2019年高考数学25个必考点专题21抛物线检测 (1)

合集下载

解密21 抛物线备战2019年高考数学(理)之高频考点解密(原卷版)

解密21 抛物线备战2019年高考数学(理)之高频考点解密(原卷版)

解密21抛物线高考考点命题分析三年高考探源考查频率抛物线的定义及方程抛物线的定义、方程与性质是每年高考的必考热点,选择题、填空题、解答题中均有考查,着重考查抛物线的几何性质与标准方程求法,难度中档.2017课标全国Ⅱ162015上海5★★★抛物线的性质2016课标全国Ⅰ102016课标全国Ⅲ20★★★考点1 抛物线的定义及方程题组一抛物线的定义的应用调研 1 已知抛物线的焦点为,其上有两点满足,则A.B.C.D.【答案】B【解析】由抛物线的定义可知()221212122AF BF y y x x -=-=-=,则,所以==.学-科网☆技巧点拨☆抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离,因此,涉及抛物线的焦半径、焦点弦的问题,可以优先考虑利用抛物线的定义将点到焦点的距离转化为点到准线的距离,即2PF p x =+或2PF py =+,使问题简化. 抛物线的定义常在高考中作为转为问题的工具,需熟练掌握.题组二 求抛物线的方程调研2 已知抛物线C 的开口向下,其焦点是双曲线2213y x -=的一个焦点,则C 的标准方程为 A .28y x =B .28x y =-C .22y x =D .22x =-【答案】B【解析】双曲线2213y x -=的一个焦点为()0,2-, 故抛物线的焦点坐标是()0,2-, 从而得到方程为28x y =-.调研3 已知抛物线的顶点在原点,它的准线过双曲线22221x y a b-=的一个焦点,抛物线与双曲线的交点为362P ⎛⎝,求抛物线方程和双曲线方程. 【解析】依题意设抛物线方程为()220y px p =>,∵点3,62P ⎛⎫⎪⎝⎭在抛物线上,∴3622p =⨯,解得2p =,∴所求抛物线方程为24y x =.☆技巧点拨☆高考中常求抛物线的方程,一般会与其他知识相结合,求抛物线方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.考点2 抛物线的性质题组一 焦点弦问题调研1 过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,则弦长|AB |为________. 【答案】8【解析】设A (x 1,y 1),B (x 2,y 2), 易得抛物线的焦点是F (1,0), 所以直线AB 的方程是y =x -1,联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0,所以x 1+x 2=6,所以|AB |=x 1+x 2+p =6+2=8. 调研2 已知点是抛物线的焦点,,是该抛物线上两点,,则线段的中点的横坐标为__________.【答案】2 【解析】抛物线准线方程为, 由,可得,即,的中点的横坐标为22M Nx x +=. 题组二 最值问题 调研3 已知抛物线的焦点为,准线为,且过点在抛物线上,若点,则的最小值为A .2B .3C .4D .5【答案】B 【解析】由题可得,.由抛物线的定义可知,,所以=.故选B .调研4 已知点M (-3,2)是坐标平面内一定点,若抛物线y 2=2x 的焦点为F ,点Q 是该抛物线上的一动点,则|MQ |-|QF |的最小值是 A .72B .3C .52D .2【答案】C【解析】由抛物线的定义知|QF |等于点Q 到准线的距离, 设点Q 到准线的垂线交准线于点H , 则|MQ |-|QF |=|MQ |-|QH |,当QM 和QH 共线时,|MQ |-|QH |取得最小值. 易知抛物线的准线方程为x =-12,则点M 到准线的距离为132-=52,选C .☆技巧点拨☆有关抛物线上一点M 到抛物线焦点F 和到已知点E (E 在抛物线内)的距离之和的最小值问题,可依据抛物线的图形,过点E 作准线l 的垂线,其与抛物线的交点到抛物线焦点F 和到已知点E 的距离之和是最小值.学-科网1.(天津市河北区2019届高中学业水平考试模拟)抛物线22y x =-的准线方程是 A .2y x =± B .2y x =± C .12x =D .12x =-2.(四川省高2019届高三第一次诊断性测试)抛物线24y x =的焦点坐标是 A .10,16⎛⎫⎪⎝⎭B .()0,1C .()1,0D .1,016⎛⎫⎪⎝⎭3.(重庆市九校联盟高三上学期第一次联合考试)已知抛物线=经过点,则该抛物线的焦点到准线的距离等于A .18 B .14C .12D .14.(广东省中山一中等七校联合体2019届高三第二次(11月)联考)已知抛物线上的点到焦点的距离是,则抛物线的方程为A .B .C .D .5.(四川省高2019届高三第一次诊断性测试)设椭圆22221(0,0)x y m n m n+=>>的焦点与抛物线28x y =的焦点相同,离心率为12,则m n -= A .234- B .433- C .438-D .843-6.(广东省化州市2019届高三上学期第一次模拟考试)已知抛物线的焦点为,抛物线上一点,若,则的面积为A .2B .3C .4D .57.(2018届河北省武邑中学高三上学期第五次调研考试)已知抛物线的焦点为,其准线与双曲线223=1y x -相交于两点,若MNF △为直角三角形,其中为直角顶点,则A .B .C .D .68.(河南省新乡市2019届高三第一次模拟考试)已知点是抛物线上的动点,则的最小值为A .3B .4C .5D .69.(山东省青岛市2019届高三9月期初调研检测)已知抛物线的焦点为,准线为,为上一点,垂直于点分别为,的中点,与轴相交于点,若,则等于A .B .1C .2D .410.(上海市普陀区2018届高三下学期质量调研(二模)数学)抛物线212x y =的准线方程为__________.11.(江苏省清江中学2019届高三第二次教学质量调研)若抛物线22(0)y px p =>的焦点恰好是双曲线221124x y m m -=-+的右焦点,则实数p 的值为_____________. 12.(河北省保定市2018届高三第一次模拟考试数学)抛物线的顶点在原点,焦点在x 轴上,抛物线上的点()2,P a -到焦点的距离为3,则a =__________. 13.(2018届安徽省安庆市高三二模考试)设抛物线的焦点为点在抛物线上,且满足若32AF =uuu r ,则的值为__________.学科=网14.(云南省保山市2018届普通高中毕业生第二次市级统测)已知F 是抛物线C :28y x=的焦点,点A 的坐标为()2,6,点P 是C 上的任意一点,当P 在点1P 时,PF PA -取得最大值;当P 在点2P 时,PF PA -取得最小值,则1P ,2P 两点间的距离为__________.15.(福建省高三毕业班第三次质量检查)已知抛物线上的点到点距离的最小值为.(1)求抛物线的方程; (2)若,圆,过作圆的两条切线分别交轴于两点,求MAB △面积的最小值.1.(2016新课标全国I 理科)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE|=5C 的焦点到准线的距离为 A .2 B .4 C .6D .82.(2015上海理科)抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = .3.(2017新课标全国II 理科)已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM的延长线交y 轴于点N .若M 为FN 的中点,则FN =_______________.4.(2016新课标全国III 理科)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点. (1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ P ;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.。

高三数学抛物线(2019年)

高三数学抛物线(2019年)
的中篇小说中去,好像集在《温柔的夜》这本书里,在此不再重复了。就在那样沮丧的心情下,有一天丈夫回来,给了我照片右方那两只好似长着爪子一样的铃。 我坐在帐子里,接过这双铃,也不想去摇它们,只是漠漠然。
丈夫对我说:“听听它们有多好,你听——。”接着他把铃铛轻轻一摇。那一声微小的铃声,好似一阵微风细雨吹拂过干裂的大地,一丝又一丝余音,绕着心房打转。方要没了,丈夫又轻轻一晃, 那是今生没有听过的一种清脆入谷的神音,听着、听着,心里积压了很久的郁闷这才变做一片湖水,将胸口那堵住的墙给化了。
365正网开户 以后我们家中有过风铃和竹条铃,都只挂了一阵就取下来了。居住的地区一向风大,那些铃啊,不停的乱响,听着只觉吵闹。不如没风的地方,偶尔有风吹来,细细碎碎的洒下一些音符,那种偶尔
才得的喜悦,是不同凡响的。
以后又买过成串成串的西班牙铃铛它们发出的声音更不好,比咳嗽还要难听,就只有挂着当装饰,并不去听它们。一次我们住在西非奈及利亚,在那物质上吃苦,精神上亦极苦的日子里,简直找不 到任何使人快乐的力量。当时,丈夫日也做、夜也做,公司偏偏赖帐不给,我看在眼里心疼极了,心疼丈夫,反面歇斯底里的找他吵架。那一阵,两个人吵了又好,好了又吵,最后常常抱头痛哭,不知 前途在哪里,而经济情况一日坏似一日,那个该下地狱去的公司,就是硬吃人薪水还扣了护照。

抛物线(讲)-2019年高考数学(文)---精校解析 Word版

抛物线(讲)-2019年高考数学(文)---精校解析 Word版

【考纲解读】【知识清单】1.抛物线的标准方程及几何性质,,,2.抛物线的定义及应用平面内与一个定点和一条定直线(不经过点)的距离相等的点的轨迹叫做抛物线,定点叫做抛物线的焦点,定直线叫做抛物线的准线.3.直线和抛物线的位置关系(1)将直线的方程与抛物线的方程y2=2px(p>0)联立成方程组,消元转化为关于x或y的一元二次方程,其判别式为Δ.若,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若①Δ>0 直线和抛物线相交,有两个交点;②Δ=0直线和抛物线相切,有一个公共点;③Δ<0直线和抛物线相离,无公共点.(2)直线与抛物线的相交弦设直线交抛物线于点两点,则==同理可得这里的求法通常使用韦达定理,需作以下变形:【重点难点突破】考点1 抛物线的标准方程及几何性质【1-1】已知是抛物线上任意一点,则当点到直线的距离最小时,点与该抛物线的准线的距离是( )A.2 B.1 C. D.【1-2】已知抛物线的顶点在原点,焦点在x轴的正半轴上,若抛物线的准线与双曲线5x2-y2= 20的两条渐近线围成的三角形的面积等于,则抛物线的方程为( )A.y2=4x B.y2=8x C.x2=4y D.x2=8y【答案】B【解析】抛物线的顶点在原点,焦点在x轴的正半轴上排除C、D,设抛物线的方程为,则抛物线的准线方程为,双曲线的渐进线方程为,由面积为可得,所以,答案选B.【1-3】【2017山东,文15】在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 .【答案】【综合点评】1. 在求抛物线方程时,由于标准方程有四种形式,易混淆,可先根据题目的条件作出草图,确定方程的形式,再求参数p,若不能确定是哪一种形式的标准方程,应写出四种形式的标准方程来,不要遗漏某一种情况;2. 标准方程中的参数p的几何意义是指焦点到准线的距离;p>0恰恰说明定义中的焦点F不在准线上这一隐含条件;参数p的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于p的值,才易于确定焦点坐标和准线方程.【领悟技法】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.【触类旁通】【变式一】如图,过抛物线y2=2px (p>0)的焦点F的直线l交抛物线于点A、B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线方程为( )A.y2=9x B.y2=6xC.y2=3x D.y2=x【变式二】【2018届广西钦州市高三上第一次检测】抛物线的焦点为,点为该抛物线上的动点,点是抛物线的准线与坐标轴的交点,则的最小值是()A. B. C. D.【答案】B【解析】由题意可知,抛物线的准线方程为x=﹣1,A(﹣1,0),过P作PN垂直直线x=﹣1于N,【综合点评】1、抛物线的定义与方程的形式是解决抛物线几何性质问题时必须要考虑的两个重要因素.2、求动点的轨迹方程时,可用定义法列等量关系,化简求解;也可判断后,用类似于公式法的待定系数法求解,但要判断准确,注意挖掘题目中的隐含条件,防止重、漏解.考点2 抛物线的定义及应用【2-1】过抛物线y2=4x的焦点作直线,交抛物线于A(x1, y1) ,B(x2, y2)两点,如果x1+ x2=6,那么|AB|=()A.8 B.10 C.6 D.4【答案】A【解析】由于,因此,根据焦点弦公式.【2-2】【四川省成都市龙泉驿区第一中学校2019届高三上入学】已知是抛物线的焦点,是该抛物线上两点,,则的中点到准线的距离为()A. B. 2C. 3 D. 4【答案】C【2-3】【2017课标II ,文12】已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则.【答案】6【解析】如图所示,不妨设点M 位于第一象限,设抛物线的准线与轴交于点,做与点,与点,点评:抛物线的定义是联系抛物线上的点到焦点距离和到准线距离的桥梁,解题时要注意合理转化. 【综合点评】1.已知渐近线方程y =mx ,若焦点位置不明确要分m =a b 或m =b a讨论,求离心率值,需要寻求的等式,求离心率取值范围,需寻求关于的不等式关系,并结合求.2.注意数形结合思想在处理渐近线夹角,离心率范围求法中的应用.【领悟技法】1.抛物线上的点到焦点距离等于到准线距离,注意转化思想的运用.2.利用抛物线定义可以解决距离的最大和最小问题,该类问题一般情况下都与抛物线的定义有关.实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【触类旁通】【变式1】【2018届湖北省部分重点中学高三起点】抛物线的焦点为,过焦点倾斜角为的直线与抛物线相交于两点两点,若,则抛物线的方程为()A. B. C. D.【答案】C【变式2】【2018年文北京卷】已知直线l过点(1,0)且垂直于轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.【答案】【解析】由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.【综合点评】利用抛物线定义进行距离转化的同时,要注意平面几何知识在其中的重大运用.考点3 直线和抛物线的位置关系【3-1】【2018年全国卷Ⅲ文】已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.【答案】2【3-2】【黑龙江省哈尔滨市第六中学2018届考前押题卷(二)】已知抛物线,过焦点作直线与抛物线交于点,,设,,则的最小值为A. B.C. D.【答案】D【解析】由题意知,抛物线的焦点坐标为,直线方程为,当斜率存在时,设直线的方程为,联立抛物线方程,可得,【3-3】【2018年浙江卷】如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.【答案】(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)设,,.因为,的中点在抛物线上,所以,为方程,即的两个不同的实数根.所以.因此,垂直于轴.【综合点评】在解决直线与抛物线位置关系的问题时,其方法类似于直线与椭圆的位置关系.在解决此类问题时,除考虑代数法外,还应借助平面几何的知识,利用数形结合的思想求解.【领悟技法】.已知过抛物线的焦点F的直线交抛物线于A、B两点.设A(x1,y1),B(x2,y2),则:①焦点弦长②③,其中|AF|叫做焦半径,④焦点弦长最小值为2p.根据时,即AB垂直于x轴时,弦AB的长最短,最短值为2p.【触类旁通】【变式一】【2018年新课标I卷文】设抛物线,点,,过点的直线与交于,两点.(1)当与轴垂直时,求直线的方程;(2)证明:.【答案】(1) y=或.(2)见解析.【解析】(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,–2).所以直线BM的方程为y=或.【变式二】【2017课标1,文20】设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM BM,求直线AB的方程.【答案】(1)1;(2).【解析】将代入得.当,即时,.从而.由题设知,即,解得.所以直线AB的方程为.【综合点评】抛物线弦的中点坐标和方程的两根之和的密切联系是解决中点弦问题的关键,方程的思想也是解析几何的核心思想.【易错试题常警惕】易错典例:求过点的直线,使它与抛物线仅有一个交点.易错分析:对直线和抛物线有一个交点理解有误以及.温馨提示:直线和抛物线有一个交点有两种情况:相切以及平行于对称轴.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休.""数"与"形"反映了事物两个方面的属性.我们认为,数形结合,主要指的是数与形之间的一一对应关系.数形结合就或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.【典例】【2017浙江,21】如图,已知抛物线,点A,,抛物线上的点.过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求的最大值.【答案】(Ⅰ);(Ⅱ)令,因为,所以 f(k)在区间上单调递增,上单调递减,因此当k=时,取得最大值.。

2019高中数学高考真题分类:考点42-抛物线

2019高中数学高考真题分类:考点42-抛物线

温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点42 抛物线一、选择题1. (2018·四川高考文科·T5)抛物线28y x =的焦点到直线0x =的距离是( )A. 2C. 1【解题指南】本题考查的是抛物线的基本几何性质,在求解时首先求得抛物线的焦点坐标,然后利用点到直线的距离公式进行求解即可.【解析】选D ,抛物线28y x =的焦点(2,0)到直线0x =的距离,根据点到直线的距离公式可得2012d -==,故选D. 2.(2018·北京高考理科·T7)直线l 过抛物线C:x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( )A.43 B.2 C.83 D.3【解题指南】把所求面积转化为一个矩形面积减去一个积分值。

【解析】选C 。

l 的方程是1y =,所以求面积相当于一个矩形面积减去一个积分值:23220084242(|)4123x x S dx =-=-=⎰. 3.(2018·新课标全国Ⅱ高考文科·T10)设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。

