定积分的概念ppt课件
合集下载
1.5定积分的概念(4课时)ppt课件
作业: P45练习:2 .
1.5.3 定积分的概念
问题提出 1.求曲边梯形的面积和求变速直线运
动的路程,都可以通过“四步曲”解决, 这四个步骤是什么?其中哪个步骤是难 点?
分割→近似代替→求和→取极限.
2.求曲边梯形的面积与求变速直线运 动的路程是两类不同的问题,但它们有 共同的解决途径,我们可以此为基点, 构建一个新的数学理论,使得这些问题 归结为某个数学问题来解决,并应用于 更多的研究领域.
x 3)dx
(2x x )dx . 1
0
y sin( .x
)3
0
1
(2x
x 3)dx
0
1
2xdx
0
1x 3dx 1 1 3
0
44
小结作业
1.定积分是一个特定形式和的极限,其 几何意义是曲边梯形的面积,定积分的 值由被积函数,积分上限和下限所确定.
2.在实际问题中,定积分可以表示面积、 体积、路程、功等等,求定积分的值目 前有定义法和几何法两种,有时利用定 积分的性质进行计算,能简化解题过程.
B组:2,3.
i)
,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
思 做考 函数4:f(数x)学在上区,间把[a,nlimb]in上1 b的n定a f积( i )分,叫
记作
b
f (x)dx,即
a b
f (x)dx
a
lim
n
n i1
b
af( n
i)
其中a与b分别叫做积分下限与积分上限,
பைடு நூலகம்
区间[a,b]叫做积分区间,函数f(x)叫
2
(x 1)dx 的值.
1
定积分的概念PPT课件
(3 )
a
f ( x )dx
f ( x )dx
b a
f (x )dx
性质4: 性质5: 性质6:
a
a
b
f ( x )dx 0.
a
dx b a .
b
a
f ( x )dx f ( x )dx .
b
a
思考4:
r 0
2 xdx
2
?
r
2
1
0
1 x dx ?
i 1
b n
a
f ( i ) ,那么
当n→∞时,Sn的极限是否一定存在?
一定存在
n
思考4:数学上,把
n
lim
i 1
b n
a
f( i)
叫
做函数f(x)在区间[a,b]上的定积分, 记作 即
a
b a
b
f (x )dx ,
n
f (x )dx
n
lim
i 1
b n
a
f( i)
b a
f (x )dx 其中
---积分号 a---积分下限 b---积分上限 区间[a,b] ---积分区间 函数f(x) ---被积函数 x---积分变量 f(x)dx---被积式
v=v(t)
n
s
n
lim
i 1
b n
a
v( i )
O a
i
b t
思考3:一般地,如果函数f(x)在区间[a, b]上连续,用分点 a=x0<x1<x2<„<xi<„<xn=b将区 间[a,b]等分成n个小区间,在每个小区 间[xi-1,xi](i=1,2,„,n)上任取一
定积分的概念ppt课件
2
2
b a
(b
x)( x
a)dx
1
2
(b a )2 2
(b a)2
8
.
17
例1 利用定义计算定积分 1 x2dx. 0
解 因为y x2在[0,1]上连续,积分存在.
将[0,1]n 等分,分点为 xi
i ,( i n
0,1,2,
,n
)
小区间[ xi1 ,
xi ]的长度xi
1 ,(i n
b
a
f
(u)du
(2)定义中区间的分法和介点i 的取法是任意的.
(3)当函数 f ( x)在区间[a,b]上的定积分存在时,
称 f ( x)在区间[a, b]上可积. 也称定积分为
Riemann 积分.
11
对定积分的补充规定:
(1)当a
b时, b a
f
(
x)dx
0;
(2)当a
b时, b a
f
( x)dx
1
一、问题的提出
实例1 (求曲边梯形的面积)
y
曲边梯形由连续曲线
y f (x)
y f ( x)( f ( x) 0)、
x轴与两条直线x a 、
x b所围成.
