专题47 高中数学同角三角函数的基本关系(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题47 同角三角函数的基本关系
1.平方关系
(1)公式:sin 2α+cos 2α=1.
(2)语言叙述:同一个角α的正弦、余弦的平方和等于1.
2.商数关系
(1)公式:sin αcos α=tan_α(α≠k π+π
2
,k ∈Z).
(2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切.
3.同角三角函数的基本关系式的变形形式
(1)平方关系变形:sin 2α=1-cos 2α,cos 2α=1-sin 2α. (2)商的变形:sin α=tan αcos α,cos α=sin α
tan α
.
题型一 直接应用同角三角函数关系求值
1.若cos α=3
5,且α为第四象限角,则tan α=________.
[解析]因为α为第四象限角,且cos α=3
5,
所以sin α=-1-cos 2α=-
1-⎝⎛⎭⎫352=-45,所以tan α=sin αcos α=-43
. 2.已知α是第四象限角,cos α=12
13,则sin α等于
[解析] ∵sin 2θ+cos 2θ=1,∴sin 2θ=1-cos 2θ=1-144169=25
169,
又∵α是第四象限角,∴sin α<0,即sin θ=-5
13.
3.已知α∈⎝⎛⎭⎫π,3π
2,tan α=2,则cos α=________. [解析]由已知得⎩⎪⎨⎪⎧
sin αcos α=2,①
sin 2α+cos 2α=1,②
由①得sin α=2cos α代入②得4cos 2α+cos 2α=1,
所以cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,所以cos α<0,所以cos α=-5
5. 4.已知α是第二象限角,tan α=-1
2
,则cos α=________.
[解析]因为sin αcos α=-1
2
,且sin 2α+cos 2α=1,又因为α是第二象限角,
所以cos α<0,所以cos α=-25
5
.
5.若α是第四象限角,tan α=-5
12,则sin α等于
[解析] 因为α是第四象限角,tan α=-512,所以sin αcos α=-5
12.
又sin 2α+cos 2α=1.所以sin α=-5
13
.
6.已知α是第二象限角,且cos α=-12
13,则tan α的值是
[解析]因为α为第二象限角,所以sin α=1-cos 2α=
1-⎝⎛⎭⎫-12132
=5
13
, 所以tan α=sin αcos α=513-1213
=-5
12
.
7.已知α是第二象限角,且tan α=-7
24,则cos α=________.
[解析]因为α是第二象限角,故sin α>0,cos α<0,又tan α=-7
24

所以sin αcos α=-724,又sin 2α+cos 2α=1,解得cos α=-2425.
8.已知sin α=-1
3,且α∈⎝⎛⎭⎫π,3π2,则tan α= [解析]由α∈⎝⎛⎭⎫π,3π2,得cos α<0,又sin α=-1
3,所以cos α=-1-⎝⎛⎭⎫-132
=-223
, 所以tan α=sin αcos α=2
4
.
9.已知cos α=-4
5
,求sin α和tan α.
[解析] sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=⎝⎛⎭⎫352,因为cos α=-4
5<0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3
4;
当α是第三象限角时,sin α=-35,tan α=sin αcos α=3
4.
10.已知cos α=-8
17
,求sin α,tan α的值.
[解析] ∵cos α=-8
17
<0,∴α是第二或第三象限的角.
如果α是第二象限角,那么sin α=1-cos 2α=
1-⎝⎛⎭⎫-8172=1517,tan α=sin αcos α=1517-817
=-15
8
. 如果α是第三象限角,同理可得sin α=-1-cos 2α=-1517,tan α=15
8.
11.已知sin α=12
13,并且α是第二象限角,求cos α和tan α.
[解析]cos 2α=1-sin 2α=1-⎝⎛⎭⎫12132=⎝⎛⎭⎫5132
,又α是第二象限角, 所以cos α<0,cos α=-513,tan α=sin αcos α=-125.
12.若cos α=2
3
,则tan αsin α=( )
[解析] 由cos α=23得|sin α|=53,所以tan αsin α=sin 2αcos α=59×32=5
6.
13.已知sin θ=12
13,且sin θ-cos θ>1,则tan θ等于________.