若||3||AF BF =,则l 的方程为( )A.1y x =-或1y x =-+B.1)y x =-或1)y x =-C.1)y x =-或1)y x =-D.(1)2y x =-或1)2y x =-- 【解题指南】设出A 、B 点的坐标,利用抛物线的定义表示出,AF BF ,再利用||3||AF BF =,确立l 的方程.【解析】选C. 抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x=-1,设A (x 1,y 1),B (x 2,y 2),则因为|AF|=3|BF|,所以x 1+1=3(x 2+1),所以x 1=3x 2+2,因为|y 1|=3|y 2|,x 1=9x 2,所以x 1=3,x 2=13,当x 1=3时,2112y =,所以此时1y ==±若1y =则1(3,(,33A B -,此时AB k =此时直线方程为1)y x =-。

第05讲 抛物线-2023年高二数学(人教A版2019选择性必修第一册)(解析版)

第05讲 抛物线-2023年高二数学(人教A版2019选择性必修第一册)(解析版)

第05讲抛物线【考点目录】【知识梳理】知识点1 抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l不经过点F”,点的轨迹还是抛物线吗?不一定是,若点F在直线l上,点的轨迹是过点F且垂直于直线l的直线.②定义的实质可归纳为“一动三定”一个动点M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).知识点2抛物线的标准方程和几何性质焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2.p的几何意义:焦点F到准线l的距离.标准方程y 2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形顶点O(0,0)知识点3 直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km -p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.知识点4 弦长问题过抛物线y2=2px(p>0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α (α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). (5)求弦长问题的方法①一般弦长:|AB |=1+k 2|x 1-x 2|,或|AB |=1+1k2|y 1-y 2|. ②焦点弦长:设过焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .考点一 抛物线的标准方程(一)求抛物线的标准方程1.(2022春·北京海淀·高二校考阶段练习)抛物线的焦点在x 轴正半轴上,且准线与焦点轴间的距离为3,则此抛物线的标准方程为( ) A .26y x = B .23y x = C .26x y = D .23x y =【答案】A【分析】利用抛物线的性质,求出p ,然后求得抛物线方程即可.【详解】解:焦点在x 轴正半轴上的抛物线标准方程为()220y px p =>,又准线与焦点轴间的距离为3,可得3p =,所以抛物线的标准方程为26y x =.故选:A.2.(2022春·辽宁本溪·高二校考阶段练习)以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =-B .210x y =-或28y x =【考点剖析】C .210y x =或28x yD .210y x =-或28x y =【答案】D【分析】直线45100x y -+=与坐标轴的交点即为焦点,根据焦点可求出p ,可得答案. 【详解】直线45100x y -+=与坐标轴的交点为()5,0,0,22⎛⎫- ⎪⎝⎭,当抛物线的焦点为5,02⎛⎫- ⎪⎝⎭时,其标准方程为210y x =-;当抛物线的焦点为()0,2时,其标准方程为28x y =. 故选:D.3.(2022秋·上海黄浦·高二上海市向明中学校考期末)过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x = B .24y x =-C .212=-x yD .212x y =【答案】C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C(二)抛物线的几何性质的应用4.(2022·全国·高二假期作业)抛物线26y x =的准线方程为( ) A .124y =-B .112y =-C .y =-6D .=3y -【答案】A【分析】先把抛物线化成标准方程,求出p ,即可得到准线方程.【详解】抛物线26y x =的标准方程为:216x y =,令2126x y py ==,得112p =,于是该抛物线的准线为:124y =-.5.(2022春·山东临沂·高二临沂第四中学校考阶段练习)若抛物线22y px =的焦点与双曲线221x y -=的右焦点重合,则p =( )A .2B .4C .D 【答案】C【分析】先求出双曲线221x y -=的右焦点,此焦点是抛物线22y px =的焦点,求出.p【详解】在双曲线221x y -=中,2112c =+=,所以右焦点)2F ,2F 是抛物线22y px =的焦点,2pp ∴== 故选:C6.(2022春·黑龙江哈尔滨·高二哈九中校考阶段练习)已知圆22:(1)1C x y -+=与抛物线22(0)y px p =>的准线相切,则p =( )A .18B .14C .8D .2【答案】A【分析】根据给定条件,求出抛物线的准线方程,再利用点到直线距离公式求解作答.【详解】圆22:(1)1C x y -+=的圆心(1,0)C ,半径1,抛物线212x y p =的准线为18y p=-, 依题意,118p =,解得18p =, 所以18p =. 故选:A7.(2022·全国·高二假期作业)已知抛物线()2:0C x ay a =≠,则抛物线C 的焦点坐标为( )A .1,04a ⎛⎫ ⎪⎝⎭B .1,04a ⎛⎫± ⎪⎝⎭C .()0,4aD .()0,4a ±【答案】A【分析】将抛物线方程化为标准方程,判断焦点的位置,求出p ,即可得焦点坐标.【详解】已知()20x ay a =≠,则标准方程为21y x a=,焦点在x 轴上, 所以1122p p a a=⇒=, 所以焦点坐标为1,04a ⎛⎫⎪⎝⎭,8.(2022春·江苏泰州·高二统考期中)若抛物线2y mx =上一点(),2t 到其焦点的距离等于4,则( ) A .14m =B .18m =C .4m =D .8m =【答案】B【分析】由抛物线的定义求解即可【详解】因为抛物线2y mx =的标准方程为21x y m=,其准线方程为14y m =-,由于抛物线上一点(),2t 到其焦点的距离等于4, 由抛物线的定义可得,1244m +=,解得18m =. 故选:B9.(2022秋·湖北咸宁·高二统考期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为( ) A .8 B .6 C .4 D .2【答案】C【分析】根据条件求出p 的值,然后可算出答案.【详解】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C考点二 抛物线定义的应用(一)利用抛物线的定义求距离或点的坐标10.(2022秋·新疆乌鲁木齐·高二乌市八中校考期末)抛物线26y x =上一点()11,M x y 到其焦点的距离为92,则点M 到坐标原点的距离为( ) A.B.CD .2【答案】A【分析】由抛物线方程求得焦点坐标及准线方程,再由()11,M x y 到其焦点的距离求得M 横坐标,进一步求得M 纵坐标,则答案可求.【详解】由题意知,焦点坐标为3,02⎛⎫⎪⎝⎭,准线方程为32x =-,由()11,M x y 到焦点距离等于到准线距离,得13922x +=,则13x =,2118y ∴=故选:A.11.(2022·高二单元测试)已知曲线C 上任意一点P 到定点()2,0F 的距离比点P 到直线3x =-的距离小1,M ,N 是曲线C 上不同的两点,若10MF NF +=,则线段MN 的中点Q 到y 轴的距离为( ) A .3 B .4C .5D .6【答案】A【分析】根据抛物线的定义求出曲线C 的方程,再根据抛物线的性质计算可得;【详解】解:依题意曲线C 上任意一点P 到定点()2,0F 的距离和点P 到直线2x =-的距离相等, 由抛物线的定义可知:曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线,所以曲线C 的方程为28y x =.分别设点M 、N 、Q 到准线2x =-的距离分别为1d ,2d ,d , 则12522MF NFd d d ++===,所以中点Q 到y 轴的距离为3, 故选:A .12.(2022·高二课时练习)若()00,P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,则PF =( ). A .08x + B .08x -C .08x -D .016x +【答案】C【分析】根据抛物线定义,得到PF 等于点00(,)P x y 到准线的距离,即PF PM =,即可求解. 【详解】由抛物线232y x =-,可得其焦点在x 轴上,且8p =,准线方程为8x =, 因为点00(,)P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,根据抛物线定义,可得PF 等于点00(,)P x y 到准线的距离,即PF PM =, 如图所示,所以08PF x =-.故选:C13.(2022·高二课时练习)已知抛物线C :22y x =的焦点为F ,()00,A x y 是C 上一点,054AF x =,则0x =( ) A .1 B .2C .4D .5【答案】B【分析】先求出抛物线的准线方程,进而将点到焦点的距离转化为到准线的距离即可求得答案.【详解】由抛物线C :22y x =可得1p =,则准线方程为12x =-,于是00015224p AF x x x =+=+=,解得02x =.故选:B .14.(2022秋·新疆喀什·高二新疆维吾尔自治区喀什第二中学校考期中)已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为( )A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【分析】过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF ME =,当M 在抛物线上移动时,当,,A M E 三点共线时,ME MA +最小,由此即可求出结果.【详解】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把=2y -代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.15.(2022春·湖北武汉·高二华中师大一附中阶段练习)已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 的准线l 上,线段MF 与y 轴交于点A ,与抛物线C 交于点B ,若||3||3MA AB ==,则p =( ) A .1 B .2C .3D .4【答案】C【分析】由题知点A 为MF 的中点,结合已知得||6,||2,||4MF BF BM ===,过点B 作BQ l ⊥,由抛物线的定义即可求解.【详解】设l 与x 轴的交点为H ,由O 为FH 中点,知点A 为MF 的中点, 因为||3||3MA AB ==,所以||6,||2,||4MF BF BM ===.过点B 作BQ l ⊥,垂足为Q ,则由抛物线的定义可知||||2BQ BF ==, 所以||2||BM BQ =,则||2||6MF FH ==,所以||3p FH ==. 故选:C16.(2022春·福建·高二福建师大附中校考期末)如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,准线与对称轴交于点M ,若3BC BF=,且3AF =,则p 为( )A .1B .2C .3D .4【答案】B【分析】分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,根据抛物线的定义以及图象可得sin sin sin BCD ACE FCM ∠=∠=∠,结合已知条件求得,a p ,即可. 【详解】如图,分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,则由己知得3BC a =,由抛物线的定义得BD a =, 故1sin 33BD a BCD BC a ∠===, 在直角三角形ACE 中,3AF =,34AC a =+, 又因为31sin sin 343AE BCD ACE AC a ∠=∠===+, 则349a +=,从而得32a =, 又因为1sin sin 463MF p p BCD FCM FC a ∠=∠====, 所以2p =. 故选:B.(二)与抛物线定义有关的最大(小)值问题17.(2022·高二单元测试)已知圆C 经过点()1,0P ,且与直线=1x -相切,则其圆心到直线30x y -+=距离的最小值为( )A .3B .2 CD【答案】D【分析】利用已知可推出圆心C 的轨迹为抛物线,利用抛物线的几何性质求解即可.【详解】解:依题意,设圆C 的圆心(),C x y ,动点C 到点P 的距离等于到直线=1x -的距离, 根据抛物线的定义可得圆心C 的轨迹方程为24y x =, 设圆心C 到直线30x y -+=距离为d,d ====当2y =时,min d ,故选:D .18.(2022春·四川泸州·高二四川省泸县第一中学校考期末)已知抛物线C :212y x =-的焦点为F ,抛物线C 上有一动点P ,()4,2Q -,则PF PQ +的最小值为( )A .5B .6C .7D .8 【答案】C【分析】抛物线的准线l 的方程为3x =,过P 作PM l ⊥于M ,根据抛物线的定义可知PF PM =,则当,,Q P M 三点共线时,可求PM PQ +得最小值,答案可得.【详解】解:抛物线C :212y x =-的焦点为()3,0F -,准线l 的方程为3x =,如图,过P作PM l ⊥于M ,由抛物线的定义可知PF PM =,所以PF PQ PM PQ +=+则当,,Q P M 三点共线时,PM PQ +最小为()347--=. 所以PF PQ +的最小值为7.故选:C.19.(2022秋·江西赣州·高二校联考期中)已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为( ) A .4B .6C .8D .10【答案】C 【分析】利用抛物线定义,将抛物线上的点到焦点的距离转化为点到准线的距离,再根据三点共线求最小距离.【详解】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C20.(2022春·黑龙江哈尔滨·高二哈尔滨三中校考期中)设点P 是抛物线1C :24x y =上的动点,点M 是圆2C :22(5)(4)4x y -++=上的动点,d 是点P 到直线=2y -的距离,则||d PM +的最小值是( )A .2B .1C .D .1【答案】B 【分析】根据题意画出图像,将d 转化为抛物线上点到准线的距离再加1,也即是抛物线上点到焦点的距离加1,若求||d PM +的最小值,转化为抛物线上点到焦点距离和到圆上点的距离再加1即可,根据三角形两边之和大于第三边,即当112,,,F P M C 共线时,||d PM +取最小值为21FC r +-,算出结果即可.【详解】解:由题知圆2C :22(5)(4)4x y -++=,()25,4,2C r ∴-=()0,1F 为抛物线焦点,1y =-为抛物线准线,则过点P 向1y =-作垂线垂足为D ,如图所示:则1d PD =+, 根据抛物线定义可知=PD PF ,1d PF ∴=+,||d PM ∴+=1PF PM ++,若求||d PM +的最小值,只需求PF PM +的最小值即可,连接2FC 与抛物线交于点1P ,与圆交于点1M ,如图所示,此时PF PM +最小,为2FC r -,()2min 1d PM FC r +=+-,()()220,1,5,4,F C FC -∴=()2min 11d PM FC r ∴+=+-=.故选:B21.(2022春·北京·高二人大附中校考期末)已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ +抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P , ∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 2==.故选:C .考点三 抛物线的轨迹问题22.(2022·高二课时练习)已知点(2,2)M ,直线:10l x y --=,若动点P 到l 的距离等于PM ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线【答案】C【分析】由抛物线的定义求解即可.【详解】由抛物线的定义(平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线)可知,点P 的轨迹是抛物线.故选:C23.(2022春·四川成都·高二成都七中校考阶段练习)已知圆22:1O x y +=,点00(,0),(0)A x x ≥,动圆M 经过点A 且与圆O 相切,记动圆圆心M 的轨迹为E ,有下列几个命题:①00x =,则轨迹E 表示圆,②001x <<,则轨迹E 表示椭圆,③01x =,则轨迹E 表示抛物线,④01x >,则轨迹E 表示双曲线,其中,真命题的个数为( )A .1B .2C .3D .4【答案】C【分析】设动圆M 圆心(),M x y ,半径为r ,根据圆与圆内切和外切两种情况,结合圆,抛物线,椭圆和双曲线的定义,依次判断每个选项得到答案.【详解】设动圆M 圆心(),M x y ,半径为r ,当00x =时,动圆M 与圆O 内切,故1MO r =-,即1MO MO =-,12MO =,轨迹为圆,①正确; 当001x <<时,动圆M 与圆O 内切,故1MO r =-,即1MO MA AO +=>,故轨迹为椭圆,②正确; 当01x =时,动圆M 与圆O 内切时,1MO r =-,1MO MA AO +==,轨迹为线段OA ;动圆M 与圆O 外切时,1MO r =+,1MO MA AO -==,轨迹为射线,③错误;当01x >时,动圆M 与圆O 外切,1MO r =+,即1MO MA AO -=<,故轨迹为双曲线,④正确. 故选:C24.(2022秋·福建福州·高二统考期中)在平面直角坐标系xOy 中,动点(),P x y 到直线1x =的距离比它到定点()2,0-的距离小1,则P 的轨迹方程为( )A .22y x =B .24y x =C .24y x =-D .28y x =-【答案】D【分析】根据抛物线的定义判断轨迹,再由抛物线焦点、准线得到方程即可.