A?
oa
bx
2
用矩形面积近似取代曲边梯形面积
y
y
oa
b xo a
bx
(四个小矩形)
(九个小矩形)
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
0
证明 利用对数的性质得
lim n f 1 f 2 f n n n n n
eln lim n n
f
1 n
《定积分课件》课件
03 定积分的应用
CHAPTER
面积与体积的计算
总结词
定积分在计算平面图形的面积和三维物体的体积方面具有广 泛应用。
详细描述
利用定积分,可以计算出由曲线围成的平面图形的面积,例 如由y=sinx和y=cosx围成的图形面积。此外,定积分还可以 用于计算三维物体的体积,例如球体、圆柱体和旋转体的体 积。
详细描述
在静水压力问题中,压力分布是深度的函数。通过定积分,我们可以计算任意 深度的压力分布,从而了解水下物体的受力情况。
引力场的强度
总结词
通过定积分计算引力场的强度,理解引 力场的分布规律。
VS
详细描述
在引力场中,场强是位置的函数。通过定 积分,我们可以计算任意位置的场强,从 而了解物体在引力场中的运动规律。
符号表示
02
定积分的符号为∫,读作“拉姆达”。
计算方法
03
定积分的计算方法是通过微积分基本定理,将定积分转化为求
原函数在某点的值。
定积分的几何意义
平面区域面积
定积分可以用来计算平面图形的面积,特别是 当面积元素与坐标轴平行时。
体积
定积分还可以用来计算三维物体的体积,例如 旋转体的体积。
曲线下面积
定积分可以用来计算曲线下在某一区间内的面积。
定积分的计算方法
要点一
总结词
定积分的计算方法包括直接法、换元法和分部积分法等。
要点二
详细描述
定积分的计算可以通过多种方法进行。直接法是根据微积 分基本定理,通过求原函数并计算其差值来得到定积分的 结果。换元法是在积分变量进行换元,使得积分简化。分 部积分法则是通过将两个函数的乘积进行积分,将一个积 分转化为另一个积分,从而简化计算。这些方法在计算定 积分时常常需要结合使用。
定积分的概念及性质课件
度、磁场强度等;在弹性力学中,定积分可以用于求解应力和应变等问题。
06
定积分的进一步应用
积分变换
积分变换的定义
积分变换是一种将函数在某一区间内的行为转化为另一种函数的方法,常见的积分变换包括傅里叶变换和拉普拉斯变 换等。
积分变换的性质
积分变换具有一些重要的性质,例如线性性质、时间平移性质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
积分变换的应用
积分变换在信号处理、图像处理和控制系统等领域有着广泛的应用,通过积分变换可以将复杂的信号或 系统转换为易于分析和处理的函数形式。
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域函数转换为频域函数的方法, 它可以将一个时间函数分解成一系列不同频率的正弦和余 弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要的性质,例如线性性质、对称性 质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
傅里叶变换的应用
傅里叶变换在信号处理、图像处理和控制系统等领域有着 广泛的应用,通过傅里叶变换可以将复杂的信号或系统转 换为易于分析和处理的频域函数形式。
反常积分
反常积分的定义
反常积分是一种在无穷区间上定 义的积分,它通常用于处理一些 在无穷远处收敛的函数。
符号的意义
定积分的符号表示一个函 数在一个区间上的总值, 其中“∫”表示积分号。
计算公式
定积分可以通过一个公式
来计算x,其中a和b
是区间的端点。
02
定积分的性质
连续函数的积分性质
积分区间可加性
对于任意两个不相交的区间[a,b]和[b,c],有$\int_{a}^{c}f(x)dx = \int_{a}^{b}f(x)dx + \int_{b}^{c}f(x)dx$。
06
定积分的进一步应用
积分变换
积分变换的定义
积分变换是一种将函数在某一区间内的行为转化为另一种函数的方法,常见的积分变换包括傅里叶变换和拉普拉斯变 换等。
积分变换的性质
积分变换具有一些重要的性质,例如线性性质、时间平移性质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
积分变换的应用
积分变换在信号处理、图像处理和控制系统等领域有着广泛的应用,通过积分变换可以将复杂的信号或 系统转换为易于分析和处理的函数形式。
傅里叶变换
傅里叶变换的定义
傅里叶变换是一种将时间域函数转换为频域函数的方法, 它可以将一个时间函数分解成一系列不同频率的正弦和余 弦函数的线性组合。
傅里叶变换的性质
傅里叶变换具有一些重要的性质,例如线性性质、对称性 质和微分性质等,这些性质在解决实际问题中具有广泛的 应用。
傅里叶变换的应用
傅里叶变换在信号处理、图像处理和控制系统等领域有着 广泛的应用,通过傅里叶变换可以将复杂的信号或系统转 换为易于分析和处理的频域函数形式。
反常积分
反常积分的定义
反常积分是一种在无穷区间上定 义的积分,它通常用于处理一些 在无穷远处收敛的函数。
符号的意义
定积分的符号表示一个函 数在一个区间上的总值, 其中“∫”表示积分号。
计算公式
定积分可以通过一个公式
来计算x,其中a和b
是区间的端点。
02
定积分的性质
连续函数的积分性质
积分区间可加性
对于任意两个不相交的区间[a,b]和[b,c],有$\int_{a}^{c}f(x)dx = \int_{a}^{b}f(x)dx + \int_{b}^{c}f(x)dx$。
定积分概念、性质ppt课件
上例曲边图形的面积用定积分表示
S1x2d x lin m (n 1 )2 (n 1 )1
0
n 6 n 3
3
注意:据定义有如下说明:
(1)定积分是特殊和式极限,它是一个定数;
(2)定积分的大小仅与区间[a,b]和被积函数f(x)有关;
(3)规定:
a
f(x)d x0,
b
a
f(x)d x f(x)dx
b f (x)dx
b
g ( x)dx
a
a
推2 论 :b
.
