113单项式的乘法(第2课时).docx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
英才学校学习过程案编制模式
编写时间:2016年月日预习时间 ________ 设计者 _____ 学期总第_学时学科_________ 预习内容11.3单项式的乘法(第2课时)教师课前抽査记录ABC
学习目标知识目标探究单项与多项式相乘的方法,体验单项式与多项式的乘法运算规律,总结运算法则。
能力目标能按步骤进行简单的单项式与多项式相乘的运算
情感目标
学习重点单项式与多项式的乘法运算规律,总结运算法则学习难点按步骤进行简单的单项式与多项式相乘的运算
自主预习认
知
前
提
⑴叙述去括号法则?
⑵单项式乘以单项式的法则是:
⑶计算:
①(-5x)(3x2)②(一3川—X)③(L X y}(L X y
1 3 丿 1 5
⑷乘法对加法的分配律。
(用字母表
示)
问
题
化
的
预
习
提
纲
及
示
例
应
用
预习课本p84-p85的内容,完成下列题目
1.课木84页,如14-10图的菜地总长是~米,宽是米
(填合并以后的结果)根据长
方形面积公式列式为:根据乘法对加法的分配律,将2a・(3ka+l)
=2a・+2a・再根据单项式相乘的法则计算出这块菜地的面积为。
2.类似的,我们可以计算2/・(3/_5小0.5米ka ka ka
0.5米
3.归纳总结
①从上面两式的计算,我们可以发现:单项式与多项式相乘,先将单项式
乘多项式的,再把所得的相。
阅读课本85页例题,想想每一步计算的依据是什么?然后合上课本,独立完成以下计
算。
1. 2ab (5ab2+3a2b)
2. x(x2—xy+y2)—y (x2+xy+y2)
检
査
人
签
字
组
内
评
价
A
B
C
合作问题一:尝试计算下列题目:
2a ・(3ka+l) m (a+b+c) a (2a—3)
a2(l—3a) 3x (x2—2x—1)
探究
归纳总结:
单项式乘多项式的法则:单项式与多项式相乘,就是用分别乘多项式中的每一项,再把所得的相加。
问题二:你知道单项式与多项式相乘时应注意哪些问题吗?试完成以下题冃
计算:1. 2ax • (3a2x+2a2x2) 2. (―3x2) (―2x:5+x2—1)
3. 4x(2#+3x—1)
4. —2xy(3%—2x—3)
总结:单项式与多项式相乘实质的利用分配律转化为单项式与单项式相乘,所以要记得:
1•去乘多项式每一项,不漏乘2.注意“符号” 3.把所得积相加是合并同类项
问题三:阅读课本85页例四,独立完成以下题目化简求值:x(X —y+z) + (x-y-z)-z (x~y+z),其中 x 二T, y二0, z=^ .
针
对
性
练
习
1 •下列运算正确的是( )
A. 2nfn(—m2+2n+l)=—加'n +4m2n2
B. — 2a (3a2y — 2ay) =—6a3y—4a2y
C. (ab)2(2ab2—c) =2a3b1—a2b2c
D. (4xy2—3xy) xyz =4x2y3—3x2y2
2.下列乘法的结杲为a2+5ab-6a的是( )
A. a (a+5-6b)
B. a (a+5ab~6)
C. -a (a+5b-6)
D. -a (-a-5b+6)
3.计算(- -xy) 2. (4xy)的结果为( )
A 3 3 3 9 3 3 n 9 3 3
A. - ~ x y
B. ~3x y
C. ~ x y
D. - ~ x y
4.化简 a (b-a) -b (a-b)等于( )
A. 2ab
B. b2 -a2
C. a2 -b2
D. -2ab
1.一个多项式除以(一2a+3b)得到的结果是一5abc,那么这个多项式
2.—个长2a米,宽a米,高(3a+7)米的长方休的休积是。
3.若 3x (2xy —7) +2x (1 —3xy) =38,则 x =
4.计算:3xv(x2y-xy)=
5.计算:(―4x2+6x—8) • ( —— x")=
2
6.当a=-1999时,代数式3/ - 2Q(5+1.5Q)的值为
规
律
总
结
学如图,一长方形地块用來建造住宅、广场、商厦,2
k ------ ------------ -
a-b
1 2a.x(ax~ 1) = ____
2. ____________________________________________ 若 3k (2k-5) +2k (l-3k) =52,则 k=
3. ____________________________________________________________ —个多项式除以(一s+3b)得到的结果是一3/那么这个多项式 ________________________________________________
以致用求这块地的血枳. -
一- 住宅用地
At
(3) x (x 2—xy+y 2)一y(x 2 + xy + y 2)
总结知识 总结方法
总结知识的应用类型及特例
选择题(共12分)
1 •下列运算正确的是()
A. —2x (3x 2y —2xy) =—6x 3y —4x 2y
B. 2x 2y (—x 2+2y+l) =—4x 3y 4
C. (3ab" —2ab) abc =3a"b {—2a 2b 2
D. (ab)2 (2ab J —c) =2a 3b : — a J b J
c 2. —个长方形的长、宽、高分别是3x-4、2x 、x ,它的体积等于()
A. 3x 3—4x 2
B. x 2
C. 6x 3—8x 2
D. 6x 2
—8x 3. 计算(一2y) (3y 2
+4y+l)正确的结果是() A. —6y 3
+8y 2
一1
B. 一6y 3—8y 2
一1
C. -6y 3-8y 2
-2y
D. —6y'+8『+2y 2 1
1. 欣欣服装店新进一品牌服装,已知每套进价a 元,每套b 元销售,“五.一”促销每套降价200元, 共
售出c 套,共盈利多少元?
2. 解方程:6y-2y(3y+2)+9y=-10
3. 先化简再求值:兀2(/一兀一 1)—兀(兀2一 3兀)其中兀二 2
规律应用问题
填空(共16分)
拓 展 延 伸
2 •先化简再求值「2讥珈+戸
自 主 总 结
4. (―4x ? + 6x —8) •( )=2X -3X 3+4X 2 其中 a = \,b = 2。