[解析]因为sin θ-cos θ>1,所以cos θ<0,所以cos θ=-
1-sin 2θ=-513,所以tan θ=sin θcos θ=-12
5
.
14.已知sin θ=m -3m +5,cos θ=4-2m
m +5
,则m 的值为________.
[解析]因为sin 2θ+cos 2θ=1,所以⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭

⎫4-2m m +52
=1.整理得m 2-8m =0,解得m =0或8.
15.已知sin α+3cos α=0,求sin α,cos α的值.
[解析]∵sin α+3cos α=0,∴sin α=-3cos α.又sin 2α+cos 2α=1,∴(-3cos α)2+cos 2α=1, 即10cos 2α=1,∴cos α=±
10
10
.又由sin α=-3cos α,可知sin α与cos α异号, ∴角α的终边在第二或第四象限. 当角α的终边在第二象限时,cos α=-1010,sin α=310
10; 当角α的终边在第四象限时,cos α=
1010,sin α=-310
10. 16.已知α是第三象限角,且sin α=-1
3,则3cos α+4tan α=
[解析]因为α是第三象限角,且sin α=-1
3,
所以cos α=-1-sin 2α=-
1-⎝⎛⎭⎫-132=-223,所以tan α=sin αcos α=122=24
, 所以3cos α+4tan α=-22+2=- 2.
17.若sin A =4
5,且A 是三角形的一个内角,则5sin A +815cos A -7=________.
[解析]∵sin A =4
5>0,∴A 为锐角或钝角.
当A 为锐角时,cos A =
1-sin 2A =3
5
,∴原式=6.
当A 为钝角时,cos A =-
1-sin 2A =-35,∴原式=5×45+815×⎝⎛⎭
⎫-35-7=-3
4
.
18.在△ABC 中,2sin A =3cos A ,则角A =
[解析]由题意知cos A >0,即A 为锐角.将2sin A =3cos A 两边平方得2sin 2A =3cos A , ∴2cos 2A +3cos A -2=0,解得cos A =12或cos A =-2(舍去).∴A =π
3.
19.已知sin x +cos x =3-1
2
,x ∈(0,π),则tan x = [解析]∵sin x +cos x =
3-12,且x ∈(0,π),∴1+2sin x cos x =1-32,∴2sin x cos x =-3
2
<0,∴x 为钝角,∴sin x -cos x =(sin x -cos x )2=1+32,结合已知解得sin x =32,cos x =-12,则tan x =sin x
cos x =- 3.
20.若1+cos α
sin α
=3,则cos α-2sin α等于
[解析] 若1+cos αsin α=3,则1+cos α=3sin α,又sin 2α+cos 2α=1,所以sin α=35,cos α=3sin α-1=4
5

所以cos α-2sin α=-2
5
.
21.已知cos ⎝⎛⎭⎫α+π4=13,0<α<π
2,则sin ⎝⎛⎭⎫α+π4=________. [解析]∵0<α<π2,∴π4<α+π4<3π
4
,∴sin ⎝⎛⎭⎫α+π4>0,∴sin ⎝⎛⎭⎫α+π4= 1-⎝⎛⎭⎫132=22
3.
题型二 灵活应用同角三角函数关系式求值(齐次式)
1.已知sin α+cos α
sin α-cos α
=2,计算下列各式的值.
①3sin α-cos α2sin α+3cos α;②sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α;③sin
2α-2sin αcos α+1;④34sin 2α+12cos 2α. [解析] 由sin α+cos α
sin α-cos α=2,化简,得sin α=3cos α,所以tan α=3.
①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=8
9
.
法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=8
9.
②原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32
=-2
23.
③原式=sin 2α-2sin αcos αsin 2α+cos 2α+1=tan 2α-2tan αtan 2α+1+1=32-2×332+1+1=13
10. ④原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1=34×9+1
29+1=29
40.
2.已知tan α
tan α-1=-1,求下列各式的值:
(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. [解析]因为tan αtan α-1=-1,所以tan α=1
2.
(1)原式=tan α-3tan α+1
=-5
3.