f(x)d
x
b
f( x) dx,(ab)
a
a
因f(x)f(x)f(x)
.
性质6(介值定理):设f(x)在[a,b]上可取得最大值M和最
小值m, 于是, 由性质5有
b
m (ba)af(x)d xM (ba)
几何意义也很明显
性质 7(积分中值若定函理 f(数 x)) 在[a: ,b]上连续,
S曲
lim n
n i 1
S i矩
lim
n
(n
1)( 2n 6n 2
1)
1 0.333 3
.
总结:求曲边梯形面积的步骤 v
引例1——曲边梯形的面积(演示) 引例2——变速直线运动的路程
设物体的运动速度 vvt
分割区间 作和
取近似值 取极限
T1
ti-1 i ti T2 t
(1)细分区间 [ T 1 ,T 2 ] [ T 1 ,t 1 ] U [ t 1 ,t2 ] U L U [ tn 1 ,T 2 ]
曲边梯形的面积,即:
n
S曲
.
lim
n i1
定积分的概念及性质PPT
在每个小区间[ xi1, xi ]
上任取
一点
,
i
o a x1
b xi1i xi xn1
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
首页
上页
下页
曲边梯形面积的近似值为
n
A f (i )xi
i 1
当分割无限加细,即小区间的最大长度
max{x1, x2 , xn }
点i 怎样的取法,只要当 0时,和S 总趋于
确定的极限I , 我们称这个极限I 为函数 f ( x)
在区间[a, b]上的定积分,记为
积分上限 b a
f ( x)dx
I
lim 0
n i 1
积分和
f (i )xi
积分下限
被 积 函 数
被
积
[a,b] 积分区间
积
分
表
变
达 式
量
首页
上页
下页
注意:
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的精确值.
首页
上页
下页
(1)分割 T1 t0 t1 t2 tn1 tn T2
ti ti ti1
si v( i )ti
部分路程值
某时刻的速度
i ,(i n
1,2,
,n)
小区间[ xi1 , xi ]的长度xi
1 ,(i n
1,2,
,n)
取i xi ,(i 1,2, , n)
n
n
n
f (i )xi i2xi xi2xi ,
高等数学 课件 PPT 第五章 定积分
[a,b]上有界并不是可积的充分条件.例如,
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],
在[0,1]上是有界函数,但不可积.因为不论对[0,1]怎样分 割,在任意被分割的小区间[xi-1,xi]上,总能取到ξi为有理数, 这时f(ξi)=1,也总能取到ξi为无理数,这时f(ξi)=0.所以对[0,1] 的任何一种分法,我们总可以得到
一、定积分的概念
思考
一个函数在什么条件下可积?什么条件下不可积?
一、定积分的概念
3. 定积分存在的充分条件
若f(x)在[a,b]上无界,则f(x)在[a,b]上一定是不可积 的.这是因为,若f(x)在[a,b]上无界,那么无论对[a,b] 怎样分割,都至少有一个区间[xi-1,xi],函数f(x)在其上无 界.因此,在[xi-1,xi]上一定可以取一点ξi,使得f(ξi)大于任 意一个正数M,因而也就使得和式 ∑ =1f(ξi)Δxi可以任意的 大.当λ→0时,这个和就不可能趋向于任何极限.由此可知, f(x)在[a,b]上可积的必要条件是f(x)在[a,b]上有界.
一、变速直线运动中位置函数与速度函数之间的联系
为了讨论质点在变速直线运动中位置函数与速度函数间的 联系,有必要沿质点的运动方向建立坐标轴.设时刻t时质点所 在位置st,速度vtvt≥0. 已知质点在时间间隔T1,T2内经过的路程可以用速度函数vt在 T1,T2上的定积分
一、定积分的概念
在区间[a,b]上,f(x)既有正值又有负值时,函数y=f(x) 的图形某些部分在x轴的上方,而其他部分在x轴的下方.如果 规定在x轴的上方的图形的面积为正,在x下方的图形面积为负, 那么∫baf(x) 的几何意义就是介于曲线y=f(x)、x轴及两条直线 x=a,x=b之间的各部分面积的代数和,如图5-2所示.
