西固区一中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西固区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1.
若向量=(3,m
),=(2,﹣1
),
∥,则实数m 的值为( ) A
.﹣ B
. C .2
D .6
2. 已知实数y x ,满足不等式组⎪⎩

⎨⎧≤-≥+≤-5342y x y x x y ,若目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则
实数m 的取值范围是( )
A .1-<m
B .10<<m
C .1>m
D .1≥m
【命题意图】本题考查了线性规划知识,突出了对线性目标函数在给定可行域上最值的探讨,该题属于逆向问题,重点把握好作图的准确性及几何意义的转化,难度中等. 3. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
4. O 为坐标原点,F
为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )
A .1
B

C

D .2
5. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( ) A .10
B .9
C .8
D .7
6.
求值: =( )
A .tan 38° B
. C
. D
.﹣
7. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .
15 B .16 C .314 D .13
8. 设数集M={x|m ≤x ≤
m+},N={x|n
﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A

B

C

D

9.若f(x)=﹣x2+2ax与g(x)=在区间[1,2]上都是减函数,则a的取值范围是()
A.(﹣∞,1] B.[0,1]
C.(﹣2,﹣1)∪(﹣1,1] D.(﹣∞,﹣2)∪(﹣1,1]
10.设a∈R,且(a﹣i)•2i(i为虚数单位)为正实数,则a等于()
A.1 B.0 C.﹣1 D.0或﹣1
11.如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是()
A.i≥7?B.i>15?C.i≥15?D.i>31?
12.设a=sin145°,b=cos52°,c=tan47°,则a,b,c的大小关系是()
A.a<b<c B.c<b<a C.b<a<c D.a<c<b
二、填空题
13.抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为.
14.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.
15.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC 的面积为.
16.当时,4x<log a x,则a的取值范围.
17.已知(1+x+x2)(x)n(n∈N+)的展开式中没有常数项,且2≤n≤8,则n=.
18.命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.
三、解答题
19.(本小题满分10分)选修4—4:坐标系与参数方程
以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r (],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t a
a
ì=+ïí
=+ïî(t 为参数).
(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C 的参数方程;
(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.
20.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的
最小正整数n .
【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.
21.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:
转速x (转/秒)
16
14 12 8 每小时生产有缺陷的零件数y (件) 11
9
8
5
(1)画出散点图; (2)如果y 与x 有线性相关的关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围
内?
参考公式:线性回归方程系数公式开始
=

=
﹣x .
22.本小题满分10分选修44-:坐标系与参数方程选讲
在直角坐标系xoy
中,直线的参数方程为32x y ⎧=-⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C
的方程为ρθ=. Ⅰ求圆C 的圆心到直线的距离;
Ⅱ设圆C 与直线交于点A B 、,若点P
的坐标为(3,,求PA PB +. 23.
19.已知函数f (x )
=ln .
24.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有
(Ⅰ)<;
(Ⅱ)0<a n<1.
西固区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】A
【解析】解:因为向量=(3,m ),=(2,﹣1),∥,
所以﹣3=2m ,
解得m=﹣. 故选:A .
【点评】本题考查向量共线的充要条件的应用,基本知识的考查.
2. 【答案】C
【解析】画出可行域如图所示,)3,1(A ,要使目标函数mx y z -=取得最大值时有唯一的最优解)3,1(,则需直线l 过点A 时截距最大,即z 最大,此时1>l k 即可.
3. 【答案】A
【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .
4. 【答案】C
【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F (0,1), 又P 为C 上一点,|PF|=4, 可得y P =3,
代入抛物线方程得:|x
P |=2,
∴S △POF =|0F|•|x P |=