(2)原式=sin 2α+sin αcos α
sin 2α+cos 2α+2=tan 2α+tan α
tan 2α+1+2=14+1
214
+1+2=13
5.
3.已知tan α=-12,则2sin αcos α
sin 2α-cos 2α
的值是
[解析]因为tan α=-12,所以2sin αcos αsin 2α-cos 2α=2tan αtan 2α-1=2×⎝⎛⎭
⎫-12⎝⎛⎭⎫-122
-1=4
3.
4.若2sin α+cos α3sin α-2cos α
=1,则tan α的值为________.
[解析]2sin α+cos α
3sin α-2cos α=1化为2tan α+1
3tan α-2=1,所以2tan α+1=3tan α-2,所以tan α=3.
5.已知sin α-2cos α3sin α+5cos α
=-5,那么tan α=________.
[解析]易知cos α≠0,由sin α-2cos α3sin α+5cos α=-5,得tan α-23tan α+5=-5,解得tan α=-23
16.
6.已知sin α+2cos α5cos α-sin α=5
16
,则tan α=____________.
[解析]由sin α+2cos α5cos α-sin α=516,得tan α+25-tan α=516
,解之得tan α=-1
3.
7.已知sin α+cos αsin α-cos α=2,则3sin α-cos α
2sin α+3cos α
=________.
[解析]由sin α+cos αsin α-cos α=2,化简得sin α=3cos α,所以tan α=3.原式=3tan α-12tan α+3=8
9.
8.已知tan 2α1+2tan α=1
3,α∈⎝⎛⎭⎫π2,π,求sin α+2cos α5cos α-sin α
的值. [解析]∵tan 2α1+2tan α=13,∴3tan 2α-2tan α-1=0.即(3tan α+1)(tan α-1)=0,∴tan α=-1
3或tan α=1.
∵α∈⎝⎛⎭⎫π2,π,∴tan α<0,∴tan α=-1
3,∴sin α+2cos α5cos α-sin α=tan α+25-tan α=516. 9.若tan θ=-2,求sin θcos θ.
[解析]∵sin θcos θ=sin θcos θsin 2θ+cos 2θ=sin θcos θ
cos 2θ
sin 2θ+cos 2θcos 2θ=tan θtan 2θ+1,而tan θ=-2,∴原式=-2(-2)2+1
=-2
5.
10.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α=________. [解析]4sin 2α-3sin αcos α-5cos 2α=
4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5
tan 2α+1

4×4-3×2-54+1
=5
5=1. 11.已知sin α+2cos α=0,求2sin αcos α-cos 2α的值. [解析]由sin α+2cos α=0,得tan α=-2.
所以
2sin αcos α-cos 2α=
2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-1
4+1
=-1.
12.如果tan θ=2,那么1+sin θcos θ=
[解析]1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ+1
tan 2θ+1,又tan θ=2,
所以1+sin θcos θ=22+2+122+1=7
5.
13.若tan α+
1
tan α
=3,则sin αcos α=________. [解析]因为tan α+1tan α=3,所以sin αcos α+cos αsin α=3,即sin 2α+cos 2αsin αcos α=3,所以sin αcos α=1
3.
14.已知sin α+cos α=7
13,α∈(0,π),则tan α=________.
[解析]法一:(构建方程组)
因为sin α+cos α=713,①,所以sin 2α+cos 2α+2sin αcos α=49169,即2sin αcos α=-120
169
.
因为α∈(0,π),所以sin α>0,cos α<0.
所以sin α-cos α=(sin α-cos α)2=1-2sin αcos α=17
13.②
由①②解得sin α=1213,cos α=-513,所以tan α=sin αcos α=-12
5.
法二:(弦化切)
同法一求出sin αcos α=-60169,sin αcos αsin 2α+cos 2α=-60169,tan αtan 2α+1=-60
169,
整理得60tan 2α+169tan α+60=0,解得tan α=-512或tan α=-12
5.
由sin α+cos α=713>0知|sin α|>|cos α|,故tan α=-12
5.
15.已知sin α-cos α=-
52,则tan α+1
tan α
的值为 [解析]tan α+1tan α=sin αcos α+cos αsin α=1
sin αcos α
.