把区间[a,b]分成个n小区间 [x0,x1],[x1,x2],…,[xn-1,xn],
《高数定积分》课件
五、定积分的综合应用
微积分基础
我们将回顾一些微积分的基本概念和公式,为 之后的应用题做好准备。
微积分的发展
我们将探索微积分在数学及其他领域中的发展 历程,并了解它对现代科学的重要影响。
微积分与实际问题
我们将讨论微积分在实际问题中的应用,包括 物理、工程、经济等领域。
综合应用题
通过解决一些具体应用题,我们将展示定积分 在解决实际问题中的威力和价值。
《高数定积分》PPT课件
欢迎来到《高数定积分》PPT课件!在本课程中,我们将深入探讨定积分的概 念、计算方法、应用及扩展。准备好跟我们一起进入数学的奇妙世界吧!
一、定积分的概念和性质
定积分的定义
通过讨论函数的变化率, 我们引入了定积分的概念, 它能够帮助我们计算函数 曲线下的面积。
定积分的性质
定积分具有线性性、可加 性、保号性等特点,这些 性质为积分计算提供了便 利。
的问题的一种方法,我们将展示如何
ቤተ መጻሕፍቲ ባይዱ
有理函数的积分
4
运用它解决实际问题。
通过学习有理函数的积分,我们能够 解决一类常见的函数积分问题。
三、定积分应用
几何应用
我们将介绍如何使用定积分 计算曲线长度、旋转体体积 等与几何相关的应用。
物理应用
通过物理应用的例子,我们 将展示定积分在速度、加速 度、质量等物理概念中的用 途。
经济应用
我们将探讨定积分在经济学 中的应用,如利润、成本、 消费者剩余等问题。
四、定积分的扩展
1 不定积分
不定积分是定积分的逆运算,通过学习不定积分,我们可以还原出原函数。
2 反常积分
反常积分用于计算无界函数、无法普通方法计算的函数等特殊情况下的积分问题。
定积分的概念 课件
的速度为 v(t)=3t2+2(单位:km/h),那么该汽车在 0≤t≤2(单
位:h)这段时间内行驶的路程 s(单位:km)是多少? [解] (1)分割 在时间区间[0,2]上等间隔地插入 n-1 个分点,将它等
分成 n 个小区间,记第 i 个小区间为2i-n 1,2ni(i=1,2,…, n),其长度为 Δt=2ni-2i-n 1=n2.每个时间段上行驶的路程
y=0 所围成的曲边梯形的面积时,将区间[0,t]等分成 n
个小区间,则第 i-1 个区间为
()
A.i-n 1,ni C.ti-n 1,tni
B.ni ,i+n 1 D.ti-n 2,ti-n 1
[解析]
每个小区间长度为
t n
,故第i-1个区间的左
端点为0+(i-2)×
t n
=
ti-2 n
,右端点为
ti-2 n
+
t n
=
ti-1 n.
[答案] D
[易错防范] 1.解决本题易错误地认为区间左端为ti-n 1,从而误选 C. 2.在将区间[0,1]等分成 n 个小区间时,其第 1 个小区间的 左端点为 0,第 2 个小区间的左端点为n1,…,依次类推,第 i 个小区间的左端点为i-n 1.
小区间长 Δx=n1为其邻边的小矩形面积,近似代替小曲边梯形面
积.第 i 个小曲边梯形面积,可以近似地表示为ΔSi≈ξ3i ·Δx=
n+ni-13·n1(i=1,2,3,…,n).
(3)求和 因为每一个小矩形的面积都可以作为相应的小曲边梯形面
积的近似值,所以 n 个小矩形面积的和就是曲边梯形 ABCD 面积 S 的近似值,
n
n
即 S=ΔSi≈
i=1
位:h)这段时间内行驶的路程 s(单位:km)是多少? [解] (1)分割 在时间区间[0,2]上等间隔地插入 n-1 个分点,将它等
分成 n 个小区间,记第 i 个小区间为2i-n 1,2ni(i=1,2,…, n),其长度为 Δt=2ni-2i-n 1=n2.每个时间段上行驶的路程
y=0 所围成的曲边梯形的面积时,将区间[0,t]等分成 n
个小区间,则第 i-1 个区间为
()
A.i-n 1,ni C.ti-n 1,tni
B.ni ,i+n 1 D.ti-n 2,ti-n 1
[解析]
每个小区间长度为
t n
,故第i-1个区间的左
端点为0+(i-2)×
t n
=
ti-2 n
,右端点为
ti-2 n
+
t n
=
ti-1 n.
