高三数学数列多选题专项训练复习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列多选题
1.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
答案:ABC 【分析】
利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列满足,,依次取代入计算得, ,,,,因此继续下去会循环
解析:ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题.
2.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( )
A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >
答案:ABC 【分析】
因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项
解析:ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
3.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12
d =
B .12
d =-
C .918S =
D .936S =
答案:BD 【分析】
由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】
因为, 所以.
因为,,所以公差. 故选:BD
解析:BD 【分析】
由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】
因为1937538a a a a +=+=+=, 所以()199998
3622
a a S +⨯=
==. 因为35a =,73a =,所以公差731
732
a a d -==--. 故选:BD
4.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <
B .10a <
C .当5n =时n S 最小
D .0n S >时n 的最小值为8
答案:BD 【分析】
由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】
由于等差数列是递增数列,则,A 选项错误
解析:BD 【分析】
由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】
由于等差数列{}n a 是递增数列,则0d >,A 选项错误;
753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;
()()()22
171117493222224n n n d n n d n n d S na nd n d -⎡⎤
--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
,
当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.
n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.
故选:BD. 5.已知数列{}2n
n
a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6
D .a 1,a 2,a 3可能成等差数列
答案:ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】
因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=
解析:ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为
1
112a =+,1(1)2
n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得1
5
d =-. 故选ACD
6.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
答案:ACD 【分析】
由题可得,,,求出可判断A ;利用二次函数的性质可判断B ;求出可判断C ;令,解出即可判断D. 【详解】
设等差数列的公差为,则,解得, ,,且,
对于A ,,故A 正确; 对于B ,的对称
解析:ACD 【分析】
由题可得16a d =-,0d <,21322
n d d S n n =
-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d
S n n =->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,
10a >,0d ∴<,且()21113+
222
n n n d d S na d n n -==-, 对于A ,
81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =-的对称轴为13
2
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;
对于C ,4131648261822d d S d d d =
⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022
n d d
S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】
方法点睛:由于等差数列()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
7.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的
是( ) A .110S =
B .10n n S S -=(110n ≤≤)
C .当110S >时,5n S S ≥
D .当110S <时,5n S S ≥
答案:BC 【分析】
设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以,
即, 解得, ,故A 错误; ,故B 正确;
若,解得,,故C 正确;D 错误; 故选:BC
解析:BC 【分析】 设公差d 不为零,由38a a =,解得192
a d =-,然后逐项判断.
【详解】 设公差d 不为零, 因为
38a a =,
所以1127a d a d +=+, 即1127a d a d +=--, 解得192
a d =-,
11191111551155022S a d d d d ⎛⎫
=+=⨯-+=≠ ⎪⎝⎭
,故A 错误;
()()()()()()221101110910,10102222n n n n n n d d
na d n n n a n n S S d ----=+=-=-+=-,故B 正确;
若11191111551155022S a d d d d ⎛⎫
=+=⨯-+=> ⎪
⎝⎭
,解得0d >,()()2
2510525222n d d d n n S n S =
-=--≥,故C 正确;D 错误; 故选:BC 8.定义11222n n
n a a a H n
-++
+=
为数列{}n a 的“优值”.已知某数列{}n a 的“优
值”2n
n H =,前n 项和为n S ,则( )
A .数列{}n a 为等差数列
B .数列{}n a 为等比数列
C .
20202023
20202
S = D .2S ,4S ,6S 成等差数列
答案:AC 【分析】
由题意可知,即,则时,,可求解出,易知是等差数列,则A 正确,然后利用
等差数列的前n 项和公式求出,判断C ,D 的正误. 【详解】 解:由, 得, 所以时,, 得时,, 即时,, 当时,由
解析:AC 【分析】 由题意可知112222n n n
n a a a H n
-++
+==,即112222n n n a a a n -+++=⋅,则2
n ≥时,()()1
112
21212n n n n n a n n n ---=⋅--⋅=+⋅,可求解出1n a n =+,易知{}n a 是等差数
列,则A 正确,然后利用等差数列的前n 项和公式求出n S ,判断C ,D 的正误. 【详解】 解:由112222n n n
n a a a H n
-++
+==,
得112222n n n a a a n -++
+=⋅,①
所以2n ≥时,()211212212n n n a a a n ---+++=-⋅,②
得2n ≥时,()()1
112
21212n n n n n a n n n ---=⋅--⋅=+⋅,
即2n ≥时,1n a n =+,
当1n =时,由①知12a =,满足1n a n =+.
所以数列{}n a 是首项为2,公差为1的等差数列,故A 正确,B 错, 所以()
32
n n n S +=
,所以2020202320202S =,故C 正确.
25S =,414S =,627S =,故D 错,
故选:AC . 【点睛】
本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般. 9.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-
B .23n a n =+
C .2
23n S n n =-
D .2
4n S n n =+
答案:AC 【分析】
由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】
由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】
本题考查等差数列,考查运算求解能力.
解析:AC 【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232
n n n S n n --==-.
故选:AC. 【点睛】
本题考查等差数列,考查运算求解能力.
10.无穷数列{}n a 的前n 项和2
n S an bn c =++,其中a ,b ,c 为实数,则( )
A .{}n a 可能为等差数列
B .{}n a 可能为等比数列
C .{}n a 中一定存在连续三项构成等差数列
D .{}n a 中一定存在连续三项构成等比数列
答案:ABC 【分析】
由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则
所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.
解析:ABC 【分析】
由2
n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.
【详解】
当1n =时,11a S a b c ==++.
当2n ≥时,()()2
21112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .
所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c
时,{}n a 是等差数列, 0
a c
b ==⎧⎨
≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】
本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.。