【详解】由题意知动点(),P x y 到直线2x =的距离与定点()2,0-的距离相等,由抛物线的定义知,P 的轨迹是以()2,0-为焦点,2x =为准线的抛物线,所以4p =,轨迹方程为28y x =-,故选:D25.(2022春·广东江门·高二新会陈经纶中学校考阶段练习)已知点()1,0F ,过直线=1x -上一动点P 作与y 轴垂直的直线,与线段PF 的中垂线交于点Q ,则Q 点的轨迹方程为( )A .221x y +=B .221x y -=C .22y x =D .24y x = 【答案】D 【分析】根据中垂线性质得到QF QP =,结合抛物线的定义判断出Q 点的轨迹是抛物线,由此求解出轨迹方程.【详解】设(),Q x y ,因为PF 的中垂线经过点Q ,所以QF QP =,又因为PQ y ⊥轴,所以QP 表示Q 到直线=1x -的距离, 且QF 表示Q 点到F 点的距离,F 点不在直线=1x -上,由抛物线的定义可知:Q 点的轨迹是以F 为焦点,以直线=1x -为准线的抛物线,设轨迹方程为()220y px p =>,所以12p =,所以2p =, 所以轨迹方程为24y x =.故选:D.26.(2022秋·山东青岛·高二青岛二中校考阶段练习)已知动圆M 与直线y =2相切,且与定圆2231()C x y =:++ 外切,则动圆圆心M 的轨迹方程为( )A .212x y =-B .212x y =C .212y x =D .212y x =-【答案】A 【分析】根据动圆M 与直线y =2相切,且与定圆2231()C x y =:++外切,可得动点M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义知,点M 的轨迹是抛物线,由此易得轨迹方程.【详解】设动圆圆心为M (x ,y ),半径为r ,由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等, 由抛物线的定义可知,动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线, 所以3,2122p p ==,其方程为212.x y =-, 故选:A27.(2022·高二课时练习)若动点(,)M x y 满足3412x y =-+,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线 【答案】D34125x y -+=,结合抛物线的定义,即可求解.【详解】由题意,动点(,)M x y 满足3412x y -+,34125x y -+=, 即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.考点四 直线与抛物线的位置关系(一)直线与抛物线位置关系的判断及应用28.(2022春·上海浦东新·高二上海市建平中学校考阶段练习)过定点()0,1P 且与抛物线28y x =有且仅有一个公共点的直线有( )A .1条B .2条C .3条D .4条【答案】C【分析】根据题意,考虑直线斜率不存在和存在两种情况,由直线与抛物线位置关系,联立直线与抛物线方程求解,即可得出结果.【详解】当斜率不存在时,直线方程为0x =,只有一个公共点,符合题意;当斜率存在时,设为k ,则直线方程为1y kx =+,联立218y kx y x=+⎧⎨=⎩,得22(28)10k x k x +-+=, ①当0k =时,直线方程为1y =,只有一个公共点,符合题意;②当0k ≠时,令22(28)40k k ∆=--=,解得2k =,即直线与抛物线有一个公共点.所以满足题意的直线有3条.故选:C29.(2022·高二课时练习)直线()12y k x =-+与抛物线24x y =的位置关系为( )A .相交B .相切C .相离D .不能确定【答案】A【分析】直线()12y k x =-+过定点()1,2,在抛物线24x y =内部,即可得出结论.【详解】直线()12y k x =-+过定点()1,2,∴2142<⨯,∴()1,2在抛物线24x y =内部,∴直线()12y k x =-+与抛物线24x y =相交,故选:A .30.(2022春·江苏连云港·高二期末)已知直线l 过点()1,2且与抛物线24y x =只有一个公共点,则直线l 的方程是( )A .2y =B .10x y -+=C .1x =D .2y =或10x y -+= 【答案】D【分析】先判断点()1,2在抛物线上,再分直线的斜率不存在,直线的斜率为0和直线的斜率存在且不为0,三种情况讨论求解即可.【详解】将点(1,2)的坐标代入抛物线方程得2241=⨯,即该点在抛物线上.①若直线的斜率不存在,直线l 的方程为:1l x =,当直线l 与抛物线有两个交点,不合题意; ②若直线的斜率为0,则直线:2l y =平行于x 轴,则满足题意;③若直线的斜率存在且不为0,设()():210l y k x k -=-≠,联立方程组22(1)4y k x y x -=-⎧⎨=⎩, 将21y x k k =-+代入24y x =化简得24840y y k k-+-=, 则248Δ()4(4)01k k k =---=⇒=,此时:2110l y x x y -=-⇒-+=.综上,直线l 的方程为2y =或10x y -+=.故选:D .31.(2022春·江苏南京·高二校联考阶段练习)过抛物线24x y =的焦点F 作直线交抛物线于,A B 两点,且点A 在第一象限,则当2AF FB =时,直线AB 的斜率为( )AB.C.D.±【答案】A【分析】首先设直线AB ,把直线与抛物线联立,结合2AF FB =,找到12x x + 与12x x 关系式,计算即可得到斜率.【详解】由题意知()0,1F ,设直线AB :1y kx =+,()()1122,,,A x y B x y联立方程214y kx x y =+⎧⎨=⎩, 可得2440x kx --=,即得121244x x k x x +=⎧⎨=-⎩ ① 又因为2AF FB =,可得122x x =-,②结合①②()212122x x x x =-+,24216k -=-⨯ 可得21=8k , 因为122x x =-,1>0x ,20x <又因12=4x x k +所以0k >即可得k 故选:A .32.(2022春·江苏连云港·高二校考期中)过抛物线2:C y x =上定点(P 作圆()22:21M x y -+=的两条切线,分别交抛物线C 于另外两点A 、B ,则直线AB 的方程为( ) A.10x -+= B.10x ++= C.20x -+= D.20x ++=【答案】B【分析】设过点P 且与圆M相切的直线的方程为()2y k x =-,根据该直线与圆M 相切求出k 的值,设点()211,A y y 、()222,B y y ,求出1y 、2y 的值,求出直线AB 的斜率,利用点斜式可得出所求直线的方程.【详解】圆M 的圆心为()2,0M ,半径为1,易知PM x ⊥轴,所以,直线PA 、PB 的斜率必然存在, 设过点P 且与圆M相切的直线的方程为()2y k x =-,即20kx y k -+=,1=,解得1k =±,设点()211,A y y 、()222,B y y ,不妨设直线PA 、PB 的斜率分别为1、1-,则11PA k ==,可得11y =同理1PB k ==-,可得21y =-直线AB的斜率为122212121AB y y k y y y y -===-+ 易知点A的坐标为(3-, 所以,直线AB的方程为(13y x -=-+,即10x ++=. 故选:B.33.(2022秋·安徽·高二校联考期末)已知抛物线2:12C x y =的焦点为F ,其准线与y 轴的交点为A ,点B 为抛物线上一动点,当AB FB取得最大值时,直线AB 的倾斜角为( )A .4π B .3π C .6π或56π D .4π或34π【答案】D【分析】过点B 作抛物线C 的准线的垂线BM ,垂足为点M ,分析可得cos BF BAF AB =∠,当AB FB取得最大值时,BAF ∠最大,此时AB 与抛物线C 相切,设出直线AB 的方程,将抛物线C 的方程,由Δ0=可求得直线AB 的斜率,即可求得直线AB 的倾斜角.【详解】抛物线C 的准线为2:12l x y =,焦点为()0,3F ,易知点()0,3A -,过点B 作BM l ⊥,垂足点为M ,由抛物线的定义可得BM BF =,易知//BM y 轴,则BAF ABM ∠=∠,所以,cos cos BF BMABM BAF AB AB==∠=∠, 当AB FB取得最大值时,cos BAF ∠取最小值,此时BAF ∠最大,则直线AB 与抛物线C 相切,由图可知,直线AB 的斜率存在,设直线AB 的方程为3y kx =-,联立2123x yy kx ⎧=⎨=-⎩可得212360x kx -+=,则21441440k ∆=-=,解得1k =±,因此,直线AB 的倾斜角为4π或34π. 故选:D.(二)弦长问题34.(2022春·四川成都·高二树德中学校考阶段练习)已知抛物线2:8C y x =的焦点为F ,过点F 且倾斜角为π4的直线l 与抛物线C 交于A ,B 两点,则AB =( ).A .8B .C .16D .32【分析】根据过抛物线焦点的弦长公式求得正确答案. 【详解】焦点()2,0F ,直线l 的方程为2y x =-,由228y x y x=-⎧⎨=⎩,消去y 并化简得21240,144161280x x -+=∆=-=>, 设()()1122,,,A x y B x y ,所以1212x x +=, 所以1212416AB x x p =++=+=. 故选:C35.(2022春·湖北·高二校联考阶段练习)根据抛物线的光学性质,从抛物线的焦点发出的光,经抛物线反射后光线都平行于抛物线的轴,已知抛物线22y x =,若从点()3,2Q 发射平行于x 轴的光射向抛物线的A 点,经A 点反射后交抛物线于B 点,则AB =( ) A .258B .2516C .259D .2518【答案】A【分析】由题意求出A 点的坐标,由于直线AB 过焦点,利用点斜式方程求出直线AB 为4320x y --=,联立抛物线方程,得23102y y --=,根据韦达定理求出B 点坐标,利用两点间距离公式可求出AB . 【详解】由条件可知AQ 与x 轴平行,令2y =,可得2A x =,故A 点坐标为()2,2, 因为AB l 经过抛物线焦点1,02F ⎛⎫⎪⎝⎭,所以AB l 为20101222y x -⎛⎫-=- ⎪⎝⎭-,整理得4320x y --=, 联立224320y x x y ⎧=⎨--=⎩,得23102y y --=,()2325411024⎛⎫∆=--⨯⨯-=> ⎪⎝⎭,所以32A B y y +=,又2A y =,所以12B y =-,2111228B x ⎛⎫=⨯-= ⎪⎝⎭,所以258AB =,36.(2022春·山东济南·高二山东省济南市莱芜第一中学校考阶段练习)已知椭圆22154x y +=的右焦点F 是抛物线()220y px p =>的焦点,则过F 作倾斜角为45°的直线分别交抛物线于A ,B (A 在x 轴上方)两点,则AFBF的值为( )A.3+B .2+C .3D .4【答案】A【分析】先根据椭圆方程求抛物线的方程,分别过A ,B 作准线的垂线,得到直角梯形11AA B B ,结合抛物线的定义在梯形中求2ABAP ,即得结果.【详解】依题意,()1,0F 是抛物线()220y px p =>的焦点,故12p=,则2p =,24y x =. 根据已知条件如图所示,A 在x 轴上方,分别过A ,B 作准线的垂线,垂足为11,A B , 过B 作1AA 的垂线,垂足为P ,设,BF x AF kx ==,根据抛物线的定义知11,BB x AA kx ==,所以直角梯形11AA B B 中1A P x =,()111AP AA A P k x =-=-,()1AB k x =+,又直线AB 的倾斜角45,故121k xk x ,解得3k =+3AFBF=+ 故选:A.37.(2022·山东青岛·高二山东省莱西市第一中学学业考试)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,则OAB 的面积为( )A .94B C .98D【分析】联立直线与抛物线方程消去x 得1212,y y y y +, 121||||2OAB OAF OFB S S S OF y y =+=-△△△代入计算可得结果.【详解】由题意知,3(,0)4F∴过A 、B的直线方程为3)4y x =-,即:34x =+22349034y xy x ⎧=⎪⇒--=⎨+⎪⎩设1122,,()()A x y B x y ,,则121294y y y y +==-∴1212113||||||224OAB OAF OFB S S S OF y y y y =+=-=⨯-△△△3984== 故选:A.38.(2022春·河南·高二校联考期中)已知抛物线2:4C y x =的焦点为,F N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若||2||MN NF =,则MPF △的面积为( ) A .8 B .12C.D.【答案】C【分析】过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E ,进而根据几何关系得MPF △为等边三角形,34MF NF ==,再计算面积即可.【详解】解:如图,过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E , 所以,NF NQ =,2EF =. 因为MQN MEF △△∽, 所以23QN MN MQ EF MF ME ===,43QN NF ==,34MF NF ==. 所以1cos 2EF MFE MF ∠==,60MFE PMF ∠=︒=∠.又因为PM PF =,所以60PFM PMF ∠=∠=︒,所以MPF △为等边三角形,所以2MPF S ==△ 若M 在第三象限,结果相同. 故选:C39.(2022秋·河南许昌·高二统考期末)已知直线l 过点()2,0,且垂直于x 轴.若l 被抛物线24y ax =截得的线段长为 ) A .()1,0 B .()0,1 C .()1,2 D .()2,1【答案】A【分析】将2x =代入24y ax =可得交点坐标,结合弦长为a ,进而得到抛物线的焦点坐标即可【详解】当2x =时,28y a =,显然0a >,解得y =±(-=,解得1a =,故抛物线24y x =,焦点坐标为()1,0故选:A40.(2022秋·河南·高二校联考开学考试)已知A ,B 为抛物线2:C y x =,上的两点,且2AB =,则AB 的中点横坐标的最小值为( ). A .14B .12C .34D .1【分析】根据抛物线的弦长公式,结合基本不等式进行求解即可. 【详解】设直线AB 的方程为()0x ky b b =+≥,()11,A x y ,()22,B x y ,联立方程组2y xx ky b ⎧=⎨=+⎩,得20y ky b --=,则12y y k +=,12y y b =-,240k b ∆=+>.因为2AB ,所以()()22144k k b ++=,得22114k b k =-+.因为()2121222x x k y y b k b +=++=+,所以AB 的中点的横坐标2221202211112241414x x k k k x b k k ++==+=+=+-++.因为2211141k k ++≥=+, 当且仅当221141k k +=+,即1k =±时,等号成立, 所以当1k =±时,0x 取得最小值34. 故选:C41.(2022秋·广东深圳·高二深圳市罗湖外语学校校考阶段练习)已知圆()2220x y r r +=>与抛物线23y x=相交于M ,N ,且MN =r =( )A B .2 C .D .4【答案】B【分析】由圆与抛物线的对称性及MN =M 点纵坐标,代入抛物线得横坐标,求出||OM 即可得解.【详解】因为圆()2220x y r r +=>与抛物线23y x =相交于M ,N ,且MN =由对称性,不妨设(M x ,代入抛物线方程,则33x =,解得1x =,所以M ,故||2r OM ==(三)焦点弦问题42.(2022春·湖南长沙·高二湘府中学校考阶段练习)设F 为抛物线2:2C y x =的焦点,点M 在C 上,点N 在准线l 上,满足//MN OF ,NF MN =,则MF =( )A .12 B C .2 D 【答案】C【分析】由抛物线方程可知p ,焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解. 【详解】由题,1p =,抛物线焦点F 为1,02⎛⎫⎪⎝⎭,准线l 为12x =-,设准线l 与x 轴交点为E ,如图所示, 由题知MN l ⊥,由定义可知MN MF =, 因为NF MN =,所以MNF 是正三角形,则对Rt NEF ,因为//MN OF ,所以60EFN MNF ∠=∠=︒, 所以222MF NF EF p ====, 故选:C43.(2022·全国·高二假期作业)已知抛物线2:4C y x =的焦点为F ,N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若2MN NF =,则直线PF 的斜率为( ) A .1 B .2C .43D 【答案】D【分析】过N 作准线的垂线,垂足为Q ,根据抛物线的定义以及两直线平行内错角相等、等腰三角形的性质可得30NMQ ∠=,通过直线的倾斜角为πPFM MFO -∠-∠即可得结果. 【详解】如图,过N 作准线的垂线,垂足为Q ,则||||NF NQ =. 又因为||||PM PF =,所以PFM PMF MFO MNQ ∠=∠=∠=∠. 因为||2||MN NF =,即||2||MN NQ = 所以30NMQ ∠=,即60MNQ ∠=︒.直线PF的斜率为tan(π)tan 60PFM MFO -∠-∠=︒= 故选:D.44.(2022春·四川绵阳·高二四川省绵阳南山中学校考期中)已知直线l 过抛物线2:4E y x =的焦点F ,且与抛物线交于A ,B 两点,与抛物线的准线交于C 点,若2AB BC =,则||||AF BF 等于( ) A .2 B .3C .12D .13【答案】B【分析】过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B ,根据相似得到1113BB AA =,再利用抛物线的性质得到答案. 【详解】如图所示:过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B , 则1BF BB =,1AF AA =,2AB BC =,故1113BB AA =,即||3||AF BF =. 故选:B45.(2022春·浙江金华·高二浙江金华第一中学校考阶段练习)设倾斜角为α的直线l 经过抛物线C :()220y px p =>的焦点F ,与抛物线C 交于A 、B 两点,设A 在x 轴上方,点B 在x 轴下方.若2AFBF=,则cos α的值为( )A .13B .12C .23D 【答案】A【分析】由抛物线的性质,抛物线上的点到焦点的距离转化为到准线的距离,在直角三角形中求出倾斜角为α的余弦值.【详解】过A ,B 分别作准线的垂线交准线于M ,N ,过B 作BC AM ⊥于C ,则AC AM BN =-,由抛物线的性质可得,AM AF =,BN BF =, 因为||2||AF BF =,∴3AB BF =, 所以1cos 3333AC AM BN AF BF BF CAB AB BF BF BF --=====∠,即1cos 3α=. 故选:A .(四)中点弦问题。

