeng L J,Zhang Y F,Wang H,et al.Electrochemical behav⁃ior of luteolin and its detectionbased on macroporous car⁃bon modified glassy carbon electrode[J].AnalMethods,2013,5(13):3365-3370.[9]Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.[10]Gan T,Hu S.Electrochemical sensors based on graphene materials[J].Microchim Acta,2011,175(1-2):1-19.[11]Shiddiky M J A,Torriero A A J.Application of ionic liq⁃uids in electrochemical sensing systems[J].Biosens Bioelec⁃tron,2011,26(6):1775-1787.[12]Wang X L,Li G J,Liu L H,et al.Application of titanium dioxide nanowires and electroreduce graphene oxide modi⁃fied electrodes for the electrochemical detection of specific tlh gene sequence from Vibrio parahaemolyticus[J].Anal Methods,2015,7(6):2623-2629.。
映山红花总黄酮抗心肌缺血损伤作用的H_2S介导ROCK通路抑制机制
映山红花总黄酮抗心肌缺血损伤作用的H_2S介导ROCK通路抑制机制心肌缺血性疾病一直是威胁人类健康的主要疾病之一,缺血性心血管疾病,是世界范围内常见的死亡率和发病率较高的常见病。
有关心肌缺血性损伤的病理机制及有效地预防和治疗冠心病、心绞痛等心肌缺血性疾病的药物研究是大家关注的重点研究课题之一。
映山红花总黄酮(total flavones of rhododendra,TFR)系从映山红花中提取的有效部位,其主要成分为槲皮素、金丝桃苷及芦丁等黄酮类化合物,我们之前的研究表明映山红花总黄酮对大鼠和小鼠的心肌细胞缺氧性损伤有保护作用。
然而,TFR的保护作用机制还不是很清楚,本研究的目的探讨TFR对心肌缺氧损伤保护作用的机制,重点研究TFR作用与Rho相关的卷曲螺旋激酶(Rho associated coiled coil-forming kinase,ROCK),钾离子通道及H2S的关系。
实验目的:1.观察TFR对于心肌缺血、缺氧性损伤的保护作用;2.探讨TFR抗心肌缺血性损伤作用与ROCK的关系,尤其是H2S介导的ROCK抑制与其抗损伤作用的关系;3.TFR对心肌细胞钾离子通道的作用。
实验方法:1.冠状动脉左前降支结扎致大鼠心肌缺血再灌注损伤模型,大鼠冠状动脉左前降支结扎30min后,再灌注90min,测定心电图、血清乳酸脱氢酶(lactate dehydrogenase,LDH)和肌酸激酶(creatinine kinase,CK)活性的测定,观察不同组心肌梗塞面积的比率,并进行心肌组织苏木素-伊红(HE)染色观察病理学改变,使用western blot方法检测其心肌组织中ROCK1和ROCK2蛋白的表达。
2.新生乳鼠心肌细胞缺氧再给氧模型,检测细胞活力,LDH活性和心肌肌钙蛋白T(cardiac troponin T,c Tn T)水平和丙二醛(malondialdehyde,MDA)含量。
使用Western blot检测ROCK1和ROCK2蛋白表达水平。
ICP-AES法测定赤芍中的常量和微量元素
ICP-AES法测定赤芍中的常量和微量元素马晓宇;杨艳;任树林【摘要】目的建立测定赤芍中金属元素含量的分析方法.方法用浓硝酸和高氯酸的混合酸为消解剂消化样品,利用电感耦合等离子发射光谱法(ICP-AES)进行测定.结果赤芍中Ca,K,Mg,Fe,Zn,Cu,Mn和Cr的含量(μg·g-1)分别为15 746,7 462.2,3 005.2,139.75,37.450,17.600,17.150和2.050,加标回收率在96.7%~104.2%之间(n=6),各元素的相对标准偏差RSD在0.54%~3.9%之间(n=6).结论该方法是一种快速、灵敏、准确的分析方法,可为赤芍的进一步研究提供科学依据.【期刊名称】《西北药学杂志》【年(卷),期】2011(026)003【总页数】3页(P163-165)【关键词】赤芍;微量元素;电感耦合等离子发射光谱法【作者】马晓宇;杨艳;任树林【作者单位】延安大学化学与化工学院,陕西,延安,716000;延安大学化学与化工学院,陕西,延安,716000;延安大学化学与化工学院,陕西,延安,716000【正文语种】中文【中图分类】R927.2赤芍为毛茛科双子叶植物芍药、草芍药或川赤芍的干燥根。
其性苦、微寒,归肝经,具有清热凉血、散瘀止痛的功效[1]。
现代药理研究表明,赤芍还具有抗血栓形成、抗血小板聚集、抗肿瘤、降血脂和抗动脉硬化等多方面的作用[2]。
因此,赤芍有着广阔的分析研究和应用前景。
笔者采用浓硝酸和高氯酸的混合酸(体积比9∶1)对赤芍试样进行消解,用ICP-AES法测定其中8种金属元素的含量,为赤芍的进一步研究和开发利用提供依据。
1.1 仪器 ICPS-7510岛津等离子发射光谱仪(岛津国际贸易有限公司);AUY220岛津电子天平(岛津国际贸易有限公司);OPK-I优普超纯水机(成都超纯科技有限公司);702电热板(浙江省诸暨县马剑电热仪器厂)。
实验中所用的烧杯、漏斗、容量瓶、玻璃棒等玻璃仪器,在使用前均经40 mL·L-1 硝酸浸泡过夜,用优普超纯水清洗后,晾干备用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Red-emitting cerium-based phosphor materials for solid-statelighting applicationsR.Le Toquin,A.K.Cheetham*Materials Research Laboratory,University of California,MRL MC-CAM Building,Room 3117C,Santa Barbara,CA 93106,USAReceived 1March 2006Available online 3April 2006AbstractThe discovery of phosphor materials that can be excited around 380or 460nm is essential for improving the efficiency and light qual-ity of LED-based solid-state lighting devices.We have found,for the first time,a luminescent cerium compound emitting bright red light.CaSiN 2:Ce 3+is a new phase in the calcium silicon nitride ternary system that crystallizes in a face-centered cubic unit cell with a latticeparameter of a =14.8822(5)A˚.This compound can be used for white light applications:(i)to enhance the light quality of the system based on a blue LED with a yellow/green phosphor,(ii)as the red phosphor in the UV LED plus three RGB phosphors setup or (iii)directly as a yellow phosphor with a 460nm LED due to the emission/excitation band shift with chemical substitution.