[答案] D
[易错防范] 1.解决本题易错误地认为区间左端为ti-n 1,从而误选 C. 2.在将区间[0,1]等分成 n 个小区间时,其第 1 个小区间的 左端点为 0,第 2 个小区间的左端点为n1,…,依次类推,第 i 个小区间的左端点为i-n 1.
小区间长 Δx=n1为其邻边的小矩形面积,近似代替小曲边梯形面
积.第 i 个小曲边梯形面积,可以近似地表示为ΔSi≈ξ3i ·Δx=
n+ni-13·n1(i=1,2,3,…,n).
(3)求和 因为每一个小矩形的面积都可以作为相应的小曲边梯形面
积的近似值,所以 n 个小矩形面积的和就是曲边梯形 ABCD 面积 S 的近似值,
n
n
即 S=ΔSi≈
i=1
定积分的概念 课件
从几何上看,如果在区间[a,b]上函数f(x)连续且恒有 f(x)≥0 ,那么定积 分 ʃbaf(x)dx 表示由 直线x=a,x=b,y=0和曲线y=f(x) 所围成的曲边梯形 的面积.这就是定积分ʃbaf(x)dx 的几何意义.
知识点三 定积分的性质
思考 你能根据定积分的几何意义解释ʃbaf(x)dx=ʃcaf(x)dx+ʃbcf(x)dx(其中 a<c<b)吗? 答 直线x=c把一个大的曲边梯形分成了两个小曲边梯形,因此大曲边 梯形的面积S是两个小曲边梯形的面积S1,S2之和,即S=S1+S2. (1)ʃbakf(x)dx=_k_ʃ_ba_f(_x_)d_x__(k 为常数). (2)ʃba[f1(x)±f2(x)]dx=_ʃ_baf_1(_x_)_d_x_±_ʃba_f_2(_x_)d_x_. (3)ʃbaf(x)dx=__ʃ_caf_(_x)_d_x_+__ʃ_bc_f(_x_)d_x___(其中 a<c<b).
解 ʃ20 4-x-22dx 表示圆心在(2,0),半径等于 2 的圆的面积的14, 即ʃ20 4-x-22dx=14×π×22=π.
类型三 定积分的性质 例 3 计算ʃ3-3( 9-x2-x3)dx 的值. 解 如图, 由定积分的几何意义得 ʃ3-3 9-x2dx=π×232=92π,ʃ3-3x3dx=0, 由定积分性质得 ʃ3-3( 9-x2-x3)dx=ʃ3-3 9-x2dx-ʃ3-3x3dx=92π.
定积分的概念
知识点一 定积分的概念
思考 分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共 同点. 答 两个问题均可以通过“分割、近似代替、求和、取极限”解决,都 可以归结为一个特定形式和的极限.
知识点二 定积分的几何意义
定积分的概念和性质ppt课件
小区间长度记为:
ti ti ti 1 (i 1 ,2 ,3 , ,n )
n
(2)近似求和:s v(i )ti. i1
(3)取极限:
n
s
lim
0 i1
v(i
)ti
( 表示所有小区间的长度的最大者)
编辑版pppt
8
二、定积分的定义
定义 设函数f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点:
四、定积分的几何意义
若f(x)≥0,则
b
a
f (x)dx 的几何意义表示
由曲线y=f(x),直线x=a,x=b与x轴所围成
的曲边梯形的面积。
编辑版pppt
12
一般情形,ab f (x)dx 的几何意义为:它
是介于x轴,曲线y=f(x),直线x=a,x=b 之 间的各部分面积的代数和。
y
+
a
0 -
+ bx
性质 7(定积分中值如定果理函) f (数 x)在闭区
间[a,b]上连续,[则 a,b]在 上至少存在一点
,使
b af(x )d x f()b ( a )
( a b )
这个公式叫积分中值公 式。
编辑版pppt
22
证由性6, 质有
b
m (ba)af(x)d xM (ba)
即有 m 1
b
f(x)d xM
这些小区间的长度最大者)时,和式 f (i )xi 的
n
i 1
极限就是A,即
Alim
0 i1
f (i)xi
可见,曲边梯形的面积是一和式的极限
y=f(x) y
0 a x0 x1
f(ξi) x 2 ξi x i x 编1 辑版pi ppt
高二数学定积分概念.pptx
lim 0
n
ei
i 1
1 n
lim
iY
n n1
1
e lim
ni
en
n i1
n n n i1
1
1
lim
n
1 n
1
(e
n)
1
n
1
en
(1 e) lim n
n
1
1 en
1 en
e 1
第7页/共91页
第二节 定积分的性质
定积分的性质
第8页/共91页
规定:(1)当a b时,b f (x)dx 0; a
1
xdx
1ln(1 x)dx.又在[0,1]上,x ln(1 x) 0,
0
0
故
1
xdx
1
ln(1 x)dx.