∵sin αcos α=1-(sin α-cos α)22=-18,∴tan α+1
tan α=-8.
16.已知cos α+2sin α=-5,则tan α=________.
[解析]由⎩⎨⎧
cos α+2sin α=-5,
sin 2α+cos 2
α=1,
得(5sin α+2)2=0, ∴sin α=-255,cos α=-5
5,∴tan α=2.
题型三 sin α±cos α与sin αcos α关系的应用
1.已知sin α+cos α=1
5,α∈(0,π),求:
(1)sin αcos α;(2)sin α-cos α;(3)sin 3α+cos 3α.
[解析] (1)由sin α+cos α=15,平方得2sin αcos α=-2425,∴sin αcos α=-12
25.
(2)∵(sin α-cos α)2=1-2sin αcos α=1+2425=4925,∴sin α-cos α=±7
5.
又由(1)知sin αcos α<0,∴α∈⎝⎛⎭⎫π2,π,∴sin α>0,cos α<0,∴sin α-cos α=7
5
. (3)∵sin 3α+cos 3α=(sin α+cos α)(sin 2α-sin αcos α+cos 2α)=(sin α+cos α)(1-sin αcos α), 由(1)知sin αcos α=-1225,且sin α+cos α=15,∴sin 3α+cos 3α=1
5×⎝
⎛⎭⎫1+1225=15×3725=37125.
2.已知0<θ<π,且sin θ-cos θ=1
5,求sin θ+cos θ,tan θ的值.
[解析]∵sin θ-cos θ=15,∴(sin θ-cos θ)2=125,解得sin θcos θ=12
25.
∵0<θ<π,且sin θcos θ=12
25>0,∴sin θ>0,cos θ>0.
∴sin θ+cos θ=
(sin θ+cos θ)2=1+2sin θcos θ= 1+2425=75
. 由⎩⎨⎧
sin θ-cos θ=1
5,sin θ+cos θ=7
5
,得⎩⎨⎧
sin θ=4
5,
cos θ=3
5
,∴tan θ=sin θcos θ=4
3
.
3.已知sin α·cos α=18,且π4<α<π
2
,则cos α-sin α的值为
[解析] (cos α-sin α)2=1-2sin αcos α=34,因为π4<α<π2,所以sin α>cos α,所以cos α-sin α=-3
2.
4.若△ABC 的内角A 满足sin A cos A =1
3
,则sin A +cos A 的值为
[解析]因为A 为△ABC 的内角,且sin A cos A =1
3>0,所以A 为锐角,所以sin A +cos A >0.
又1+2sin A cos A =1+23,即(sin A +cos A )2=53,所以sin A +cos A =15
3.
5.已知sin θ+cos θ=4
3⎝
⎛⎭⎫0<θ≤π4,则sin θ-cos θ= [解析]由(sin θ+cos θ)2=1+2sin θcos θ=169,得2sin θcos θ=79,则(sin θ-cos θ)2=1-2sin θcos θ=2
9,
由0<θ≤π4,知sin θ-cos θ≤0,所以sin θ-cos θ=-2
3.
6.已知在△ABC 中,sin A +cos A =1
5
.
(1)判断△ABC 是锐角三角形还是钝角三角形;(2)求tan A 的值.
[解析] (1)由sin A +cos A =15两边平方,得1+2sin A ·cos A =125,所以sin A ·cos A =-12
25
<0.
因为0<A <π,⎩⎨⎧
sin A >0
cos A <0,
所以A 为钝角,所以△ABC 是钝角三角形.
(2)因为sin A ·cos A =-1225,所以(sin A -cos A )2=1-2sin A ·cos A =1+2425=49
25.
又因为sin A >0,cos A <0,所以sin A -cos A >0,所以sin A -cos A =7
5.
又因为sin A +cos A =15,所以sin A =45,cos A =-35,所以tan A =-4
3
.
7.已知sin θ+cos θ=-
10
5
,求: (1)1sin θ+1cos θ的值;(2)tan θ的值. [解析] (1)因为sin θ+cos θ=-
105,所以1+2sin θcos θ=25,即sin θcos θ=-310
, 所以1sin θ+1
cos θ=cos θ+sin θsin θcos θ=2103
.