Ó2006Elsevier B.V.All rights reserved.1.IntroductionThe development of very efficient UV/blue light emitting diodes (LEDs)based on wideband gap semiconductor such as GaN has led to considerable progress in the field of solid-state lighting as well as backlighting for display appli-cation [1,2].The longevity of the LEDs and most impor-tantly their low energy consumption are the driving forces for such a rapid development.The photons emitted through a p–n recombination process can be converted into lower energy radiation using the luminescence properties of phosphor materials.Therefore,blue LEDs emitting around 460nm can be combined with a yellow phosphor [2]or even with a mix of green and orange phosphors [3]in order to obtain white light.In this situation,only a fraction of the blue photons emitted by the chip are absorbed by the phosphor,the rest being combined with the yellow photo-luminescence to give white light.Alternatively,the use of the UV LEDs requires that all UV photons must be absorbed by the blue,green and red phosphors.The first generation of commercially available white LED was based on an InGaN chip emitting blue photons at around 460nmcombined with a Y 3Al 5O 12:Ce 3+(YAG)phosphor layer that converts blue into yellow photons [1,2].As a result,a slightly bluish white light with a color rendering index (CRI)of $70is produced that may,in principle,be improved by adding red photons from a complementary phosphor.The second generation of white LEDs is still based on blue InGaN LEDs but with a mix of green and orange phosphors that increases the CRI up to 90and makes the phosphor deposition process potentially easier [3].In fact,new red or orange phosphors are urgently needed for the development of efficient white LEDs,regardless of the type of LED used,and they need to be very bright in order to compensate for the low red sensitiv-ity of the human eye [4].Bright red phosphors are,how-ever,very difficult to achieve due to the quantum yield drop with increasing Stokes shift.We focused our work on cerium-based materials for two reasons.First,among all the trivalent lanthanides,Ce 3+is the only one characterized by strong f !d transitions.Tri-valent cerium has a 4f 15d 0ground state configuration and its optical transitions in the visible region arise from 4f 1!5d 1excitations.As with Eu 2+,cerium-based phos-phor materials have broad excitation/emission bands that can be matched to the characteristics of the LED and can possibly mimic the solar spectrum.Second,the involvement0009-2614/$-see front matter Ó2006Elsevier B.V.All rights reserved.doi:10.1016/j.cplett.2006.03.056*Corresponding author.E-mail address:cheetham@ (A.K.Cheetham)./locate/cplettChemical Physics Letters 423(2006)352–356of5d levels implies that the emission wavelength can be tuned by changing the energies of the5d levels with respect to the deeper4f levels.For instance,by adjusting the crystal field splitting,it is possible to lower the lowest5d level in order to decrease the5d–5f energy band gap and shift the phosphor emission towards the red(Fig.1).For Ce3+-doped materials,emission is normally observed in the near UV[5],but blue or even green/yellow as been reported for Ca2Al2SiO7[6]and CaS[7],respec-tively.However,high crystalfield splitting or strongly covalent cerium environments can decrease the energy of the down-converted photons.Yttrium aluminum garnet (YAG)doped with Ce3+is the most important example, exhibiting a strong yellow emission(540nm)upon blue excitation(460nm)due to the very low energy of the lowest 5d level[8].A small tetragonal distortion of the cubic crys-talfield at the cerium site is responsible for this unusual yel-low emission[9].It is also possible to observe