专题21 抛物线(学生版)-【挑战压轴题】备战2022年高考数学高分必刷必过题(全国通用版)

专题21 抛物线(学生版)-【挑战压轴题】备战2022年高考数学高分必刷必过题(全国通用版)

专题21抛物线(解答题压轴题)1.(2021·全国高三模拟预测)在平面直角坐标系xOy 中,抛物线E :()220y px p =>上一点00(4,)(0)S y y >到焦点F 的距离5SF =.不经过点S 的直线l 与E 交于A ,B .(1)求抛物线E 的标准方程;(2)若直线AS ,BS 的斜率之和为2,证明:直线l 过定点.2.(2021·全国高三月考(理))已知直线l 过原点O ,且与圆A 交于M ,N 两点,4MN =,圆A 与直线2y =-相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C .(1)求C 的方程;(2)过直线1y =-上任一点P 作C 的两条切线,切点分别为1Q ,2Q ,证明:①直线12Q Q 过定点;②12PQ PQ ⊥.3.(2021·安徽高三开学考试(理))已知中心在坐标原点O ,焦点在x 轴上,离心率为2的椭圆C 过点1)2.(1)求C 的标准方程;(2)是否存在不过原点O 的直线:l y kx m =+与C 交于,P Q 两点,使得直线OP 、PQ 、OQ 的斜率成等比数列、若存在,求k 的值及m 的取值范围;若不存在,请说明理由.4.(2021·全国高三专题练习)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C 在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率;(2)求三角形AMN 面积的最小值.5.(2021·全国高三月考(理))已知抛物线()220x py p =>上一点()02,P y 到其焦点F 的距离为2,过点(),0T t ()0t >作两条斜率为1k ,2k 的直线1l ,2l 分别与该抛物线交于A ,B 与C ,D 两点,且120k k +=,FAB FCD S S =△△.(Ⅰ)求抛物线的方程;(Ⅱ)求实数t 的取值范围.6.(2021·浙江瑞安中学高三模拟预测)已知抛物线()21:20C y px p =>和右焦点为F 的椭圆222:143x y C +=.如图,过椭圆2C 左顶点T 的直线交抛物线1C 于,A B 两点,且2AB TA =.连接AF 交2C 于两点,M N ,交1C 于另一点C ,连BC ,Q 为BC 的中点,TQ交AC 于D .(1)证明:点A 的横坐标为定值;(2)记CDT ∆,QMN ∆的面积分别为1S ,2S ,若12512S S =,求抛物线的方程.7.(2021·全国高三专题练习(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB ∆面积的最大值.8.(2021·浙江省杭州第二中学高三模拟预测)已知抛物线()2:20C y px p =>经过点(2,,P 是圆()22:11M x y ++=上一点,PA 、PB 都是C 的切线.(1)求抛物线C 的方程及其准线方程;(2)求PAB ∆的面积的最大值.9.(2021·广东汕头·高三三模)已知圆()22:21C x y +-=与定直线:1l y =-,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线1:2l y =-上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B .①求证:直线AB 过定点;②求证:PCA PCB ∠=∠.10.(2021·河南郑州·高三三模(理))已知抛物线2:4C x y =和圆()22:11E x y ++=,过抛物线上一点()00,P x y ,作圆E 的两条切线,分别与x 轴交于,A B 两点.(1)若切线PB 与抛物线C 也相切,求直线PB 的斜率;(2)若02y ≥,求PAB ∆面积的最小值.11.(2021·浙江高三三模)如图,已知抛物线C :214y x =,点()()000,1A x y y ≥为抛物线上一点,过点A 的圆G 与y 轴相切于点()0,M t ,且与抛物线C 在点A 处有相同切线,8OM NO =,过点N 的直线l 交抛物线于点E ,F ,直线AE ,AF 的斜率分别为1k ,2k ,满足120k k +=.(1)求抛物线C 的焦点坐标和准线方程;(2)求点A 到直线l 的距离的最小值.12.(2021·四川泸州·高三三模(理))从抛物线24y x =上各点向x 轴作垂线段,记垂线段中点的轨迹为曲线P .(1)求曲线P 的方程,并说明曲线P 是什么曲线;(2)过点()2,0M 的直线l 交曲线P 于两点A 、B ,线段AB 的垂直平分线交曲线P 于两点C 、D ,探究是否存在直线l 使A 、B 、C 、D 四点共圆?若能,请求出圆的方程;若不能,请说明理由.13.(2021·浙江高三期末)如图,已知抛物线21:C x y =在点A 处的切线l 与椭圆222:12x C y +=相交,过点A 作l 的垂线交抛物线1C 于另一点B ,直线OB (O 为直角坐标原点)与l 相交于点D ,记()11,A x y 、()22,B x y ,且1>0x .(1)求12x x -的最小值;(2)求DODB的取值范围.14.(2021·河北沧州·高三二模)已知(2,0)M -,(2,0)N ,动点P 满足:直线PM 与直线PN 的斜率之积为常数14-,设动点P 的轨迹为曲线1C .抛物线22:2(0)C x py p =>与1C 在第一象限的交点为A ,过点A 作直线l 交曲线1C 于点B 交抛物线2C 于点E (点,B E 不同于点A ).(1)求曲线1C 的方程.(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.15.(2021·湖南长沙·高三模拟预测)已知抛物线()2:20C x py p =>的焦点为F ,点(),1m 在抛物线C 上,该点到原点的距离与到C 的准线的距离相等.(1)求抛物线C 的方程;(2)过焦点F 的直线l 与抛物线C 交于A ,B 两点,且与以焦点F 为圆心2为半径的圆交于M ,N 两点,点B ,N 在y 轴右侧.①证明:当直线l 与x 轴不平行时,AM BN≠②过点A ,B 分别作抛物线C 的切线1l ,2l ,1l 与2l 相交于点D ,求DAM △与DBN 的面积之积的取值范围.16.(2021·浙江高三专题练习)已知椭圆22:14x T y +=,抛物线2:2M y px =的焦点是F ,且动点()1,G t -在其准线上.(1)当点G 在椭圆T 上时,求GF 的值;(2)如图,过点G 的直线1l 与椭圆T 交于,P Q 两点,与抛物线M 交于,A B 两点,且G 是线段PQ 的中点,过点F 的直线2l 交抛物线M 于,C D 两点.若//AC BD ,求2l 的斜率k 的取值范围.17.(2021·河南高三月考(理))已知抛物线()2:20C x py p =>的焦点为F ,且点F 与圆()22:41M x y ++=171.(1)求p ;(2)已知直线:4l y kx =+与C 相交于A ,B 两点,过点B 作平行于y 轴的直线BD 交直线:4l y '=-于点D .问:直线AD 是否过y 轴上的一定点?若过定点,求出该定点的坐标;若不过定点,试说明理由.18.(2021·上海市实验学校高三月考)已知直线2y x =与抛物线:Γ()220y px p =>交于1G ,2G 两点,且125G G ,过椭圆221:143x y C +=的右顶点Q 的直线l 交于抛物线Γ于A ,B 两点.(1)求抛物线Γ的方程;(2)若射线OA ,OB 分别与椭圆1C 交于点D ,E ,点O 为原点,ODE ,OAB 的面积分别为1S ,2S ,问是否存在直线l 使213S S =?若存在求出直线l 的方程,若不存在,请说明理由;(3)若P 为2x =-上一点,PA ,PB 与x 轴相交于M ,N 两点,问M ,N 两点的横坐标的乘积M N x x ⋅是否为定值?如果是定值,求出该定值,否则说明理由.19.(2021·全国高三专题练习)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.20.(2021·浙江高三模拟预测)已知点F 为抛物线C :214y x =的焦点,点()0,4D ,点A 为抛物线C 上的动点,直线l :y t =截以AD 为直径的圆所得的弦长为定值.(1)求t 的值;(2)如图,直线l 交y 轴于点E ,抛物线C 上的点B 满足AB 的中垂线过点D 且直线AB 不与x 轴平行,求ABE 的面积的最大值.。

抛物线(测)-2019年高考数学(文)---精校解析 Word版

抛物线(测)-2019年高考数学(文)---精校解析 Word版

数学试题一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【2018届湖北省黄冈市高三9月检测】抛物线的焦点坐标是()A. B. C. D.【答案】B【解析】,焦点坐标为,即为,故选B.2.【2018届新疆呼图壁县第一中学高三9月月考】抛物线的焦点坐标为(0,-1),实数a的值等于()A. 4B. -4C.D.【答案】B3.【2018届江西省新余市第一中学毕业年级第二模拟】动点到点的距离比它到直线的距离小2,则动点的轨迹方程为()A. B. C. D.【答案】D4.已知是抛物线的焦点,是抛物线上的两点,,则线段的中点到轴的距离为()A. 4B. 5C. 6D. 11【答案】B【解析】∵,∴,∴,∴线段的中点到轴的距离为,故选B.5.【2018届云南省昆明一中高三第一次摸底】已知抛物线的焦点为,准线为,点,线段交抛物线于点,若,则()A. B. C. D.【答案】B【解析】由已知为的三等分,作于,如图,则,,故选B.6.【2018届广雅中学、东华中学、河南名校高三第一次联考】已知抛物线的焦点为,准线,点在抛物线上,点在左准线上,若,且直线的斜率,则的面积为()A. B. C. D.【答案】C7.【四川省高2019届第一次诊断】设椭圆的焦点与抛物线的焦点相同,离心率为,则()A. B. C. D.【答案】A【解析】抛物线的焦点为(0,2),∴椭圆的焦点在y轴上,∴c=2,由离心率 e=,可得a=4,∴b2=a2-c2=,故.故选A.8.【2018届安徽省屯溪第一中学高三第二次月考】已知抛物线的焦点为,点在此抛物线上,且,弦的中点在其准线上的射影为,则的最大值为()A. B. C. D.【答案】A9.【黑龙江省哈尔滨市第六中学2018届考前押题卷(二)】已知抛物线,过焦点作直线与抛物线交于点,,设,,则的最小值为A. B.C. D.【答案】D【解析】由题意知,抛物线的焦点坐标为,直线方程为,当斜率存在时,设直线的方程为,联立抛物线方程,可得,设出,则,依据抛物线定义得出,当斜率不存在时,,则的最小值是4,故选D.10.【河南省中原名校2018届高考预测金卷】过抛物线上的焦点,作直线与抛物线交于,两点,已知,则()A. 2 B. 3 C. D.【答案】B11.【2018届辽宁省庄河市高级中学高三上学期开学】如图所示点是抛物线的焦点,点分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的轴长的取值范围是()A. B. C. D.【答案】B12.【山东省青岛市2019届9月调研】已知抛物线的焦点为,准线为,为上一点,垂直于点分别为,的中点,与轴相交于点,若,则等于()A. B. 1 C. 2 D. 4【答案】B【解析】分别是的中点,,且轴,,由抛物线定义知,为正三角形,则,正三角形边长为,,又可得为正三角形,,故选C.二、填空题13.已知抛物线的焦点与圆的圆心重合,则m的值是_____________.【答案】【解析】抛物线的焦点坐标为,圆的圆心坐标为,故即,填.14.【江西省南昌市2018届二轮测试卷(三)】若抛物线上的点到焦点的距离为,则到轴的距离是________.【答案】1015.【2018届江苏省南京市溧水高级中学高三上学期期初模拟】已知点为抛物线的焦点,该抛物线上位于第一象限的点到其准线的距离为5,则直线的斜率为 .【答案】【解析】试题分析:由抛物线定义得:又点位于第一象限,因此从而16.【2018届黑龙江省海林市朝鲜中学高三综合卷(一)】过点的直线与抛物线交于,两点,线段的垂直平分线经过点,为抛物线的焦点,则的值为__________.【答案】6【解析】设AB的中点为H,抛物线的焦点为,准线为,设A、B、H在准线上的射影为,则,由抛物线的定义可得,,,过的直线设为,与联立得:,,计算得出且,三、解答题17.【四川省成都市棠湖中学2019届高三第一次月考】如图,已知抛物线C的顶点在原点,焦点F在轴上,抛物线上的点A到F的距离为2,且A的横坐标为1. 过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足(1)求抛物线C的方程;(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由. 【答案】(1);(2)过定点【解析】⑴设抛物线方程为C:,由其定义知,又,所以,18.【2018届浙江省“七彩阳光”联盟高三上学期期初联考】已知是抛物线的焦点,点是不在抛物线上的一个动点,过点向抛物线作两条切线,切点分别为.(1)如果点在直线上,求的值;(2)若点在以为圆心,半径为4的圆上,求的值.【答案】(1)1(2)16试题解析:解:因为抛物线的方程为,所以,所以切线的方程为,即①,同理切线的方程为②,设,则由①②得以及,由此得直线的方程为.(1)由于点是直线上的一个动点,所以,即直线的方程为,因此它过抛物线的焦点.当时,的方程为,此时,所以;当时,把直线方程代入抛物线方程得到,从而有,所以.综上,.(2)由(1)知切线的方程为,切线的方程为,联立得点.设直线的方程为,代入得.因此,所以点的坐标为,由题意,所以,从而.19.如图,已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点.(1)求点A,B的坐标;(2)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.【答案】(1);(2)设圆的圆心为,点的坐标为,由题意知,点,关于直线对称,故有,解得.即点.20.【2018届浙江省名校协作体高三上学期考试】如图,已知抛物线的焦点在抛物线上,点是抛物线上的动点.(Ⅰ)求抛物线的方程及其准线方程;(Ⅱ)过点作抛物线的两条切线,、分别为两个切点,求面积的最小值.【答案】(Ⅰ) 的方程为其准线方程为;(Ⅱ)2.【解析】试题分析; (I)由题意抛物线的焦点为抛物线的顶点(,由此算出从而得到抛物线的方程,得到的准线方程;试题解析:(Ⅰ)的方程为其准线方程为.(Ⅱ)设,,,则切线的方程:,即,又,所以,同理切线的方程为,又和都过点,所以,所以直线的方程为.联立得,所以.所以.点到直线的距离.所以的面积所以当时,取最小值为.即面积的最小值为2.21.【浙江省诸暨市2018届5月】已知是抛物线的焦点,过的直线交抛物线于不同两点,且.(1)求抛物线的方程;(2)过点作轴的垂线交直线(是原点)于,过作直线的垂线与抛物线的另一交点为,中点为.①求点的纵坐标;②求的取值范围.【答案】(1);(2)见解析.【解析】【详解】(1)设:,∴∴,∴∴(2)直线:∴即,∴,即直线:22.【2018年理北京卷】已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l 与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.【答案】(1)取值范围是(-∞,-3)∪(-3,0)∪(0,1)(2)证明过程见解析【解析】(Ⅰ)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得.依题意,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1)..所以为定值.。

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习

抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。

2019浙江高考 抛物线专题

2019浙江高考 抛物线专题

1、抛物线22(0)y px p =>焦点为F ,设1122(,),(,)Axy Bx y 为抛物线的焦点弦的端点,记AB 所在直线的倾斜角为θ ,过A 做AM 垂直准线于点M ,过B 做BN 垂直准线于点N .证明:(1)221p y y -= x 1x 2= 42p证明:当AB 与x 轴垂直时,即AB 为通径 AB 方程是:x =2p设),(),,(2211y x B y x A 由222y px p x ⎧=⎪⎨=⎪⎩解得:A(),2p p B(),2p p -则221p y y -=;x 1x 2=42pAB 与x 轴不垂直时,AB 方程是()2py k x =-⎪⎩⎪⎨⎧-==)2(22p x k y pxy 消x 得 ky 2-2py-kp 2=0 得221p y y -= 由21122222y px y px ⎧=⎪⎨=⎪⎩ 得x 1x 2= 42p(或消y 得22222(2)04p k k x pk p x -++=) (2)OA OB k k ⋅为定值 证明:12124OA OB y y k k x x ⋅==- (3)α2sin 2pAB =证明:AB 与x 轴垂直时,p AB 2=22sin2p π=AB 与x 轴不垂直时,121222p pAB AF BF x x x x p =+=+++=++=222222222122(1)tan sin pk p pk p pp p k k αα++=+==+= (4)证明:112AF BF p+=证明:⎪⎩⎪⎨⎧-==)2(22p x k y px y 或消y 得22222(2)04p k k x pk p x -++= 2212122222,4pk p p p x x p x x k k++==+= 12111122p p AF BFx x +=+=++1221212()24x x p p p x x x x +++++22222222(2)424pp k p p p p p p k+==+++(5)MF ⊥NF证法1:221p y y -=式子的几何意义:KF p =,22KFp =KM y =1 KN y =-2故:KN KM KF.2=,得MKF 与NFK 相似,由此可以推出:MF ⊥NF证法2:M (),21y p -N (),22y p - F ()0,2p ∴py y k MF 11220-=---=p yp p y k NF 22220-=---=所以:122221-=-==∙pp py y k k NF MF 因此:MF ⊥NF即:过抛物线的焦点弦的两端作准线的垂线,两垂足与焦点的连线互相垂直.注:还可证明以MN 为直径的圆与直线AB 相切。