0
0
例2:估计下列积分值
(1)4 (x2 1)dx;(2)0 ex2xdx.
1
2
第12页/共91页
解: (1)2 x2 1 17,
2 (4 1) 4 (x2 1)dx 17 (4 1) 1
b
n
a
f (x)dx I
lim 0
i 1
f (i )xi
这里f(x)叫做被积函数,f(x)dx叫做被积表达式,x叫做积
分变量,a,b叫做积分下限和上限,[a,b]叫做积分区间。
n
Y
注意:(i) 当和 f (i )xi的极限存在时,其极限I仅与被积函数
i 1
f (x)及积分区间[a,b]有关,而与积分变量的记法无关,即
x f (t)dt也是f (x)的a一个原函数,从而
a
F(x) (x) C.令x a有F(a) C.即F(x) (x) F(a)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(i1, 2,, n), 作和n f (i)xi 如果当0时, 上述和式的
极限存在, 且极限i值1 与区间[a, b]的分法和i的取法无关,
则称此极限为函数f(x)在区间[a, b]上的定积分, 记为
b
a
f
(x)dx
即
b
a
n
f (x)dx lim f ( x ) 在 [ a , b ] 上可积 .
3.定积分的几何意义:
曲边梯形面积
曲边梯形面积的负值
y
A1
a
A2
A3 A4
b
òa f (x)d x = A1 - A2 + A3 - A4 + A5
各部分面积的代数和
A5 bx
例1. 利用定义计算定积分
解 把区间[0, 1]分成n等份, 分点为和小区间长度为
xi xnii(ini(1i21 2 n 1n)1)xix1ni (1ni(1i21 2 n) n)
将其一般化,就得到定积分的概念.
二、定积分的定义
1. 定积分的定义
设函数f(x)在区间[a, b]上有界. 在区间[a, b]内插入n-1
个分点: ax0<x1<x2< <xn1<xnb;记xi=xi-xi1 (i1, , n),
max{x1, x2,,xn}; 在小区间[xi1, xi]上任取一点i
n
S
lim
0
i
1
v(
i
)t
i
1. 曲边梯形的面积
n
å S = lim l ®0
D xi f (xi )
i= 1
2.变速直线运动的路程
上述两个问题的共性: • 解决问题的方法步骤相同 :
“分割 , 近似 , 求和 , 取极限 ”
• 所求量极限结构式相同: 特殊乘积和式的极限 许多问题的解决都可以化为上述特定和式的问题,
(1)分割: T1=t0<t1<t2< *** <tn-1<tn=T2, tititi+1; (2)近似: 物体在时间段[ti1, ti]内所经过的路程近似为
Siv(i)ti ( ti1< i<ti );
(3)求和: 物体在时间段[T1, T2]内所经过的路程近似为
(4)取极限: 记max{t1, t2,, tn}, 物体所经过的路程为
a
a
二、定积分的定义
1.定积分的定义b a
f
n
(x)dxlim
0 i1
f
(i)xi
根据定积分的定义
曲边梯形的面积为
A
b
a
f
(x)dx
变速直线运动的路程为
S
T2v(t)dt
T1
2.函数的可积性
定理1:如果函数f(x)在区间[a, b]上连续, 则函数f(x) 在区间 [a, b]上可积.
定理2:如果函数f(x)在区间[a, b]上有界, 且只有有限 个间断点, 则函数f(x)在区间[a, b]上可积.