green-yellow Ce3+emission in oxynitride[10]or sulfides[7,11]com-pounds,replacing oxygen by more covalent anions such as nitrogen and sulfur.Further increase of the covalent character has lead to new Eu2+doped Sialon[12]or silicon (oxy)nitride[3,13]based materials that have been reported to show very efficient orange luminescence.Eu2+doped Sr2Si5N8(orange)and CaSi2O2N2(green)are among the most interesting for solid-state lighting[3].The longer emission wavelength observed for nitride compounds is associated with a broader excitation band that covers part of the UV and visible spectral range leading to colorful compounds.Normally,the red shift is associated with a larger Stokes shift that leads to very low temperature quenching.Fortunately,some compounds maintain a suffi-ciently high quantum efficiency to be useful in solid-state lighting.In view of the lack of good red phosphors,we have aimed to synthesize cerium-based red phosphor materials using a host with a high crystalfield splitting due to sym-metry,coordination number and covalency factors.Several phases have been reported in the Ca–Si–N ternary system, among which one may have cubic symmetry,but no detailed structural characterization has been presented [14].Recently,Gal et al.[15]reported the symmetry of CaSiN2to be orthorhombic with space group Pnma and cell parameters a0=5.1229A˚,b0=10.2074A˚and c0=14.8233A˚using single crystal X-ray diffraction.In the present work,we were able to design,for thefirst time, a red phosphor material based on CaSiN2that is very promising for solid-state lighting applications.2.ExperimentalStoichiometric amounts of Ca3N2and Si3N4were weighed in a glove box([O2]<1ppm and[H2O]<1ppm) in order to prevent oxidation or hydrolysis of the reactants. CeO2,Eu2O3,Sm2O3,Tb4O7,Pr2O3,Er2O3were used as rear earth sources.For doping purposes,we used AlN, Mg2N3and Sr2N.Following thorough mixing and grind-ing,the mixture was loaded into an alumina crucible. The heating was carried out in a horizontal tube furnace underflowing N2(2–4l/min)between1300°C and 1500°C for several hours.The purity of all samples was checked using conventional X-ray diffraction.Lumines-cence properties were measured using a Perkin Elmer LS55UV/Visible spectrophotometer.The external quan-tum efficiency(QE)was measured at515nm using an Argon laser.The setup comprises an integration sphere, twofilters(to differentiate the laser excitation and thefluo-rescence)and a calibrated Si diode as detector.The setup and data process follow the work described by Greenham et al.[16].By using this setup,the external quantum effi-ciency of the Ce3+:YAG phosphor standard has been mea-sured to be around70%.Synchrotron X-ray powder diffraction was performed at Brookhaven National Labo-ratory on beamline X7A with a wavelength of0.7972A˚.3.Results and discussionThe high temperature synthesis of CaSiN2doped with Ce3+leads to a pinkish/red colored sample.This coloration was a very promising observation since it is characteristic of substantial absorption in the blue–green region($450–550nm),which is of primary interest for solid-state lighting application.In order to characterize the structure of this phase,we used X-ray powder diffing conven-tional X-ray diffraction methods,we were able to show that CaSiN2doped with Ce3+seems to crystallize in an F-cen-tered cubic unit cell with a very large unit cell parameter of about14.88A˚.In order to assess the true symmetry and further probe the structure,we used the very high res-olution of an X-ray synchrotron beam to measure the pow-der diffraction pattern.The cell parameters and possible space groups were determined using the F ULLPROF S UITE of