历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之抛物线必会题型及答案

历年高三数学高考考点之<抛物线>必会题型及答案体验高考1.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4)C.(2,3) D.(2,4) 答案 D解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当直线l 的斜率不存在时,符合条件的直线l 必有两条;当直线l 的斜率k 存在时,如图x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得,k ·y 0-0x 0-5=-1,y 0·k =5-x 0, 2=5-x 0,x 0=3,即M 必在直线x =3上, 将x =3代入y 2=4x ,得y 2=12, ∴-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4.故选D.2.如图,设抛物线y 2=4x 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则△BCF 与△ACF 的面积之比是( )A.|BF |-1|AF |-1B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1D.|BF |2+1|AF |2+1 答案 A解析 由图形可知,△BCF 与△ACF 有公共的顶点F ,且A ,B ,C 三点共线,易知△BCF 与△ACF 的面积之比就等于|BC ||AC |.由抛物线方程知焦点F (1,0),作准线l ,则l 的方程为x =-1.∵点A ,B 在抛物线上,过A ,B 分别作AK ,BH 与准线垂直,垂足分别为点K ,H ,且与y 轴分别交于点N ,M .由抛物线定义,得|BM |=|BF |-1,|AN |=|AF |-1.在△CAN 中,BM ∥AN ,∴|BC ||AC |=|BM ||AN |=|BF |-1|AF |-1. 3.(2016·四川)设O 为坐标原点,P 是以F 为焦点的抛物线y 2=2px (p >0)上任意一点,M 是线段PF 上的点,且|PM |=2|MF |,则直线OM 的斜率的最大值为( ) A.33B.23C.22D.1 答案 C 解析 如图,由题意可知F ⎝ ⎛⎭⎪⎫p 2,0,设P 点坐标为⎝ ⎛⎭⎪⎫y 202p ,y 0,显然,当y 0<0时,k OM <0;y 0>0时,k OM >0,要求k OM 的最大值,不妨设y 0>0.则OM →=OF →+FM →=OF →+13FP →=OF →+13(OP →-OF →)=13OP →+23OF →=⎝ ⎛⎭⎪⎫y 26p +p 3,y 03,k OM =y 03y 206p +p 3=2y 0p +2p y 0≤222=22,当且仅当y 20=2p 2时等号成立.故选C.4.(2016·课标全国乙)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2B.4C.6D.8 答案 B解析 不妨设抛物线C :y 2=2px (p >0),则圆的方程可设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝ ⎛⎭⎪⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0, ① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2, ②点D ⎝ ⎛⎭⎪⎫-p2,5在圆x 2+y 2=r 2上,∴⎝ ⎛⎭⎪⎫p 22+5=r 2, ③联立①②③,解得p =4,即C 的焦点到准线的距离为p =4,故选B.5.(2015·上海)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =______. 答案 2解析 根据抛物线的性质,我们知道当且仅当动点Q 运动到原点的时候,才与抛物线焦点的距离最小,所以有|PQ |min =p2=1⇒p =2.高考必会题型题型一 抛物线的定义及其应用例1 已知P 为抛物线y 2=6x 上一点,点P 到直线l :3x -4y +26=0的距离为d 1.(1)求d 1的最小值,并求此时点P 的坐标;(2)若点P 到抛物线的准线的距离为d 2,求d 1+d 2的最小值. 解 (1)设P (y 206,y 0),则d 1=|12y 20-4y 0+26|5=110|(y 0-4)2+36|,当y 0=4时,(d 1)min =185,此时x 0=y 206=83,∴当P 点坐标为(83,4)时,(d 1)min =185.(2)设抛物线的焦点为F , 则F (32,0),且d 2=|PF |,∴d 1+d 2=d 1+|PF |,它的最小值为点F 到直线l 的距离|92+26|5=6110,∴(d 1+d 2)min =6110.点评 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 (1)(2016·浙江)若抛物线y 2=4x 上的点M 到焦点的距离为10,则点M 到y 轴的距离是________.(2)已知点P 在抛物线y 2=4x 上,那么点P 到Q (2,1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( ) A.(14,1) B.(14,-1)C.(1,2) D.(1,-2) 答案 (1)9 (2)B解析 (1)抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9.(2)抛物线y 2=4x 焦点为F (1,0),准线为x =-1, 作PQ 垂直于准线,垂足为M ,根据抛物线定义,|PQ |+|PF |=|PQ |+|PM |,根据三角形两边之和大于第三边,直角三角形斜边大于直角边知:|PQ |+|PM |的最小值是点Q 到抛物线准线x =-1的距离. 所以点P 纵坐标为-1,则横坐标为14,即(14,-1).题型二 抛物线的标准方程及几何性质例2 (2015·福建)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.方法一 (1)解 由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上, 所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1).由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 方法二 (1)解 同方法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r . 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0.解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),故直线GA 的方程为22x -3y +22=0. 从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p 的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.变式训练2 已知抛物线C 的顶点在坐标原点O ,其图象关于y 轴对称且经过点M (2,1). (1)求抛物线C 的方程;(2)若一个等边三角形的一个顶点位于坐标原点,另两个顶点在抛物线上,求该等边三角形的面积;(3)过点M 作抛物线C 的两条弦MA ,MB ,设MA ,MB 所在直线的斜率分别为k 1,k 2,当k 1+k 2=-2时,试证明直线AB 的斜率为定值,并求出该定值. 解 (1)设抛物线C 的方程为x 2=2py (p >0), 由点M (2,1)在抛物线C 上,得4=2p , 则p =2,∴抛物线C 的方程为x 2=4y .(2)设该等边三角形OPQ 的顶点P ,Q 在抛物线上, 且P (x P ,y P ),Q (x Q ,y Q ), 则x 2P =4y P ,x 2Q =4y Q ,由|OP |=|OQ |,得x 2P +y 2P =x 2Q +y 2Q , 即(y P -y Q )(y P +y Q +4)=0.又y P >0,y Q >0,则y P =y Q ,|x P |=|x Q |, 即线段PQ 关于y 轴对称. ∴∠POy =30°,y P =3x P , 代入x 2P =4y P ,得x P =43,∴该等边三角形边长为83,S △POQ =48 3. (3)设A (x 1,y 1),B (x 2,y 2), 则x 21=4y 1,x 22=4y 2,∴k 1+k 2=y 1-1x 1-2+y 2-1x 2-2=14x 21-1x 1-2+14x 22-1x 2-2=14(x 1+2+x 2+2)=-2.∴x 1+x 2=-12,∴k AB =y 2-y 1x 2-x 1=14x 22-14x 21x 2-x 1=14(x 1+x 2)=-3.题型三 直线和抛物线的位置关系例3 已知圆C 1的方程为x 2+(y -2)2=1,定直线l 的方程为y =-1.动圆C 与圆C 1外切,且与直线l 相切.(1)求动圆圆心C 的轨迹M 的方程;(2)直线l ′与轨迹M 相切于第一象限的点P ,过点P 作直线l ′的垂线恰好经过点A (0,6),并交轨迹M 于异于点P 的点Q ,记S 为△POQ (O 为坐标原点)的面积,求S 的值. 解 (1)设动圆圆心C 的坐标为(x ,y ),动圆半径为R , 则|CC 1|=x 2+(y -2)2=R +1,且|y +1|=R , 可得x 2+(y -2)2=|y +1|+1.由于圆C 1在直线l 的上方,所以动圆C 的圆心C 应该在直线l 的上方, ∴有y +1>0,x 2+(y -2)2=y +2,整理得x 2=8y ,即为动圆圆心C 的轨迹M 的方程.(2)设点P 的坐标为(x 0,x 208),则y =x 28,y ′=14x ,k l ′=x 04,k PQ =-4x 0,∴直线PQ 的方程为y =-4x 0x +6.又k PQ =x 208-6x 0,∴x 208-6x 0=-4x 0,x 20=16,∵点P 在第一象限,∴x 0=4,点P 的坐标为(4,2),直线PQ 的方程为y =-x +6.联立⎩⎪⎨⎪⎧y =-x +6,x 2=8y ,得x 2+8x -48=0,解得x =-12或4,∴点Q 的坐标为(-12,18). ∴S =12|OA |·|x P -x Q |=48.点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 (2015·课标全国Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a(x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-b x 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.高考题型精练1.如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线l ′于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A.y 2=9x B.y 2=6x C.y 2=3x D.y 2=3x 答案 C解析 如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得: |BC |=2a ,由定义得:|BD |=a , 故∠BCD =30°. 在直角三角形ACE 中,∵|AF |=3,∴|AE |=3,|AC |=3+3a , ∴2|AE |=|AC |,∴3+3a =6, 从而得a =1,∵BD ∥FG , ∴1p =23,求得p =32, 因此抛物线方程为y 2=3x ,故选C.2.已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( ) A.2±3B.2+3C.3±1D.3-1 答案 A解析 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.3.设F 为抛物线y 2=8x 的焦点,A ,B ,C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|的值是( ) A.6B.8C.9D.12 答案 D解析 由抛物线方程,得F (2,0),准线方程为x =-2. 设A ,B ,C 坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),则由抛物线的定义,知|FA |+|FB |+|FC |=x 1+2+x 2+2+x 3+2=x 1+x 2+x 3+6. 因为FA →+FB →+FC →=0,所以(x 1-2+x 2-2+x 3-2,y 1+y 2+y 3)=(0,0), 则x 1-2+x 2-2+x 3-2=0,即x 1+x 2+x 3=6, 所以|FA →|+|FB →|+|FC →|=|FA |+|FB |+|FC | =x 1+x 2+x 3+6=12,故选D.4.已知抛物线C :y 2=8x 的焦点为F ,点M (-2,2),过点F 且斜率为k 的直线与C 交于A ,B 两点,若∠AMB =90°,则k 等于( )A.2B.22C.12D.2 答案 D解析 抛物线C :y 2=8x 的焦点为F (2,0),由题意可知直线AB 的斜率一定存在,所以设直线方程为y =k (x -2),代入抛物线方程可得 k 2x 2-(4k 2+8)x +4k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4+8k2,x 1·x 2=4, 所以y 1+y 2=8k,y 1·y 2=-16, 因为∠AMB =90°,所以MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=16k 2-16k+4=0, 解得k =2,故选D.5.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( ) A.12B.23C.34D.43答案 D解析 抛物线y 2=2px 的准线为直线x =-p 2,而点A (-2,3)在准线上,所以-p2=-2,即p =4,从而C :y 2=8x ,焦点为F (2,0).设切线方程为y -3=k (x +2),代入y 2=8x 得k 8y 2-y +2k +3=0(k ≠0),①由于Δ=1-4×k 8(2k +3)=0,所以k =-2或k =12. 因为切点在第一象限,所以k =12. 将k =12代入①中,得y =8,再代入y 2=8x 中得x =8, 所以点B 的坐标为(8,8),所以直线BF 的斜率为86=43. 6.已知A (x 1,y 1)是抛物线y 2=8x 的一个动点,B (x 2,y 2)是圆(x -2)2+y 2=16上的一个动点,定点N (2,0),若AB ∥x 轴,且x 1<x 2,则△NAB 的周长l 的取值范围是( )A.(6,10)B.(10,12)C.(8,12)D.(8,10)解析 抛物线的准线l :x =-2,焦点F (2,0),由抛物线定义可得|AF |=x 1+2,圆(x -2)2+y 2=16的圆心为(2,0),半径为4,又定点N (2,0),∴△NAB 的周长即为△FAB 的周长=|AF |+|AB |+|BF |=x 1+2+(x 2-x 1)+4=6+x 2, 由抛物线y 2=8x 及B (x 2,y 2)在圆(x -2)2+y 2=16上,∴x 2∈(2,6),∴6+x 2∈(8,12),故选C.7.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x -y -10=0上的点N ,经直线反射后又回到点M ,则x 0=________.答案 6解析 由题意得P (2,4),F (2,0)⇒Q (2,-4),因此N (6,-4),因为QN ∥PM ,所以MN ⊥QN ,即x 0=6.8.已知直线l 过点(0,2),且与抛物线y 2=4x 交于A (x 1,y 1),B (x 2,y 2)两点,则1y 1+1y 2=_____.答案 12解析 由题意可得直线的斜率存在且不等于0,设直线l 的方程为y =kx +2,代入抛物线y 2=4x 可得y 2-4k y +8k=0, ∴y 1+y 2=4k ,y 1y 2=8k ,∴1y 1+1y 2=y 1+y 2y 1y 2=12. 9.已知抛物线y 2=4x 与经过该抛物线焦点的直线l 在第一象限的交点为A ,A 在y 轴和准线上的投影分别为点B ,C ,|AB ||BC |=2,则直线l 的斜率为________.解析 设A (x 0,y 0),则|AB |=x 0,|BC |=1,由|AB ||BC |=x 01=2,得x 0=2,y 0=4×2=22, 又焦点F (1,0),所以直线l 的斜率为k =222-1=2 2. 10.已知双曲线x 2-y 23=1上存在两点M ,N 关于直线y =x +m 对称,且MN 的中点在抛物线y 2=18x 上,则实数m 的值为________.答案 0或-8解析 因为点M ,N 关于直线y =x +m 对称,所以MN 的垂直平分线为y =x +m ,所以直线MN 的斜率为-1.设线段MN 的中点为P (x 0,x 0+m ),直线MN 的方程为y =-x +b ,则x 0+m =-x 0+b ,所以b =2x 0+m .由⎩⎪⎨⎪⎧ y =-x +b ,x 2-y 23=1得2x 2+2bx -b 2-3=0, 所以x M +x N =-b ,所以x 0=-b 2,所以b =m2, 所以P (-m 4,34m ). 因为MN 的中点在抛物线y 2=18x 上,所以916m 2=-92m ,解得m =0或m =-8. 11.(2016·课标全国丙)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. (1)证明 由题意知,F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a=-b =k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a ||FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 由题意可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2, 所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =y x -1(x ≠1).而a +b 2=y , 所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0)满足y 2=x -1.所以,所求轨迹方程为y 2=x -1.12.已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证:(1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.证明 (1)由已知得抛物线焦点坐标为(p 2,0). 由题意可设直线方程为x =my +p 2,代入y 2=2px , 得y 2=2p ⎝⎛⎭⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 则y 1,y 2是方程(*)的两个实数根,所以y 1y 2=-p 2. 因为y 21=2px 1,y 22=2px 2,所以y 21y 22=4p 2x 1x 2,所以x 1x 2=y 21y 224p 2=p 44p 2=p 24. (2)1|AF |+1|BF |=1x 1+p 2+1x 2+p 2=x 1+x 2+p x 1x 2+p 2(x 1+x 2)+p 24. 因为x 1x 2=p 24,x 1+x 2=|AB |-p , 代入上式,得1|AF |+1|BF |=|AB |p 24+p 2(|AB |-p )+p 24=2p (定值). (3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则|MN |=12(|AC |+|BD |)=12(|AF |+|BF |)=12|AB |.所以以AB 为直径的圆与抛物线的准线相切.。

抛物线(练)-2019年高考数学(文)---精校解析 Word版

抛物线(练)-2019年高考数学(文)---精校解析 Word版

A基础巩固训练1.【河北省衡水中学2019届高三上期中】抛物线的焦点坐标是()A. (0,1) B. (1,0) C. (0,2) D. (0,)【答案】D2.抛物线的焦点到准线的距离是( )(A) 2 (B)1 (C). (D).【答案】D【解析】由抛物线标准方程中的几何意义为:抛物线的焦点到准线的距离,又,故选.3.【河北省衡水中学2018届押题卷四】抛物线的焦点为,点,若线段的中点在抛物线上,则()A. B. C. D.【答案】D4.【辽宁省沈阳市东北育才学校2018届第八次模拟】已知抛物线的焦点在轴负半轴,若,则其标准方程为A. B. C. D.【答案】C【解析】因为抛物线的焦点在轴负半轴,所以抛物线开口向左,所以抛物线的标准方程是,又,所以抛物线方程为,故选C.5.【2018届山西省孝义市高三上学期入学摸底】抛物线上的一点到轴的距离与它到坐标原点的距离之比为,则到点的焦点的距离是( )A. B. C. D.【答案】D【解析】设 ,则所以到点的焦点的距离是 ,选D.B能力提升训练1.【2017课标II,文12】过抛物线的焦点,且斜率为的直线交于点(在轴上方),为的准线,点在上且,则到直线的距离为( )A. B. C. D.【答案】C2.【黑龙江省2018年仿真模拟(八)】抛物线上的动点到其焦点的距离的最小值为1,则()A. B. 1 C. 2 D. 4【答案】C【解析】抛物线上的动点到其焦点的距离的最小值即到准线的最小值,很明显满足最小值的点为抛物线的顶点,据此可知:.本题选择C选项.3.已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( )A.B.2 C.D.3【答案】B【解析】由题可知是抛物线的准线,设抛物线的焦点为,则动点到的距离等于,则动点到直线和直线的距离之和的最小值,即焦点到直线的距离,所以最小值是,故选4.【湖南湖北八市十二校2019届高三第一次联考】已知点,抛物线的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若,则的值等于()A. B. C. 2 D. 4【答案】C5.【2018届河南省名校联盟高三第一次段考】过抛物线()的焦点作一条斜率为1的直线交抛物线于,两点向轴引垂线交轴于,,若梯形的面积为,则()A. 1B. 2C. 3D. 4【答案】A【解析】设,抛物线焦点,直线AB方程为,联立,,所以,则,则题型ABCD的面积,所以,选A.C思维扩展训练1.已知圆的方程,若抛物线过点A(0,-1),B(0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是()A. B.C. D.【答案】C2.【内蒙古赤峰二中2019届第二次月考】如图,过抛物线的焦点的直线交抛物线于点、,交其准线于点,若点是的中点,且,则线段的长为()A. 5 B. 6 C. D.【答案】C3.如图,过抛物线的焦点作直线与抛物线及其准线分别交于三点,若,则__________.【答案】【解析】根据抛物线的几何性质,,所以,求得,,解得:,而.4.【2016高考新课标1文数】在直角坐标系中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(I)求;(II)除H以外,直线MH与C是否有其它公共点?说明理由.【答案】(I)2(II)没有5.【2018届浙江省温州市高三9月测试】已知抛物线:(),焦点为,直线交抛物线于,两点,为的中点,且.(1)求抛物线的方程;(2)若,求的最小值.【答案】(1);(2).【解析】(1)根据抛物线的定义知,,∵,∴,∴.,,∴,令,,则.。

专题训练25:抛物线的定义与方程 -2021-2022学年高二上学期数学人教A版(2019)

专题训练25:抛物线的定义与方程 -2021-2022学年高二上学期数学人教A版(2019)