(2)由(1),得sin 2θ+cos 2θsin θcos θ=-103,所以tan 2θ+1tan θ=-103,即3tan 2θ+10tan θ+3=0,
所以tan θ=-3或tan θ=-1
3.
8.已知sin θ+cos θ=1
5
,且0<θ<π.
(1)求tan θ的值;(2)求sin 2 θ
cos 2 θ-2sin θcos θ
的值.
[解析] (1)因为sin θ+cos θ=15,①,所以(sin θ+cos θ)2=1+2sin θcos θ=1
25,
所以2sin θcos θ=-24
25<0,因为θ∈(0,π),所以sin θ>0,cos θ<0,
所以sin θ-cos θ>0,所以(sin θ-cos θ)2=1-2sin θcos θ=49
25,
所以sin θ-cos θ=7
5
,②
由①②得,sin θ=45,cos θ=-35,所以tan θ=sin θcos θ=-4
3.
(2)法一:由(1)知sin θ=45,cos θ=-3
5,
所以sin 2θ
cos 2 θ-2sin θcos θ

⎝⎛⎭
⎫452
⎝⎛⎭⎫-352-2×45×⎝⎛⎭
⎫-35=1633.
法二:由(1)得tan θ=-43,所以原式=tan 2 θ1-2tan θ=⎝⎛⎭⎫-432
1-2×⎝⎛⎭
⎫-43=16
33.
9.设α是第三象限角,问是否存在实数m ,使得sin α,cos α是关于x 的方程8x 2+6mx +2m +1=0的两个根?若存在,求出实数m ;若不存在,请说明理由.
[解析]假设存在实数m 满足条件,由题设得,Δ=36m 2-32(2m +1)≥0,① 因为sin α<0,cos α<0,所以sin α+cos α=-3
4
m <0②,
sin αcos α=2m +1
8
>0③.
又sin 2α+cos 2α=1,所以(sin α+cos α)2-2sin αcos α=1. 把②③代入上式得⎝⎛⎭⎫-34m 2
-2×2m +18=1, 即9m 2-8m -20=0,解得m 1=2,m 2=-10
9
.
因为m 1=2不满足条件①,舍去;因为m 2=-10
9不满足条件③,舍去.
故满足题意的实数m 不存在.
题型四 应用同角三角函数关系式化简
1.化简
1-sin 23π
5
的结果是( )
A .cos 3π5
B .sin 3π5
C .-cos 3π5
D .-sin 3π
5
[解析]因为3π5是第二象限角,所以cos 3π
5
<0,所以
1-sin 23π
5

cos 23π5=⎪⎪⎪⎪cos 3π5=-cos 3π5
. 2.如果α是第二象限的角,下列各式中成立的是( )
A .tan α=-sin α
cos α B .cos α=-1-sin 2 α
C .sin α=-1-cos 2 α
D .tan α=cos α
sin α
[解析]由商数关系可知A ,D 均不正确.当α为第二象限角时,cos α<0,s i n α>0,故B 正确. 3.化简2sin 2α-1
1-2cos 2α
=________.
[解析]原式=2sin 2α-11-2(1-sin 2α)=2sin 2α-1
2sin 2α-1=1.
4.化简⎝⎛⎭⎫1sin α+1tan α(1-cos α)的结果是( )
A .sin α
B .cos α
C .1+sin α
D .1+cos α
[解析]⎝⎛⎭⎫1sin α+1tan α(1-cos α)=⎝⎛⎭⎫1sin α+cos αsin α(1-cos α)=1-cos 2
αsin α=sin 2
αsin α=sin α.[答案] A
5.化简sin 760°
1-cos 2 40°

[解析]
sin 760°1-cos 2 40°
=sin (2×360°+40°)sin 2 40°=sin 40°|sin 40°|=sin 40°sin 40°=1. 6.化简:1-2sin130°cos130°
sin130°+1-sin 2130°

[解析]原式=
sin 2130°-2sin130°cos130°+cos 2130°sin130°+cos 2130°=|sin130°-cos130°|sin130°+|cos130°|=sin130°-cos130°
sin130°-cos130°
=1.