programs[17].This study showed that the rare-earth doped CaSiN2phase has indeed cubic symmetry and that five possible space groups,F23,Fm 3,F432,F 43m andR.Le Toquin,A.K.Cheetham/Chemical Physics Letters423(2006)352–356353Fm 3m,can account for all the reflections (Fig.2).Afterrefinement,the cell parameter value is a =14.8822(5)A˚leading to a cell volume larger than 3200A˚3.However,ab initio structure solution is very challenging,especially due to the high symmetry,the lack of heavy elements,and most of all the large unit cell volume (3200A˚3,leading to at least 15independent atoms in the unit cell).This structural study is still in progress and the results will be the subject of another publication.Previously,several phases have been reported in the Ca–Si–O–N system,among which one has possibly an F-cen-tered cubic unit cell with a cell parameter of about14.864(12)A˚[14].More recently,Gal et al.have solved the structure of the ternary phases MSiN 2with M =Ca,Sr,Ba using single crystal X-ray diffraction [15].Their study suggests that the Ca phase has an orthorhombic sym-metry (space group Pbca)with unit cell parameter values ofabout a =5.1229(3)A˚,b =10.2074(6)A ˚,c =14.8233(9)A ˚.Their crystals were synthesized at 1000°C from a mix of the metals and sodium azide in a sealed tantalum tube.Despite the very different synthetic conditions,we found that the cell parameters of the orthorhombic phase are related to our cubic cell through the following relations:a c =2p 2a 0,a c =p 2a 0a c =c 0,V c =4·V 0.Substitution of cerium into CaSiN 2appears to stabilize the cubic poly-morph.The structure of the orthorhombic CaSiN 2has been described to be based on vertex sharing SiN 4tetrahe-dra comparable to the D1-type tilting distortion of the b -cristobalite phase.The phase is reported to be isostruc-tural with KGaO 2.The corner sharing SiN 4tetrahedra form six member rings with Ca atoms in very distorted octahedral coordination.The description of the structure plays a crucial role in the understanding of the optical properties and further tailoring of new phosphor materials,since the local symmetry of cerium atoms significantlyaffects the emission wavelength of the phosphor.For the Ce 3+doped YAG compound,it has been shown that the distorted cubic symmetry of the Y site has a direct effect on the emission wavelength [9].We can already anticipate,therefore,that the stabilization of the high temperature cubic phase of CaSiN 2may lead to a large crystal field splitting for the 5d level and to a large red shift for the emission wavelength.The optical properties of this material were measured using a photoluminescence spectrometer as described above.The results show,for the first time,a red emission for Ce 3+atoms in any host reported so far (Fig.3).The maximum of the emission band is centered around 625nm,which is at least 50nm longer than the largest cer-ium emission wavelength reported to date.The emission peak extends from 550to 700nm with a full width at half maximum (FWHM)of about 80nm.For comparison,we also examined one of the red standards,Eu 3+-doped Y 2O 2S,to emphasize the fact that using a broad-band emit-ter as opposed to a line emitter there is at least a 6-fold increase in intensity (Fig.3).For solid-state lighting based on InGaN blue LEDs,our red phosphor can be used as a color complement to any yellow phosphor in order to access white light with different color temperatures.As expected from the observation of the sample body color,most of the green part of the visible spectrum is absorbed as well as part of the blue (Fig.3).The excitation band has a maximum around 535nm and extends from 425to 575nm with a FWHM of about 75nm.Besides