专题25:抛物线的定义与方程一、单选题1.已知F 是抛物线24y x =的焦点,P 是抛物线上的一个动点,()3,1A ,则APF 周长的最小值为( ) A.2+B .4+C .3D .62.已知A ,B 分别为抛物线21:4C y x =与圆222:70+-+=C x y 上的动点,抛物线的焦点为F ,P ,Q 为平面两点,当AF AB +取到最小值时,点A 与P 重合,当-AF AB 取到最大时,点A 与Q 重合,则直线的PQ 的斜率为( )A .3B .12C .1D .33.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PAPF的最大值是( )A .2 BC D 4.抛物线()220y px p =>的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足3AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MNAB 的最大值是A .1B C D .25.已知点P 是曲线24y x =上任意一点,过点P 向y 轴引垂线,垂足为H ,点Q 是曲线x y e =上任意一点,则PH PQ +的最小值为( ) A.1B 1C 1D 16.抛物线2:4C y x =的焦点为F ,点P 、Q 、R 在C 上,且PQR ∆的重心为F ,则PF QF +的取值范围为A .993,,522⎛⎫⎛⎤ ⎪ ⎥⎝⎭⎝⎦B .994,,522⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C .()93,44,2⎛⎫ ⎪⎝⎭D .[]3,5 7.如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点(2,4),圆222:430C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于P ,Q ,M ,N ,则9PNQM+的最小值为A .36B .42C .49D .50二、多选题8.泰戈尔说过一句话:世界上最远的距离,不是树枝无法相依,而是相互了望的星星,却没有交会的轨迹;世界上最远的距离,不是星星之间的轨迹,而是纵然轨迹交会,却在转瞬间无处寻觅.已知点()10M ,,直线l :2x =-,若某直线上存在点P ,使得点P 到点M 的距离比到直线l 的距离小1,则称该直线为“最远距离直线”,则下列结论正确的是( ) A .点P 的轨迹曲线是一条线段B .点P 的轨迹与直线'l :1x =-是没有交会的轨迹(即两个轨迹没有交点)C .26y x =+不是“最远距离直线”D .112y x =+是“最远距离直线”三、填空题9.已知抛物线()220y px p =>的焦点F 到准线的距离为2,过焦点F的直线与抛物线交于A ,B 两点,且3AF FB =,则线段AB 的中点到y 轴的距离为__________.10.已知抛物线24y x =,圆22:(1)1F x y -+=,直线(1)(0)y k x k =-≠自上而下顺次与上述两曲线交于点,,,A B C D ,则·AB CD 的值是__________.11.F 为抛物线24y x =的焦点,点P 在抛物线上,Q 是圆22(2)(1)1x y -+-=上的点,则PQ PF+最小值是__________.12.设O 为坐标原点,P 是以F 为焦点的抛物线22y px =(0p >)上任意一点,Q 是线段PF 上的点,且2PQ QF =,则直线OQ 的斜率的最大值为______.13.如图,过抛物线214y x =的焦点的直线交抛物线与圆()2211x y +-=于,,,A B C D 四点,则AB CD ⋅= ______.14.如图,过抛物线C :y 2=2px (p >0)的焦点F 作直线交C 于A ,B 两点,过A ,B 分别向C 的准线l 作垂线,垂足为A 1,B 1,已知△AA 1F 与△BB 1F 的面积分别为9和1,则△A 1B 1F 的面积为________.15.抛物线C: 24y x =的焦点为F ,设过点F 的直线l 交抛物线与,A B 两点,且43AF =,则BF =______. 16.已知抛物线22y px =的准线方程为1x =-,焦点为,,,F A B C 为抛物线上不同的三点,,,FA FB FC 成等差数列,且点B 在x 轴下方,若0FA FB FC ++=,则直线AC 的方程为_________.四、双空题17.己知圆()22:116,C x y P ++=是圆C 上任意点,若1,0A ,线段AP 的垂直平分线与直线CP 相交于点Q ,则点Q 的轨迹方程是_______﹔若A 是圆C 所在平面内的一定点,线段AP 的垂直平分线与直线CP 相交于点Q ,则点Q 的轨迹是:△一个点△圆△椭圆△双曲线△抛物线,其中可能的结果有__________.18.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,A (-2,1),B (-2,4),点P 是满足12λ=的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q 为抛物线E :y 2=4x 上的动点,Q 在直线x =-1上的射影为H ,则12++PB PQ QH 的最小值为___________.参考答案1.B【分析】根据抛物线的定义,结合两点间距离公式进行求解即可. 【解析】抛物线24y x =的焦点(1,0)F ,准线l 的方程为1x =-,过P 做PQ l ⊥,垂足为Q ,设APF 周长为c ,c PA PF AF PA PF PA PF =++=+=+由抛物线的定义可知:PF PQ =,因此c PQ AP =++当,,P A Q 在同一条直线上时,c 有最小值,即PA l ⊥时,min 3(1)4c =--=故选:B 2.D【分析】根据AF AB +取到最小值时,点A 与P 重合,利用抛物线的定义得到2PC l ⊥,从而得到点P 的坐标,连接2FC ,由抛物线的定义得到Q 为2FC 与抛物线1C 的交点求解. 【解析】如图所示:222:70+-+=C x y,即(221x y +-=,圆心为(2C ,抛物线21:4C y x =的焦点为()1,0F ,记1C 的准线为l ,过点A 作1AD l ⊥,过2C 作22C D l ⊥,1121AF AB AD AB AD AC +=+≥+-,当21,,A C D 共线时,点B 在2AC 上,此时(2,P , 连接2FC ,()222111AF AB AF AC AF AC FC -≤--=-+≤+,此时Q 为2FC 与抛物线1C 的交点,)2:1FC y x =--,由)214y x y x ⎧=--⎪⎨=⎪⎩,解得2x y =⎧⎪⎨=-⎪⎩或12x y ⎧=⎪⎨⎪=⎩因为Q 在第一象限,所以12Q ⎛ ⎝,所以22PQ k =-,故选:D【点评】 本题关键是抛物线定义的灵活应用. 3.B【分析】设直线PA 的倾斜角为θ,设PP '垂直于准线于P ',由抛物线的性质可得PP PF '=,则1cos PAPA PF PP θ==',当直线P A 与抛物线相切时,cos θ最小,PAPF 取得最大值,设出直线方程得到直线和抛物线相切时的点P 的坐标,然后进行计算得到结果.【解析】设直线PA 的倾斜角为θ,设PP '垂直于准线于P ',由抛物线的性质可得PP PF '=,所以则1cos PAPA PFPP θ==', 当cos θ最小时,则PAPF 值最大,所以当直线P A 与抛物线相切时,θ最大,即cos θ最小, 由题意可得()1,0A -,设切线P A 的方程为:1x my =-,214x my y x=-⎧⎨=⎩,整理可得2440y my -+=, 216160m ∆=-=,可得1m =±,将1m =±代入2440y my -+=,可得2y =±,所以1x =, 即P 的横坐标为1,即P 的坐标()1,2±,所以PA ==,()112PP '=--=,所以PA PF 的最大值为:2= 故选:B .【点评】关键点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化. 4.A【分析】设||,||AF a BF b ==,由抛物线定义,梯形的中位线定理,得2||MN a b =+,再根据余弦定理得222AB a b ab =+-,结合基本不等式求得AB 的范围,从而得到MN AB的最大值.【解析】设||,||AF a BF b ==,连接,AF BF ,过A 作准线l 的垂线,垂足为Q ,过B 作准线l 的垂线,垂足为P ,由抛物线的定义得:||||,||||AF AQ BF BP ==, 则2||||||MN AQ BP a b =+=+. 则在ABF ∆中,由余弦定理可得:22222||||2||||cos AB AF BF AF BF AFB a b ab =+-⋅∠=+-, 而2222222()()()3()344a b a b AB a b ab a b ab a b ++=+-=+-≥+-⋅=, 因此=2a bAB MN +≥,即1MN AB ≤(当且仅当a =b 时取等号). 故选:A【点评】本题考查了抛物线的基本性质,综合运用了余弦定理,基本不等式知识,属于较难题. 5.D【分析】先将所求问题转化为求x y e =上任意一点到抛物线焦点F 的距离的最小,再利用导数求最值即可得到答案.【解析】如图,设抛物线的焦点为F ,则(1,0)F ,由抛物线的定义知||1||PH PF +=,所以||1||||1PH PQ PF PQ QF +=-+≥-,当且仅当,,Q P F 三点共线时,等号成立,设(,)x Q x e ,则222||(1)x QF x e =-+,令22()(1)x f x x e =-+,则'2()2(1)2x f x x e =-+,由复合函数单调性知,'()f x 在R 上单调递增,且'(0)0f =,所以当0x >时,'()f x '(0)0f >=,当0x <时,'()f x '(0)0f <=, 所以()f x 在(0,)+∞上单调递增,在(,0)-∞上单调递减,所以()min (0)2f x f ==min ||QF =,所以PH PQ +1.故选:D【点评】本题考查抛物线中的最值问题,涉及到抛物线的定义,两点间的距离公式,导数求函数的最值,是一道较为综合的题目,属于有一定难度的题. 6.A【分析】根据重心坐标公式求出R 的横坐标为()3R P Q x x x =-+,纵坐标为()R P Q y y y =-+,设直线PQ 的方程为x ky m =+,与抛物线方程联立,用m 、k 求出表示出R 的坐标,结合抛物线的方程,求出k 的取值范围,再结合抛物线的定义可得出结论.【解析】由题意知,抛物线C 的焦点为()1,0F ,设点(),P P P x y 、(),Q Q Q x y 、(),R R R x y ,由重心的坐标公式得133P Q RPQ R x x x y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,()3R P Q x x x ∴=-+,()R P Q y y y =-+, 设直线PQ 的方程为x ky m =+,由24x ky my x=+⎧⎨=⎩,消去x 得2440y ky m --=,()221616160k m k m ∆=+=+>,由韦达定理得4P Q y y k +=,4P Q y y m =-,所以,()()()2242P Q P Q P Q x x ky m ky m k y y m k m +=+++=++=+, 故()23342R P Q x x x k m =-+=--,()4R P Q y y y k =-+=-, 将点R 的坐标代入抛物线C 的方程得()22164342k k m =⨯--,得2238m k =-,则()()228228360k m k ∆=+=->,得2102k ≤<,则(]222422543,5P Q PF QF x x k m k +=++=++=-∈.()1,0F 不在直线PQ 上,则1m ≠,此时,218k ≠,则92PF QF +≠. 因此,PF QF +的取值范围是993,,522⎛⎫⎛⎤⎪ ⎥⎝⎭⎝⎦.故选:A.【点评】考查抛物线与直线的综合,求距离的取值范围,重心坐标的计算,属于难题. 7.B【分析】设拋物线的标准方程,将点代入拋物线方程,求得拋物线方程,设出直线方程并与抛物线方程联立,根据韦达定理可得124x x =,则229910PN QM PC QC +=++,由焦半径公式以及基本不等式,即可求得结果.【解析】设抛物线方程为22y px =由抛物线过定点()2,4得28p =,抛物线方程28y x =,焦点为()22,0C , 圆的标准方程为()2221,x y -+=∴圆心为()2,0,半径1r =,由于直线过焦点,可设直线方程为()2y k x =-,设()()1122,,,,P x y Q x y()()22248408y k x kx k x k y x⎧=-⇒-++=⎨=⎩,124x x ∴= 又()()22229199910PN QM PC QC PC QC +=+++=++()()12122921093030123042x x x x =++++=++≥=+=,12x x =时等号成立,9PN QM ∴+的最小值为42,故选B.【点评】本题主要考查抛物线的方程与性质,以及直线与抛物线的位置关系、利用基本不等式求最值,属于中档题. 利用基本不等式a b +≥“一正二定三相等”. 8.BCD【分析】先根据题意与抛物线的概念,可以得到点P 的轨迹方程,再根据“最远距离直线”逐一判断即可.【解析】由题意可得,点P 到点M 的距离比到直线l 的距离小1, 即等价于“点P 到点M 的距离等于到直线'l :1x =-的距离”故P 点轨迹是以()10M ,为焦点,直线'l :1x =-为准线的抛物线, 其方程是24y x =,故A 错误;点P 的轨迹方程是抛物线24y x =,它与直线'l 没交点, 即两者是没有交会的轨迹,故B 正确;要满足“最远距离直线”则必须满足与上述抛物线24y x =有交点, 把26y x =+代入抛物线24y x =, 消去y 并整理得2590x x ++= 因为25419110∆=-⨯⨯=-<,无解,所以26y x =+不是“最远距离直线”,故C 正确; 把112y x =+代入抛物线24y x =, 消去y 并整理得21240x x -+=, 因为()2124141280∆=--⨯⨯=>,有解, 所以112y x =+是“最远距离直线”,故D 正确. 故选:BCD .【点评】本题主要考查了直线与抛物线的位置关系,抛物线的概念以及圆锥曲线的轨迹问题,还考查了分析问题与解决问题的能力,属于较难题. 9.53【分析】根据题意得到p 的值,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C ,再利用三角形相似得到BC 和AC 的关系,从而得到BF ,AF ,CF 的关系,求出4=AD ,即可得到答案.【解析】焦点F 到准线的距离为2p =,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C , 则BCE ACD ∆∆∽,所以13BC BE BF AC AD AF ===, 记BC x =,则3AC x =, 因为||3||AF FB =,所以1142BF AB x ==,332AF BF x ==, 因为32CF BC BF x =+=,F 为AC 的中点, 所以24AD FG ==,所以342AF x ==,即84,33x BE ==即线段AB 的中点到y 轴的距离为11523AD BE -+-=. 故答案为:53.【点评】方法点睛:.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点P 的坐标.2.若00(,)P x y 为抛物线22(0)y px p =>上一点,由定义易得0||2pPF x =+;若过焦点的弦AB 的端点坐标为1122(,),(,)A x y B x y ,则弦长为1212,AB x x p x x =+++可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.10.1 【解析】设1122(,),(,)A x y B x y ,则1212(1)(1)(11)(11)AB CD AF DF x x x x ⋅=--=+-+-= ,由()1y k x =-与24y x =联立方程消y 得222212(24)0,1k x k x k x x -++== ,因此 1.AB CD ⋅= 11.2 【解析】设P 到抛物线准线的距离为d ,根据抛物线的定义知PQ PF PQ d +=+ ,由圆的几何性质及平面几何体知识可得,PQ d +的最小值是圆心到准线的距离与半径的差,即312PQ PF PQ d +=+≥-= ,故答案为2 .12【分析】要求直线OQ 的斜率的最大值,由直线的斜率公式可知应求点Q 的横、纵坐标的关系,由题可设点200,2y P y p ⎛⎫ ⎪⎝⎭,点,02p F ⎛⎫ ⎪⎝⎭,进而根据2133OQ OP OF =+求得OQ ,再由均值不等式求得最值.【解析】由题可得,02p F ⎛⎫⎪⎝⎭,设200,2y P y p ⎛⎫ ⎪⎝⎭,显然,当00y <时,0OQk <;当00y >时,0OQ k >,要求OQ k 的最大值,设00y >,因为2PQ QF =,所以2PQ QF =,即()2OQ OP OF OQ -=-,所以200221,33363y y p OQ OP OF p ⎛⎫=+=+ ⎪⎝⎭,所以2223236OQyky py pp yp==≤=++当且仅当222y p=时等号成立,即OQk,故答案为【点评】本题考查与抛物线有关的最值问题,考查利用均值不等式求最值,考查运算能力与转化思想.13.1【分析】设过抛物线的焦点F的直线1y kx=+,与214y x=联立,结合抛物线的第一定义和韦达定理及圆的性质,求出AB CD⋅的乘积【解析】抛物线的焦点为()0,1F,准线为1y=-,可设直线方程为1y kx=+,直线1y kx=+,与214y x=联立得:()224210y k y--+=,可得1A Dy y=,111A AAB AF y y=-=+-=,111D DCD DF y y=-=+-=,1AB CD∴⋅=答案为1.【点评】抛物线的弦长问题通常转化为到准线距离,本题既考查了直线与圆,又考查了直线与抛物线的应用问题14.6【解析】【分析】直线:2pAB x my=+代入抛物线方程,利用韦达定理,计算11,AA F BB FS S∆∆,相乘化简可得求()42194pm+=,由三角形面积公式可得116A B FS p∆==.【解析】设直线:2p AB x my =+, 代入抛物线方程,消元可得2220y pmy p --=,设()()1122,A x y B x y ,则21212,2y y p y y pm =-+=,121111111119222222AA F y p p S AA y x y y p ∆⎛⎫=⨯=+=+= ⎪⎝⎭, 122122221111222222BB Fy p p S BB y x y y p ∆⎛⎫=⨯=+=+= ⎪⎝⎭, ()()11221222121221444AA F BB Fy y p S S y y y y p ∆∆⎡⎤∴⋅=+++⎢⎥⎢⎥⎣⎦()4222222142444p p p m p p p ⎡⎤=++⨯+⨯⎢⎥⎣⎦()42194p m =+=,111262A B F p S y y p ∆∴=-===,故答案为6.【点评】解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 15.4 【解析】设点A 、B 的横坐标分别为A x 、B x ,由焦半径公式得43AF =11,33A A A x x y =+⇒==±,3A y =时,3113AB AF k k ===- ,AB的方程为)1y x =- ,与24y x =联立可得,231030x x -+= ,解得=3B x ,所以314BF =+= ,同理,A y =4BF =,故答案为4 .16.210x y --= 【解析】试题分析:由题设可得,设,则,由0FA FB FC ++=可得,即,又,故由,,FA FB FC 成等差数列可得,由此可得.而,且,即的中点坐标为由此可得.故由点斜式方程可得,应填答案.考点:抛物线的几何性质及向量等差数列等知识的综合运用. 【易错点晴】抛物线是平面解析几何中的重要圆锥曲线之一,也是高中数学中的重要知识点和历届高考必考的考点之一.本题以抛物线的焦点弦满足的向量等式,,FA FB FC 成等差数列,且点B 在x 轴下方,若0FA FB FC ++=为背景,考查是抛物线的定义和平面向量的坐标运算及分析问题解决问题的综合能力.解答时先设三点的坐标,再借助向量等式建立坐标之间的关系,从而使得问题获解.17.22143x y += △△△【解析】由圆()22:116,C x y ++=则圆心()1,0C -,半径r =4;因为线段AP的垂直平分线与直线CP 相交于点Q ,如图(1)示:所以4QA QP PC QC QC ==-=-, 所以42QA QC AC +=>=,符合椭圆的定义,所以点Q 的轨迹是以()()1,01,0A C -、为焦点,长轴为4 的椭圆,故22,1,3a c b ===,所以点Q 的轨迹方程是22143x y +=;(1)若点A 在圆C 内不同于点C 处,如图(1)所示,则有42QA QC AC +=>=,符合椭圆的定义,故点Q 的轨迹是以()()1,01,0A C -、为焦点,长轴为4 的椭圆,所以△正确;(2)若点A 与C 重合,如图(2)所示,则有122QP QA PC ===,符合圆的定义,故点Q 的轨迹是以()1,0C -为圆心,2为半径 的圆,所以△正确;(3)若点A 在圆C 上,如图(3)所示,则由垂径定理,线段AP 的垂直平分线必过点C,故Q 与C 重合故点Q 的轨迹一个点,所以△正确;(4)若点A 在圆C 外,如图(4)所示,则4QA QP PC QC QC ==+=+,所以4QA QC AC -=<,故点Q 的轨迹是以()()1,01,0A C -、为焦点,实轴长为4的双曲线的一支,所以△不正确;(5)点A 不论在什么位置,点Q 的轨迹都不可能是抛物线,故△不正确.故答案为:22143x y +=;△△△.【点评】求动点轨迹方程的方法: (1)定义法;(2)参数法;(3)轨交法. 18.()2224x y ++=【分析】(1)利用直译法直接求出P 点的轨迹.(2)先利用阿氏圆的定义将12PB 转化为P 点到另一个定点的距离,然后结合抛物线的定义容易求得12++PB PQ QH 的最小值. 【解析】设P (x ,y ),由阿氏圆的定义可得第 21 页 共 22 页||1||2PA PB =,即2222(2)(1)1,(2)(4)4x y x y ++-=++-化简得()2224x y ++= ||1||2PA PB =,则1||||2PA PB = 设(1,0),F 则由抛物线的定义可得||||QH QF =12PB PQ QH PA PQ QF AF ∴++=++≥= 当且仅当,,,A P Q F 四点共线时取等号,12PBPQ QH ∴++ 故答案为:()2224x y ++=【点评】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大.第22页共22页。