用直线 x = xi 将曲边梯形分成 n 个小曲边梯形;
2) 近似. 在第i 个窄曲边梯形上任取 i [xi1 , xi ]
作以[xi1 , xi ] 为底 , f (i )
y
为高的小矩形, 并以此小
梯形面积近似代替相应
窄曲边梯形面积
得
D Ai 籇 f (xi ) xi (D xi = xi - xi- 1 )
o a x1
xi xi- 1
i
3) 求和.
n
n
å å A = D Ai- 1 籇 f (xi ) xi
i= 1
i= 1
4) 取极限. 令
则曲边梯形面积
n
å A = lim l ®0
D Ai
i= 1
n
= limå f (xi )D xi l ® 0 i= 1
y o a x1 xi1 xi
i
1. 曲边梯形的面积
第五章 定积分
第一节 第二节 第三节 第四节
定积分的概念与性质 微积分基本公式 定积分的换元法和分部积分法 反常积分
主讲人:李源
第一节 定积分的概念与性质
一、定积分问题举例 二、定积分的定义 三、定积分的性质
一、定积分问题举例
在初等函数里面,我们只会计算规则图形的面积, 如长方形,圆形等。如何计算不规则图形的面积,是 我们需要解决的问题。
积分上限
[a , b] 称为积分区间
b
ò å f (x)dx = a
n
lim
l ®0
f (xi ) D xi
i= 1
积分下限 被 积 函 数
被积 积分 表变 达量
积 分 和
式
定积分仅与被积函数及积分区间有关 , 而与积分
变量用什么字母表示无关 , 即
b
b
b
ò ò òa f (x) dx = f (t) dt = f (u)du
曲边梯形
设函数y=f(x)在区间[a, b]
y
上非负、连续. 由直线x=a、x=b、
y=f(x)
Y=0及曲线y=f (x)所围成的图形 称为曲边梯形, 其中曲线弧称 为曲边.
x=a oa
x=b
bx
如何计算其面积?
解决步骤 :
1) 分割. 在区间 [a , b] 中任意插入 n –1 个分点 a = x0 < x1 < x2 < L < xn- 1 < xn = b
3 积零为整
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
x b
4 取极限
令分法无限变细
n
å S =
lim
l ®0
i= 1
f
(xi
).D.
xi
.
2.变速直线运动的路程
已知物体直线运动的速度v=v(t)是时间 t 的连续函数, 且v(t)>0, 计算物体在时间段[T1, T2]内所经过的路程S.
1 化整为零
2 以直代曲 (以常代变)
Si f ( i )xi
3 积零为整
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
x b
4 取极限
令分法无限变细
..
1. 曲边梯形的面积
f (i) y
S
oa
x x i i i 1 .
元素法
y=f (x)
1 化整为零
2 以直代曲 (以常代变)
Si f ( i )xi
f (i) y
o
a x1 x2
x i i xi1
元素法
y=f (x)
1 化整为零
2 以直代曲 (以常代变)
Si f ( i )xi
3 积零为整
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
x
xn1 b
.
.
1. 曲边梯形的面积
f (i) y
oa
x x i i i 1 .
元素法
y=f (x)
取
i
i n
(i 1,2 , n)
,作积分和
iniii1nnn111fff(f(((i)iii)))xxxixiiiiniii1nnn111i2ii22i2xxxixiiiiniii1nnn11(1((n(inniin)i))2)2221n1n1n1n16161616(1(((1111n1n1n1n))())2(((2221n1n1n1n))))
极限存在, 且极限i值1 与区间[a, b]的分法和i的取法无关,
则称此极限为函数f(x)在区间[a, b]上的定积分, 记为
b
a
f
(x)dx
即
b
a
n
f (x)dx lim f ( x ) 在 [ a , b ] 上可积 .
3.定积分的几何意义:
曲边梯形面积
曲边梯形面积的负值
y
A1
a
A2
A3 A4
b
òa f (x)d x = A1 - A2 + A3 - A4 + A5
各部分面积的代数和
A5 bx
例1. 利用定义计算定积分
解 把区间[0, 1]分成n等份, 分点为和小区间长度为
xi xnii(ini(1i21 2 n 1n)1)xix1ni (1ni(1i21 2 n) n)
将其一般化,就得到定积分的概念.