the obvi-ous application as a phosphor,this material looks ideal for use in plant growth enhancement since it absorbs green photons where the chlorophyll is ineffective and down-con-verts them into red photons.Coating this material on glass window with a complementary UV to bluephosphorFig.2.Synchrotron X-ray diffraction pattern of the phase CaSiN 2doped with Ce 3+.Le Bail refinement in the space group F23with unit cellparameter a =14.8822(5)A˚.The red circles,black and blue curves represent the experimental data,the calculated pattern and the difference curve respectively.The green marks show the position of the peaks.354R.Le Toquin,A.K.Cheetham /Chemical Physics Letters 423(2006)352–356would allow the use of both UV and green photons for photosynthesis.The value of the Stokes shift based on the maximum of the excitation and emission peaks was estimated to be about2700cmÀ1.This value is rather smaller than that of the YAG(3800cmÀ1),thereby corroborating the diffi-culty in observing red emission for cerium in YAG-based phosphors.Thisfinding is also consistent with the rela-tively high value of the external quantum efficiency at room temperature,QE$40%,prior to any improvement of the chemical composition,particle size or morphology.It is also worth mentioning that the laser excitation(515nm) for the QE measurement was not exactly optimal according to the excitation curve of the phosphor(Fig.3).In order to explore the effect of the cation size on the emission wavelength,we substituted Ca by Sr and Mg as well as Si by Al.The effect of a larger cation on the Si site tends to decrease the emission wavelength by about70nm (Fig.4).The excitation blue-shifts,too,from a peak max-imum at535nm to475nm for10%Al substitution(Fig.4). With the Al substitution,therefore,this compound becomes interesting as a yellow phosphor for direct appli-cation with a blue LED emitting around460nm.On the other hand,Sr substitution on the Ca site leads to a red shift of the emission which was not expected according to the compression at the cerium sites(Table1).Mg substitu-tion seems to follow the same trend since the emission is blue shifted by about90nm(Table1).Despite the fact that it is very difficult to draw conclusions without a detailed structure,it appears that this behavior is similar to that of YAG,where substitution of larger atoms on the Y and Al sites leads to opposite shifts of the emission wave-length[9].Due to the yellow emission and the460nm exci-tation,this phosphor can therefore be used as a yellow phosphor with a blue LED.Other rare earths atoms have also been tested in this new host.The samples exhibit the same cubic symmetry and a typical decrease of the unit cell parameter is observed along the rare-earth series(Table2). The optical properties of these materials are also interest-ing in terms of phosphor applications(Table2).4.ConclusionsWe have synthesized a high temperature cubic phase in the Ca–Si–N system with the stoichiometry CaSiN2.This phase is stabilized by cerium substitution on the calcium site.CaSiN2:Ce3+has several important properties that make it thefirst of its kind and very promising for solid-state lighting applications.First,it represents the only Ce3+phosphor materials showing an intense red emission with broad emission/excitation bands.The use of a red broad-band emitter will increase the CRI to as much as90for the setup comprising a blue LED with yel-low and red phosphors.In order to achieve this target,the QE of the red phosphor must be further increased because it will be excited by the green photons from the yellow phosphor.Second,CaSiN2:Ce3+is one of the rare phos-phor materials that can be