故选:C.
5.【答案】B
【解析】解:∵考试的成绩ξ服从正态分布N(105,102).
∴考试的成绩ξ关于ξ=105对称,
∵P(95≤ξ≤105)=0.32,
∴P(ξ≥115)=(1﹣0.64)=0.18,
∴该班数学成绩在115分以上的人数为0.18×50=9
故选:B.
【点评】本题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩ξ关于ξ=105对称,利用对称写出要用的一段分数的频数,题目得解.
6.【答案】C
【解析】解:=tan(49°+11°)=tan60°=,
故选:C.
【点评】本题主要考查两角和的正切公式的应用,属于基础题.
7.【答案】D
【解析】
考点:等差数列.
8.【答案】C
【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},
P={x|0≤x≤1},且M,N都是集合P的子集,
∴根据题意,M的长度为,N的长度为,
当集合M∩N的长度的最小值时,
M与N应分别在区间[0,1]的左右两端,
故M∩N的长度的最小值是=.
故选:C.
9.【答案】D
【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,
∴单调间区间为[a,+∞)
又∵f(x)在区间[1,2]上是减函数,
∴a≤1
∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,
∵g(x)=在区间[1,2]上是减函数,
∴﹣a>2,或﹣a<1,
即a<﹣2,或a>﹣1,
综上得a∈(﹣∞,﹣2)∪(﹣1,1],
故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.10.【答案】B
【解析】解:∵(a﹣i)•2i=2ai+2为正实数,
∴2a=0,
解得a=0.
故选:B.
【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.
11.【答案】C
【解析】解:模拟执行程序框图,可得
S=2,i=0
不满足条件,S=5,i=1
不满足条件,S=8,i=3
不满足条件,S=11,i=7
不满足条件,S=14,i=15
由题意,此时退出循环,输出S的值即为14,
结合选项可知判断框内应填的条件是:i≥15?
故选:C.
【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查.
12.【答案】A
【解析】解:∵a=sin145°=sin35°,b=cos52°=sin38°,c=tan47°>tan45°=1,
∴y=sinx在(0,90°)单调递增,
∴sin35°<sin38°<sin90°=1,
∴a<b<c
故选:A
【点评】本题考查了三角函数的诱导公式的运用,正弦函数的单调性,难度不大,属于基础题.
二、填空题
13.【答案】8.
【解析】解:∵抛物线y2=8x=2px,
∴p=4,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=x+=x+2=10,
∴x=8,
故答案为:8.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
14.【答案】
【解析】解:作的可行域如图:
易知可行域为一个三角形,
验证知在点A(1,2)时,
z1=2x+y+4取得最大值8,
∴z=log4(2x+y+4)最大是,
故答案为:.
【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
15.【答案】.
【解析】解:∵asinA=bsinB+(c﹣b)sinC,
∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,
∴由余弦定理可得b2=a2+c2﹣2accosB,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S△ABC=bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
16.【答案】.
【解析】解:当时,函数y=4x的图象如下图所示
若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)
∵y=log a x的图象与y=4x的图象交于(,2)点时,a=
故虚线所示的y=log a x的图象对应的底数a应满足<a<1
故答案为:(,1)
17.【答案】5.
【解析】二项式定理.
【专题】计算题.
【分析】要想使已知展开式中没有常数项,需(x)n(n∈N+)的展开式中无常数项、x﹣1项、x﹣2项,利
用(x)n(n∈N+)的通项公式讨论即可.
【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,
当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;
当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;
当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;
当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;
当n=7时,若r=2,(1+x+x 2)(x
)n
(n ∈N +)的展开式中有常数项,故n ≠7;
当n=8时,若r=2,(1+x+x 2)(x
)n
(n ∈N +
)的展开式中有常数项,故n ≠2;
综上所述,n=5时,满足题意.
故答案为:5.
【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.
18.【答案】﹣2
≤a ≤2
【解析】解:原命题的否定为“∀x ∈R ,2x 2
﹣3ax+9≥0”,且为真命题, 则开口向上的二次函数值要想大于等于0恒成立, 只需△=9a 2
﹣4×2×9≤0,解得:﹣2
≤a ≤2.
故答案为:﹣2≤a ≤2
【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.
三、解答题
19.【答案】
【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.
(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(22
2
≥=+y y x 相切时
21|22|2
=+-k
k
0142=+-∴k k ,32-=∴k ,32+=k (舍去)
设点)0,2(-B ,2
AB
k =
=-
故直线l 的斜率的取值范围为]22,3-.
20.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =. (1分)
当2n ≥时,2n n S n a +=,
① 11(1)2n n S n a --+-=,

①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.
即12n n a +=故21n n a =-(*n N ∈).
(5分)
21.【答案】
【解析】
【专题】应用题;概率与统计.
【分析】(1)利用所给的数据画出散点图;
(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a ,写出线性回归方程.
(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.
【解答】解:(1)画出散点图,如图所示:
(2)=12.5, =8.25,∴b=
≈0.7286,
a=﹣0.8575 ∴回归直线方程为:y=0.7286x ﹣0.8575;
(3)要使y ≤10,则0.728 6x ﹣0.8575≤10,x ≤14.901 9.故机器的转速应控制在14.9转/秒以下.
【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目. 22.【答案】
【解析】Ⅰ
∵:C ρθ=
∴2:sin C ρθ=
∴22:0C x y +-=,即圆C
的标准方程为22(5x y +=.
直线的普通方程为30x y +=. 所以,圆C
=

Ⅱ由22(53
x y y x ⎧+=⎪⎨=-+⎪⎩
,解得12x y =⎧⎪⎨=⎪⎩
或21x y =⎧⎪⎨=⎪⎩
所以 23.【答案】
【解析】解:(1)∵f (x )是奇函数,
∴设x >0
,则﹣x <0, ∴f (﹣x )=(﹣x )2﹣mx=﹣f (x )=﹣(﹣x 2
+2x )
从而m=2.
(2)由f (x )的图象知,若函数f (x )在区间[﹣1,a ﹣2]上单调递增,
则﹣1≤a ﹣2≤1
∴1≤a ≤3
||||PA PB +==
【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.24.【答案】
【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),
∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,
∴,
∴对一切n∈N*,<.
(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,
∴,
∴当n≥2时,
=
>3﹣[1+]
=3﹣[1+]
=3﹣(1+1﹣)
=,
∴a n<1,又,
∴对一切n∈N*,0<a n<1.
【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.。

相关文档
最新文档