高考数学一轮复习抛物线专题练习(含答案)-2019年精选学习文档

高考数学一轮复习抛物线专题练习(含答案)-2019年精选学习文档

2019年高考数学一轮复习抛物线专题练习(含答案)平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。

下面是查字典数学网整理的2019年高考数学一轮复习抛物线专题练习,希望岁考生复习有帮助。

(2019泰州中学检测)给定圆P:x2+y2=2x及抛物线S:y2=4x,过圆心P作直线l,此直线与上述两曲线的四个交点,自上而下顺次记为A,B,C,D,如果线段AB,BC,CD的长按此顺序构成一个等差数列,求直线l的方程.[解] 圆P的方程为(x-1)2+y2=1,则其直径长|BC|=2,圆心为P(1,0),设l的方程为ky=x-1,即x=ky+1,代入抛物线方程得:y2=4ky+4,设A(x1,y1),D(x2,y2),有则(y1-y2)2=(y1+y2)2-4y1y2=16(k2+1).故|AD|2=(y1-y2)2+(x1-x2)2=(y1-y2)2+2=(y1-y2)2=16(k2+1)2,因此|AD|=4(k2+1).根据等差数列性质得2|BC|=|AB|+|CD|=|AD|-|BC|,|AD|=3|BC|=6,即4(k2+1)=6,k=,即l方程为x-y-=0或x+y-=0.2.(2019苏州调研)设抛物线y2=2px(p0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在抛物线的准线上,且BCx轴.求证:直线AC经过原点O.【常规证法】抛物线y2=2px(p0)的焦点为F,显然直线AB 的斜率不为0,当AB斜率不存在时,直线AP方程为x=,不妨设A在第一象限,则易知A,B,C,此时kOA==2,kOC==2.kOA=kOC,A,O,C三点共线,即直线AC经过原点O.当AB斜率存在且不为0时,设直线AB方程为y=k代入y2=2px 得k2x2-(k2+2)px+=0,设A(x1,y1),B(x2,y2),则x1x2=,(y1y2)2=p4,由题意知y1y20,y1y2=-p2kOC======kOA直线AC过原点O,综上,直线AC经过原点O.【巧妙证法】因为抛物线y2=2px(p0)的焦点为F,而直线AB的斜率不为零,所以经过点F的直线AB的方程可设为x=my+.代入抛物线方程消去x得y2-2pmy-p2=0.若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根,所以y1y2=-p2.因为BCx轴,且点C在准线x=-上,所以点C的坐标为,故直线CO的斜率为k===,即k也是直线OA的斜率,所以直线AC经过原点O.3.(2019南师附中检测)设A(x1,y1),B(x2,y2)为抛物线y2=2px(p0)上位于x轴两侧的两点.(1)若y1y2=-2p,证明直线AB恒过一个定点;(2)若p=2,AOB(O是坐标原点)为钝角,求直线AB在x轴上的截距的取值范围.[解] (1)设直线AB在x轴上的截距为t,则可设直线AB的方程为x=my+t.代入y2=2px得y2=2p(my+t),即y2-2pmy-2pt=0,于是-2p=y1y2=-2pt,所以t=1,即直线AB 恒过定点(1,0).(2)因为AOB为钝角,所以0,即x1x2+y1y20.y=2px1,y=2px2,yy=2px12px2,于是x1x2===t2,故x1x2+y1y2=t2-2pt=t2-4t.解不等式t2-4t0,得00)把点P(-2,-4)代入得(-4)2=-2p(-2).解得p=4,抛物线方程为y2=-8x.当焦点在y轴负半轴上时,设方程为x2=-2py(p0),把点P(-2,-4)代入得(-2)2=-2p(-4).解得p=.抛物线方程为x2=-y.综上可知抛物线方程为y2=-8x或x2=-y.[答案] y2=-8x或x2=-y4.(2019广东高考)已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF||BF|的最小值.[解题思路] (1)由点到直线的距离求c的值,得到F(0,c)后可得抛物线的方程;(2)采用设而不求策略,先设出A(x1,y1),B(x2,y2),结合导数求切线PA,PB的方程,代入点P 的坐标,根据结构,可得直线AB的方程;(3)将|AF||BF|转化为关于x(或y)的函数,再求最值.[解] (1)依题意,设抛物线C的方程为x2=4cy(c0),由点到直线的距离公式,得=,解得c=1(负值舍去),故抛物线C的方程为x2=4y.(2)由x2=4y,得y=x2,其导数为y=x.设A(x1,y1),B(x2,y2),则x=4y1,x=4y2,切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以和为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF||BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1.由消去x并整理得到关于y的方程为y2+(2y0-x)y+y=0.由一元二次方程根与系数的关系得y1+y2=x-2y0,y1y2=y.所以|AF||BF|=y1y2+(y1+y2)+1=y+x-2y0+1.又点P(x0,y0)在直线l上,所以x0-y0-2=0,即x0=y0+2,所以y+x-2y0+1=2y+2y0+5=22+,所以当y0=-时,|AF||BF|取得最小值,且最小值为.2019年高考数学一轮复习抛物线专题练习及答案的所有内容就为考生分享到这里,查字典数学网请考生认真练习。

3.2抛物线的简单几何性质2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册

3.2抛物线的简单几何性质2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册

例 2 已知抛物线 C:y2=2px(p>0),过点(2,0)的直线 l 与抛物线 C 相交于 A,B 两点,O
为坐标原点,且―O→A ·―O→B =2.
(1)求抛物线 C 的方程;
(2)点 M 坐标为(-2,0),直线 MA,MB 的斜率分别为 k1,k2,求证:k11+k12为定值.
解:(1)设 l 的方程为 x=my+2,A(x1,y1),B(x2,y2), (2)证明:因为 M 坐标为(-2,0),
(1)求p
(2)若点p在M上,PA,PB是C的两条切线,A,B是切点,
PAB面积的最大值
y
x 2
1x 2 4y
x0
y 0
得 x2 2x0x 4 y0
0
4x02
16 y0
由韦达定理可得 xA xB 2x0, xAxB 4 y0
AB 1 K 2AB
(xA xB )2 4xAxB
=y21y2+y22y1+y1y22(y1+y2)=(y1y2+2y)1y(2 y1+y2), 由(1)可得 y1+y2=m,y1y2=-2,
所以 p=12,所以抛物线 C 的方程为 y2=x.
所以k11+k12=0 为定值.
背景分析 题目展示 解法分析 拓展延伸 大胆猜想 感悟数学
定量到定性分析 数形结合思想 遵循逻辑推理
背景分析 题目展示 解题思路 大胆猜想 拓展延伸 感悟数学
本题中,1、过抛物线x2 2 py 外点 x0, y0 抛物线切点弦方程:x x0 p( y0 y)
过椭圆
外点 x2
a2
y2 b2
1
x0, y0
椭圆切点弦方程:xa02x
y0 y b2
1
过圆 x2 y2 r2 外点 x0, y0 切点弦方程:x0 x y0 y r 2