excited in the yellow–green region.This property is of great interest for plant growth enhancement since green light is not harvested in the pho-tosynthetic process.With CaSiN2:Ce3+,the green photons can be down-converted into useful red photons.Thirdly, the use of chemical substitution has led to new possibilitiesTable1Optical properties of Ce3+doped CaSiN2substituted with different cationson the Ca and Si sitesCe3+dopedcompoundEmissionmaximumExcitationmaximumBody colorCaSiN2625535Pink/redCa(Al,Si)N2560475Orange(Ca,Sr)SiN2640500Orange(Ca,Mg)SiN2540460YellowTable2Optical properties and unit cell parameters(refinement in space group F23)for CaSiN2doped with different rare-earth ions(RE)Ca1Àx RE x SiN2RE=Ce3+RE=Pr3+RE=Sm3+RE=Eu2+RE=Tb3+RE=Er3+ Body color Pink/red White White Orange White Grey Cubic unit cell parameter(A˚)14.882214.872014.846314.841914.858714.8517 k Emission maximum(nm)625425610605550420k Excitation maximum(nm)535330400400275325The RE doping level is3%.For line emitter rare earths,only the strongest peak is presented.R.Le Toquin,A.K.Cheetham/Chemical Physics Letters423(2006)352–356355for the CaSiN2:Ce3+phosphor.For example,the tunable emission of this phosphor makes it very interesting as a yellow/orange phosphor to use directly in combination with a460nm blue LED.It is also worth mentioning that this red phosphor can be used directly in a white light setup comprising a UV LED with three red,green and blue phosphors.AcknowledgementsWe thank the Solid State Lighting and Display Center at the University of California Santa Barbara for funding.We also acknowledge Profs.S.P.DenBaars and S.Nakamura for helpful discussions.References[1]S.Nakamura,G.Fasol,The Blue Laser Diode:GaN Based LightEmitters and Lasers,Springer,Berlin,1997;S.P.Den Baars,in: A.H.Kitai(Ed.),Solid State Luminescence Theory,Materials and Devices,Chapman and Hall,London,1993.[2]P.Schlotter,R.Schmidt,J.Schneider.Appl.Phys A64(1997)417.[3]R.Mueller-Mach,G.Mueller,M.R.Krames,H.A.Hoppe, F.Stadler,W.Schnick,T.Juestel,P.Schmidt,Phys.Stat.Sol.(a)202 (No.9)(2005)1727;G.O.Mueller,R.Mueller-Mach,M.R.Krames,Proc.SPIE4776(2002)122.[4]N.Sharma,N.Kijima,A.K.Cheetham,Chem.Phys.Lett.387(2004)2;N.Sharma,N.Kijima,A.K.Cheetham,Solid State Commun.131 (2004)65;T.Justel,H.Nikol,C.Ronda,Angew.Chem.Int.Ed.37(1998)3084.[5]G.Blasse,B.C.Grabmeier,Luminescent Materials,Springer,Berlin,1994.[6]N.Kodama,Y.Tanii,M.Yamaga,J.Luminescence87–89(2000)1076.[7]G.C.Kim,H.L.Park,S.I.Yun,G.Moon,J.Mater.Sci.Lett.5(1986)359;S.Shionoya,W.M.Yen,Phosphor Handbook,CRC Press,1998.[8]G.Blasse,A.Brill,Appl.Phys.Lett.11(1967)53.[9]G.Blasse,A.Brill,Chem.Phys.47(1967)5139;A.K.Cheetham et al.,unpublished results.[10]J.W.H.van Krevel,H.T.Hintzen,R.Metselaar,A.Meijerink,J.Alloys Compd.268(1998)272.[11]G.Gauthier,S.Jobic,M.Evain,H.J.Koo,M.H.Whangbo,C.Fouassier,R.Brec.Chem.Mater.15(2003)828.[12]J.W.H.van Krevel,J.W.T.van Rutten,H.Mandal,H.T.Hinzen,R.Metselaar,J.Solid State Chem.165(2002)19.[13]K.Uheda,N.Hirosaki,H.Yamamoto,H.Yamane,Y.Yamamoto,W.Inami,K.Tsuda.Proceedings of the2004Joint International Meeting of the Electrochemical Society Oct.3–Oct.8.[14]E.A.Pugar,J.H.Kennedy,P.E.D.Morgan,J.H.Porter,J.Am.Ceram.Soc.71(1988)C-288.[15]Z.A.Gal,P.M.Mallinson,H.J.Orchard,S.J.Clarke,Inorg.Chem.43(2004)3998.[16]N.C.Grennham,I.D.W.Samuel,G.R.Hayes,R.T.Philips,Y.Kessener,S.C.Moratti,A.B.Holmes,R.H.Friend,Chem.Phys.Lett.241(1995)89.[17]F ULLPROF J.Rodriguez-Carvajal,T.Roisnel,F ULLPROF98and Win-plotr,New windows95/NT Application for diffmission for Powder Diffraction,International Union of Crystallography.Newsletter No.20(May–August)Summer1998.356R.Le Toquin,A.K.Cheetham/Chemical Physics Letters423(2006)352–356。