二、定积分的定义
1. 定积分的定义
设函数f(x)在区间[a, b]上有界. 在区间[a, b]内插入n-1
个分点: ax0<x1<x2< <xn1<xnb;记xi=xi-xi1 (i1, , n),
max{x1, x2,,xn}; 在小区间[xi1, xi]上任取一点i
n
S
lim
0
i
1
v(
i
)t
i
1. 曲边梯形的面积
n
å S = lim l ®0
D xi f (xi )
i= 1
2.变速直线运动的路程
上述两个问题的共性: • 解决问题的方法步骤相同 :
“分割 , 近似 , 求和 , 取极限 ”
• 所求量极限结构式相同: 特殊乘积和式的极限 许多问题的解决都可以化为上述特定和式的问题,
(1)分割: T1=t0<t1<t2< *** <tn-1<tn=T2, tititi+1; (2)近似: 物体在时间段[ti1, ti]内所经过的路程近似为
Siv(i)ti ( ti1< i<ti );
(3)求和: 物体在时间段[T1, T2]内所经过的路程近似为
(4)取极限: 记max{t1, t2,, tn}, 物体所经过的路程为
a
a
二、定积分的定义
1.定积分的定义b a
f
n
(x)dxlim
0 i1
f
(i)xi
根据定积分的定义
曲边梯形的面积为
A
b
a
f
(x)dx
变速直线运动的路程为
S
T2v(t)dt
T1
2.函数的可积性
定理1:如果函数f(x)在区间[a, b]上连续, 则函数f(x) 在区间 [a, b]上可积.
定理2:如果函数f(x)在区间[a, b]上有界, 且只有有限 个间断点, 则函数f(x)在区间[a, b]上可积.
用直线 x = xi 将曲边梯形分成 n 个小曲边梯形;
2) 近似. 在第i 个窄曲边梯形上任取 i [xi1 , xi ]
作以[xi1 , xi ] 为底 , f (i )
y
为高的小矩形, 并以此小
梯形面积近似代替相应
窄曲边梯形面积
得
D Ai 籇 f (xi ) xi (D xi = xi - xi- 1 )
o a x1
xi xi- 1
i
3) 求和.
n
n
å å A = D Ai- 1 籇 f (xi ) xi
i= 1
i= 1
4) 取极限. 令
则曲边梯形面积
n
å A = lim l ®0
D Ai
i= 1
n
= limå f (xi )D xi l ® 0 i= 1
y o a x1 xi1 xi
i
1. 曲边梯形的面积
第五章 定积分
第一节 第二节 第三节 第四节
定积分的概念与性质 微积分基本公式 定积分的换元法和分部积分法 反常积分
主讲人:李源
第一节 定积分的概念与性质
一、定积分问题举例 二、定积分的定义 三、定积分的性质
一、定积分问题举例
在初等函数里面,我们只会计算规则图形的面积, 如长方形,圆形等。如何计算不规则图形的面积,是 我们需要解决的问题。
积分上限
[a , b] 称为积分区间
b
ò å f (x)dx = a
n
lim
l ®0
f (xi ) D xi
i= 1
积分下限 被 积 函 数
被积 积分 表变 达量
积 分 和
式
定积分仅与被积函数及积分区间有关 , 而与积分
变量用什么字母表示无关 , 即
b
b
b
ò ò òa f (x) dx = f (t) dt = f (u)du
曲边梯形
设函数y=f(x)在区间[a, b]
y
上非负、连续. 由直线x=a、x=b、
y=f(x)
Y=0及曲线y=f (x)所围成的图形 称为曲边梯形, 其中曲线弧称 为曲边.
x=a oa
x=b
bx
如何计算其面积?
解决步骤 :
1) 分割. 在区间 [a , b] 中任意插入 n –1 个分点 a = x0 < x1 < x2 < L < xn- 1 < xn = b
3 积零为整
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
x b
4 取极限
令分法无限变细
n
å S =
lim
l ®0
i= 1
f
(xi
).D.
xi
.
2.变速直线运动的路程
已知物体直线运动的速度v=v(t)是时间 t 的连续函数, 且v(t)>0, 计算物体在时间段[T1, T2]内所经过的路程S.
1 化整为零
2 以直代曲 (以常代变)
Si f ( i )xi
3 积零为整
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
x b
4 取极限
令分法无限变细
..
1. 曲边梯形的面积
f (i) y
S
oa
x x i i i 1 .
元素法
y=f (x)
1 化整为零
2 以直代曲 (以常代变)
Si f ( i )xi
f (i) y
o
a x1 x2
x i i xi1
元素法
y=f (x)
1 化整为零
2 以直代曲 (以常代变)
Si f ( i )xi
3 积零为整
n
S f ( i )xi
i 1
.
分法越细,越接近精确值
x
xn1 b
.
.
1. 曲边梯形的面积
f (i) y
oa
x x i i i 1 .
元素法
y=f (x)
取
i
i n
(i 1,2 , n)
,作积分和
iniii1nnn111fff(f(((i)iii)))xxxixiiiiniii1nnn111i2ii22i2xxxixiiiiniii1nnn11(1((n(inniin)i))2)2221n1n1n1n16161616(1(((1111n1n1n1n))())2(((2221n1n1n1n))))