【教育专用】2019年人教版高中数学高考总复习抛物线习题及详解Word版

【教育专用】2019年人教版高中数学高考总复习抛物线习题及详解Word版

高中数学高考总复习抛物线习题(附参考答案)一、选择题1.(2010·湖北黄冈)若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( )A .-2B .2C .-4D .4[答案] D[解析] 椭圆中,a 2=6,b 2=2,∴c =a 2-b 2=2, ∴右焦点(2,0),由题意知p2=2,∴p =4.2.已知点M 是抛物线y 2=2px (p >0)上的一点,F 为抛物线的焦点,若以|MF |为直径作圆,则这个圆与y 轴的关系是( )A .相交B .相切C .相离D .以上三种情形都有可能[答案] B[解析] 如图,由MF 的中点A 作准线l 的垂线AE ,交直线l 于点E ,交y 轴于点B ;由点M 作准线l 的垂线MD ,垂足为D ,交y 轴于点C ,则MD =MF ,ON =OF , ∴AB =OF +CM 2=ON +CM2=DM 2=MF 2, ∴这个圆与y 轴相切.3.(2010·山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,∵A 、B 在抛物线y 2=2px 上,∴⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2② ①-②得y 12-y 22=2p (x 1-x 2),∴k AB =y 1-y 2x 1-x 2=2p y 1+y 2=p 2,∵k AB =1,∴,p =2∴抛物线方程为y 2=4x ,∴准线方程为:x =-1,故选B.4.双曲线x 29-y 24=1的渐近线上一点A 到双曲线的右焦点F 的距离等于2,抛物线y 2=2px (p >0)过点A ,则该抛物线的方程为( )A .y 2=9xB .y 2=4xC .y 2=41313xD .y 2=21313x[答案] C[解析] ∵双曲线x 29-y 24=1的渐近线方程为y =±23x ,F 点坐标为(13,0),设A 点坐标为(x ,y ),则y =±23x ,由|AF |=2⇒(x -13)2+⎝⎛⎭⎫23x 2=2⇒x =913,y =±613,代入y 2=2px 得p =21313,所以抛物线方程为y 2=41313x ,所以选C.5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A.172B .3 C. 5D.92[答案] A[解析] 记抛物线y 2=2x 的焦点为F ⎝⎛⎭⎫12,0,准线是l ,由抛物线的定义知点P 到焦点F 的距离等于它到准线l 的距离,因此要求点P 到点(0,2)的距离与点P 到抛物线的准线的距离之和的最小值,可以转化为求点P 到点(0,2)的距离与点P 到焦点F 的距离之和的最小值,结合图形不难得知相应的最小值就等于焦点F 与点(0,2)的距离,因此所求的最小值等于⎝⎛⎭⎫122+22=172,选A. 6.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)[答案] D[解析] 如图,由题意可得,|OF |=1,由抛物线定义得,|AF |=|AM |,∵△AMF 与△AOF (其中O 为坐标原点)的面积之比为3∶1,∴S △AMFS △AOF =12×|AF |×|AM |×sin ∠MAF 12×|OF |×|AF |×sin (π-∠MAF )=3, ∴|AM |=3,设A ⎝⎛⎭⎫y 024,y 0,∴y 024+1=3,解得y 0=±22,∴y 024=2,∴点A 的坐标是(2,±22),故选D.7.(2010·河北许昌调研)过点P (-3,1)且方向向量为a =(2,-5)的光线经直线y =-2反射后通过抛物线y 2=mx ,(m ≠0)的焦点,则抛物线的方程为( )A .y 2=-2xB .y 2=-32xC .y 2=4xD .y 2=-4x[答案] D[解析] 设过P (-3,1),方向向量为a =(2,-5)的直线上任一点Q (x ,y ),则PQ →∥a ,∴x +32=y -1-5,∴5x +2y +13=0,此直线关于直线y =-2对称的直线方程为5x +2(-4-y )+13=0,即5x -2y +5=0,此直线过抛物线y 2=mx 的焦点F ⎝⎛⎭⎫m 4,0,∴m =-4,故选D.8.已知mn ≠0,则方程是mx 2+ny 2=1与mx +ny 2=0在同一坐标系内的图形可能是( )[答案] A[解析] 若mn >0,则mx 2+ny 2=1应为椭圆,y 2=-mn x 应开口向左,故排除C 、D ;∴mn <0,此时抛物线y 2=-mnx 应开口向右,排除B ,选A.9.(2010·山东聊城模考)已知A 、B 为抛物线C :y 2=4x 上的不同两点,F 为抛物线C 的焦点,若F A →=-4FB →,则直线AB 的斜率为( )A .±23B .±32C .±34D .±43[答案] D[解析] ∵F A →=-4FB →,∴|F A →|=4|FB →|,设|BF |=t ,则|AF |=4t ,∴|BM |=|AA 1|-|BB 1|=|AF |-|BF |=3t ,又|AB |=|AF |+|BF |=5t ,∴|AM |=4t ,∴tan ∠ABM =43,由对称性可知,这样的直线AB 有两条,其斜率为±43.10.已知抛物线C 的方程为x 2=12y ,过点A (0,-4)和点B (t,0)的直线与抛物线C 没有公共点,则实数t 的取值范围是( )A .(-∞,-1)∪(1,+∞) B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-∞,-22)∪(22,+∞) D .(-∞,-22)∪(2,+∞) [答案] B[解析] 由题意知方程组⎩⎨⎧x 2=12y ①x t +y-4=1 ②无实数解由②得y =4xt -4,代入①整理得,2x 2-4x t +4=0,∴Δ=16t 2-32<0,∴t >22或t <-22,故选B. [点评] 可用数形结合法求解,设过点A (0,-4)与抛物线x 2=12y 相切的直线与抛物线切点为M (x 0,y 0),则切线方程为y -y 0=4x 0(x -x 0), ∵过A 点,∴-4-2x 02=4x 0(0-x 0), ∴x 0=±2,∴y 0=4,∴切线方程为y -4=±42x -8, 令y =0得x =±22,即t =±22,由图形易知直线与抛物线无公共点时,t <-22或t >22. 二、填空题11.已知点A (2,0)、B (4,0),动点P 在抛物线y 2=-4x 上运动,则AP →·BP →取得最小值时的点P 的坐标是______.[答案] (0,0)[解析] 设P ⎝⎛⎭⎫-y 24,y ,则AP →=⎝⎛⎭⎫-y 24-2,y ,BP →=⎝⎛⎭⎫-y 24-4,y ,AP →·BP →=⎝⎛⎭⎫-y24-2⎝⎛⎭⎫-y 24-4+y 2=y 416+52y 2+8≥8,当且仅当y =0时取等号,此时点P 的坐标为(0,0).12.(文)(2010·泰安市模拟)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|F A |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 设抛物线准线为l ,作AA 1⊥l ,BB 1⊥l ,FQ ⊥l ,垂足分别为A 1、B 1、Q ,作BM ⊥AA 1垂足为M ,BM 交FQ 于N ,则由条件易知∠ABM =30°,设|BF |=t ,则|NF |=t 2,|MA |=t +32,∵|AM |=|QN |,∴3-t +32=p -t 2,∴p =32,∴抛物线方程为y 2=3x .(理)(2010·泰安质检)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.[答案] y 2=3x[解析] 解法1:过A 、B 作准线垂线,垂足分别为A 1,B 1,则|AA 1|=3,|BB 1|=|BF |,∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴|AC |=2|AA 1|=2|AF |=6,∴|CF |=3,∴p =12|CF |=32,∴抛物线方程为y 2=3x .解法2:由抛物线定义,|BF |等于B 到准线的距离,由|BC |=2|BF |得∠BCB 1=30°,又|AF |=3,从而A ⎝⎛⎭⎫p 2+32,332在抛物线上,代入抛物线方程y 2=2px ,解得p =32.点评:还可以由|BC |=2|BF |得出∠BCB 1=30°,从而求得A 点的横坐标为|OF |+12|AF |=p2+32或3-p 2,∴p 2+32=3-p 2,∴p =32. 13.已知F 为抛物线C :y 2=4x 的焦点,过F 且斜率为1的直线交C 于A 、B 两点.设|F A |>|FB |,则|F A |与|FB |的比值等于________.[答案] 3+2 2[解析] 分别由A 和B 向准线作垂线,垂足分别为A 1,B 1,则由条件知, ⎩⎪⎨⎪⎧|AA 1|+|BB 1|=|AB |,|AA 1|-|BB 1|=22|AB |,解得⎩⎪⎨⎪⎧|AA 1|=2+24|AB ||BB 1|=2-24|AB |,∴|AA 1||BB 1|=3+22,即|F A ||FB |=3+2 2. 14.(文)若点(3,1)是抛物线y 2=2px 的一条弦的中点,且这条弦所在直线的斜率为2,则p =________.[答案] 2[解析] 设弦两端点P 1(x 1,y 1),P 2(x 2,y 2),则⎩⎪⎨⎪⎧y 12=2px 1y 22=2px 2,两式相减得,y 1-y 2x 1-x 2=2p y 1+y 2=2,∵y 1+y 2=2,∴p =2.(理)(2010·衡水市模考)设抛物线x 2=12y 的焦点为F ,经过点P (2,1)的直线l 与抛物线相交于A 、B 两点,又知点P 恰为AB 的中点,则|AF |+|BF |=________.[答案] 8[解析] 过A 、B 、P 作准线的垂线AA 1、BB 1与PP 1,垂足A 1、B 1、P 1,则|AF |+|BF |=|AA 1|+|BB 1|=2|PP 1|=2[1-(-3)]=8.三、解答题15.(文)若椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率等于32,抛物线C 2:x 2=2py (p >0)的焦点在椭圆C 1的顶点上.(1)求抛物线C 2的方程;(2)若过M (-1,0)的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2, 由离心率e =c a =4-b 22=32得,b 2=1.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1), ∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2),∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k (x +1)x 2=4y得:x 2-4kx -4k =0, 由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0. 又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.(理)在△ABC 中,CA →⊥CB →,OA →=(0,-2),点M 在y 轴上且AM →=12(AB →+CD →),点C在x 轴上移动.(1)求B 点的轨迹E 的方程;(2)过点F ⎝⎛⎭⎫0,-14的直线l 交轨迹E 于H 、E 两点,(H 在F 、G 之间),若FH →=12HG →,求直线l 的方程.[解析] (1)设B (x ,y ),C (x 0,0),M (0,y 0),x 0≠0, ∵CA →⊥CB →,∴∠ACB =π2,∴2x 0·y 0-x 0=-1,于是x 02=2y 0① M 在y 轴上且AM →=12(AB →+AC →),所以M 是BC 的中点,可得 ⎩⎨⎧x 0+x 2=0y +02=y,∴⎩⎪⎨⎪⎧x 0=-x ②y 0=y2③ 把②③代入①,得y =x 2(x ≠0),所以,点B 的轨迹E 的方程为y =x 2(x ≠0). (2)点F ⎝⎛⎭⎫0,-14,设满足条件的直线l 方程为: y =kx -14,H (x 1,y 1),G (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -14y =x 2消去y 得,x 2-kx +14=0.Δ=k 2-1>0⇒k 2>1,∵FH →=12HG →,即⎝⎛⎭⎫x 1,y 1+14=12(x 2-x 1,y 2-y 1), ∴x 1=12x 2-12x 1⇒3x 1=x 2.∵x 1+x 2=k ,x 1x 2=14,∴k =±233,故满足条件的直线有两条,方程为:8x +43y +3=0和8x -43y -3=0. 16.(文)已知P (x ,y )为平面上的动点且x ≥0,若P 到y 轴的距离比到点(1,0)的距离小1.(1)求点P 的轨迹C 的方程;(2)设过点M (m,0)的直线交曲线C 于A 、B 两点,问是否存在这样的实数m ,使得以线段AB 为直径的圆恒过原点.[解析] (1)由题意得:(x -1)2+y 2-x =1,化简得:y 2=4x (x ≥0). ∴点P 的轨迹方程为y 2=4x (x ≥0).(2)设直线AB 为y =k (x -m ),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -m )y 2=4x ,得ky 2-4y -4km =0, ∴y 1+y 2=4k ,y 1·y 2=-4m .∴x 1·x 2=m 2,∵以线段AB 为直径的圆恒过原点, ∴OA ⊥OB ,∴x 1·x 2+y 1·y 2=0.即m 2-4m =0⇒m =0或4.当k 不存在时,m =0或4. ∴存在m =0或4,使得以线段AB 为直径的圆恒过原点.[点评] (1)点P 到定点F (1,0)的距离比到y 轴的距离大1,即点P 到定点F (1,0)的距离与到定直线l :x =-1的距离相等.∴P 点轨迹是以F 为焦点,l 为准线的抛物线,∴p =2,∴方程为y 2=4x .(理)已知抛物线y 2=4x ,过点(0,-2)的直线交抛物线于A 、B 两点,O 为坐标原点. (1)若OA →·OB →=4,求直线AB 的方程.(2)若线段AB 的垂直平分线交x 轴于点(n,0),求n 的取值范围.[解析] (1)设直线AB 的方程为y =kx -2 (k ≠0),代入y 2=4x 中得,k 2x 2-(4k +4)x +4=0①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k +4k 2,x 1x 2=4k 2.y 1y 2=(kx 1-2)·(kx 2-2)=k 2x 1x 2-2k (x 1+x 2)+4=-8k.∵OA →·OB →=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=4k 2-8k =4,∴k 2+2k -1=0,解得k =-1±2.又由方程①的判别式Δ=(4k +4)2-16k 2=32k +16>0得k >-12,∴k =-1+2,∴直线AB 的方程为(2-1)x -y -2=0.(2)设线段AB 的中点的坐标为(x 0,y 0),则由(1)知x 0=x 1+x 22=2k +2k 2,y 0=kx 0-2=2k,∴线段AB 的垂直平分线的方程是 y -2k =-1k ⎝⎛⎭⎫x -2k +2k 2. 令y =0,得n =2+2k +2k 2=2k 2+2k +2=2⎝⎛⎭⎫1k +122+32.又由k >-12且k ≠0得1k <-2,或1k>0,∴n >2⎝⎛⎭⎫0+122+32=2.∴n 的取值范围为(2,+∞). 17.(文)(2010·全国Ⅰ)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设F A →·FB →=89,求△BDK 的内切圆M 的方程.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得 y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4① 直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2)即y -y 2=4y 2-y 1⎝⎛⎭⎫x -y 224 令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2, x 1x 2=(my 1-1)(my 2-1)=1因为F A →=(x 1-1,y 1),FB →=(x 2-1,y 2),F A →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4m 2=89,解得m =±43,直线l 的方程为3x +4y +3=0,3x -4y +3=0. 从而y 2-y 1=±(4m )2-4×4=±437,故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝⎛⎭⎫x -192+y 2=49. (理)(2010·揭阳市模考)已知点C (1,0),点A 、B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点.(1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.[解析] (1)法一:连结CP ,由AC →·BC →=0知,AC ⊥BC ,∴|CP |=|AP |=|BP |=12|AB |, 由垂径定理知|OP |2+|AP |2=|OA |2,即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9,化简得,x 2-x +y 2=4.法二:设A (x 1,y 1),B (x 2,y 2),P (x ,y ),根据题意知,x 12+y 12=9,x 22+y 22=9,2x =x 1+x 2,2y =y 1+y 2,∴4x 2=x 12+2x 1x 2+x 22,4y 2=y 12+2y 1y 2+y 22故4x 2+4y 2=(x 12+y 12)+(2x 1x 2+2y 1y 2)+(x 22+y 22)=18+2(x 1x 2+y 1y 2)①又∵AC →·BC →=0,∴(1-x 1,-y 1)·(1-x 2,-y 2)=0∴(1-x 1)×(1-x 2)+y 1y 2=0,故x 1x 2+y 1y 2=(x 1+x 2)-1=2x -1,代入①式得,4x 2+4y 2=18+2(2x -1),化简得,x 2-x +y 2=4.(2)根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p 2=1,∴p =2,故抛物线方程为y 2=4x , 由方程组⎩⎪⎨⎪⎧y 2=4x x 2-x +y 2=4得,x 2+3x -4=0, 解得x 1=1,x 2=-4,由于x ≥0,故取x =1,此时y =±2,故满足条件的点存在,其坐标为(1,-2)和(1,2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题21 抛物线一、基础过关题1.(2018全国卷III)已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若,则________.【答案】【解析】依题意得,抛物线的焦点为,故可设直线,联立消去得,设,,则,,∴,.又,,∴,∴.2.(2017·昆明调研)已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A、B两点,如果·=-12,那么抛物线C的方程为( )A.x2=8y B.x2=4yC.y2=8x D.y2=4x【答案】 C3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2【答案】 B【解析】 ∵y 2=2px (p >0)的焦点坐标为(2p,0),∴过焦点且斜率为1的直线方程为y =x -2p,即x =y +2p,将其代入y 2=2px ,得y 2=2py +p 2, 即y 2-2py -p 2=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2p ,∴2y1+y2=p =2,∴抛物线的方程为y 2=4x ,其准线方程为x =-1.4.已知抛物线y 2=2px (p >0)的焦点弦AB 的两端点坐标分别为A (x 1,y 1),B (x 2,y 2),则x1x2y1y2的值一定等于( )A .-4B .4C .p 2D .-p 2【答案】 A5.如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( )A.y2=9xB.y2=6xC.y2=3xD.y2=x【答案】 C【解析】如图,分别过A、B作AA1⊥l于A1,BB1⊥l于B1,6.抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,若点A (-1,0),则|PA||PF|的最小值是( )A.21B.22C.23D.32【答案】 B【解析】 抛物线y 2=4x 的准线方程为x =-1,如图,过P 作PN 垂直直线x =-1于N ,由抛物线的定义可知|PF |=|PN |,连接PA ,在Rt△PAN 中,sin ∠PAN =|PA||PN|,当|PA||PN|=|PA||PF|最小时,sin ∠PAN 最小,即∠PAN 最小,即∠PAF 最大, 此时,PA 为抛物线的切线,设PA 的方程为y =k (x +1),联立y2=4x ,y =k(x +1,得k 2x 2+(2k 2-4)x +k 2=0,所以Δ=(2k 2-4)2-4k 4=0,解得k =±1,所以∠PAF =∠NPA =45°,|PA||PF|=|PA||PN|=cos ∠NPA =22,故选B.7.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=________.【答案】 128.已知抛物线C :y 2=2px (p >0)的准线为l ,过M (1,0)且斜率为的直线与l 相交于点A ,与C 的一个交点为B ,若=,则p =________.【答案】 2【解析】 如图, 由AB 的斜率为,知∠α=60°,又=,∴M 为AB 的中点. 过点B 作BP 垂直准线l 于点P , 则∠ABP =60°,∴∠BAP =30°,∴|BP |=21|AB |=|BM |.∴M 为焦点,即2p=1,∴p =2.9.已知椭圆E 的中心在坐标原点,离心率为21,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=________.【答案】 6【解析】 抛物线y 2=8x 的焦点为(2,0),准线方程为x =-2.设椭圆方程为a2x2+b2y2=1(a >b >0),由题意,c =2,a c =21, 可得a =4,b 2=16-4=12.故椭圆方程为16x2+12y2=1.把x =-2代入椭圆方程,解得y =±3.从而|AB |=6.10.(2016·沈阳模拟)已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程为y 2=8x ;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值. 【答案】(1)该抛物线的方程;(2) λ=0或λ=2.二、能力提高题1.(2016·上饶四校联考)设抛物线C:y2=3px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则抛物线C的方程为( )A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x【答案】 C2.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是________________.【答案】 (2,4)【解析】 如图,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则=4x2,2两式相减得,(y 1+y 2)(y 1-y 2)=4(x 1-x 2). 当l 的斜率k 不存在时,符合条件的直线l 必有两条.3.设P ,Q 是抛物线y 2=2px (p >0)上相异两点,P ,Q 到y 轴的距离的积为4,且·=0.(1)求该抛物线的标准方程;(2)过点Q 的直线与抛物线的另一交点为R ,与x 轴的交点为T ,且Q 为线段RT 的中点,试求弦PR 长度的最小值.【答案】(1)该抛物线的方程为y 2=2x ;(2) |PR |最小值为4.【解析】(1)设P (x 1,y 1),Q (x 2,y 2),∵·=0,则x 1x 2+y 1y 2=0.又点P ,Q 在抛物线上,∴y 12=2px 1,y 22=2px 2, 代入得1·2+y 1y 2=0,y 1y 2=-4p 2,∴|x 1x 2|=4p2(y1y22=4p 2.又|x 1x 2|=4,∴4p 2=4,p =1,∴抛物线的标准方程为y 2=2x . (2)设直线PQ 过点E (a,0)且方程为x =my +a ,联立方程组y2=2x ,x =my +a ,消去x 得y 2-2my -2a =0,∴y1y2=-2a ,y1+y2=2m ,①设直线PR 与x 轴交于点M (b,0),则可设直线PR 的方程为x =ny +b ,并设R (x 3,y 3),同理可知,y1y3=-2b ,y1+y3=2n ,②由①②可得y2y3=a b.由题意得,Q 为线段RT 的中点,∴y 3=2y 2,∴b =2a . 又由(1)知,y 1y 2=-4,代入①,可得-2a =-4,∴a =2,∴b =4,y 1y 3=-8, ∴|PR |=|y 1-y 3|=·=2·≥4.当n =0,即直线PR 垂直于x 轴时,|PR |取最小值4.4.如图,由部分抛物线:y 2=mx +1(m >0,x ≥0)和半圆x 2+y 2=r 2(x ≤0)所组成的曲线称为“黄金抛物线C ”,若“黄金抛物线C ”经过点(3,2)和(-21,23).(1)求“黄金抛物线C ”的方程;(2)设P (0,1)和Q (0,-1),过点P 作直线l 与“黄金抛物线C ”相交于A ,P ,B 三点,问是否存在这样的直线l ,使得QP 平分∠AQB ?若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1) 黄金抛物线C 的方程为y 2=x +1(x ≥0)和x 2+y 2=1(x ≤0);(2) 存在直线l :y =(-1)x +1,使得QP 平分∠AQB .(2)假设存在这样的直线l ,使得QP 平分∠AQB ,显然直线l 的斜率存在且不为0, 设直线l :y =kx +1,联立y2=x +1,y =kx +1,消去y , 得k 2x 2+(2k -1)x =0,∴x B =k21-2k ,y B =k 1-k ,即B (k21-2k ,k 1-k ),∴k BQ =1-2k k, 联立x2+y2=1,y =kx +1,消去y ,得(k 2+1)x 2+2kx =0, ∴x A =-k2+12k ,y A =k2+11-k2,即A (-k2+12k ,k2+11-k2),∴k AQ =-k 1,∵QP 平分∠AQB ,∴k AQ +k BQ =0, ∴1-2k k -k 1=0,解得k =-1±,由图形可得k =-1-应舍去,∴k =-1,∴存在直线l :y =(-1)x +1,使得QP 平分∠AQB . 5. (2018高考北京卷19)已知抛物线C :=2px 经过点(1,2).过点Q (0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(Ⅰ)求直线l的斜率的取值范围;(Ⅱ)设O为原点,,,求证:为定值.(Ⅱ)设A(x1,y1),B(x2,y2).由(I)知,.直线PA的方程为y–2=.令x=0,得点M的纵坐标为.同理得点N的纵坐标为.由,得,.所以.所以为定值.6.(2018高考浙江卷21)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.(Ⅱ)由(Ⅰ)可知所以,.因此,的面积.因为,所以.因此,面积的取值范围是.点评.本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力。

相关文档
最新文档