7.若角α的终边在直线x +y =0上,则sin α
1-cos 2α+1-sin 2αcos α=________.
[解析]因为sin α
1-cos 2α
+1-sin 2αcos α=sin α|sin α|+|cos α|cos α,
又角α的终边落在x +y =0上,故角α的终边在第二、四象限,
当α在第二象限时,原式=sin αsin α+-cos αcos α=0,当α在第四象限时,原式=sin α-sin α+cos α
cos α=0.
综上所述,原式=0.
8.化简sin 2α-sin 4α,其中α是第二象限角.
[解析] 因为α是第二象限角,所以sin α>0,cos α<0,所以sin αcos α<0, 所以sin 2α-sin 4α=sin 2α(1-sin 2α)=sin 2αcos 2α=-sin αcos α. 9.化简sin 2α+cos 4α+sin 2αcos 2α的结果是 [解析] 原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1. 10.化简:sin 2α+sin 2β-sin 2αsin 2β+cos 2αcos 2β.
[解析]原式=sin 2α(1-sin 2β)+sin 2β+cos 2αcos 2β=sin 2αcos 2β+cos 2αcos 2β+sin 2β
=(sin 2α+cos 2α)cos 2β+sin 2β=1. 11.已知sin α=
5
5
,则sin 4α-cos 4α的值为 [解析]sin 4α-cos 4α=(sin 2α+cos 2α)(sin 2α-cos 2α)=sin 2α-cos 2α=2sin 2α-1=-3
5.
12.若sin α+sin 2α=1,则cos 2α+cos 4α等于
[解析]∵cos 2α+cos 4α=cos 2α(1+cos 2α)=(1-sin 2α)(1-sin 2α+1)
∵sin α+sin 2α=1,∴1-sin 2α=sin α ∴原式=sin α·(sin α+1)=sin 2α+sin α=1. 13.化简1-2sin1cos1的结果为( )
A .sin1-cos1
B .cos1-sin1
C .sin1+cos1
D .-sin1-cos1
[解析]易知sin1>cos1,所以
1-2sin1cos1=
(sin1-cos1)2=sin1-cos1.故选A.
14.⎝
⎛⎭⎫tan x +1tan x cos 2x 等于( ) A .tan x
B .sin x
C .cos x
D.1tan x
[解析]原式=⎝⎛⎭⎫sin x cos x +cos x sin x ·cos 2x =sin 2
x +cos 2
x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x . 15.化简:sin 2
αtan α+cos 2α
tan α
+2sin αcos α.
[解析]原式=sin 2α·
sin αcos α+cos 2
α·cos αsin α+2sin αcos α=sin 4α+cos 4α+2sin 2αcos 2αcos αsin α
=(sin 2α+cos 2α)2sin αcos α=1
sin αcos α
.
16.已知θ是第三象限角,且sin 4θ+cos 4θ=5
9,则sin θcos θ的值为
[解析]由sin 4θ+cos 4θ=59,得(sin 2θ+cos 2θ)2-2sin 2θcos 2θ=59,所以sin 2θcos 2θ=2
9.
因为θ是第三象限角,所以sin θ<0,cos θ<0,所以sin θcos θ=23
. 17.已知f (tan x )=
1
cos 2x
,则f (-3)=________. [解析]因为f (tan x )=1
cos 2x =sin 2x +cos 2x cos 2x =tan 2x +1,所以f (x )=x 2+1,所以f (-3)=4.
18.若π2<α<π,化简cos α
1-cos 2α
+sin α1-sin 2α1-cos 2α.
[解析]因为π
2<α<π,所以cos α=-1-sin 2α,sin α=1-cos 2α,
所以原式=cos αsin α+sin α(-cos α)1-cos 2α=cos αsin α-sin αcos αsin 2α=cos αsin α-cos α
sin α=0.
19.化简1
1+tan 220°
的结果是________.
[解析]
1
1+tan 220°

1
1+sin 220°cos 2
20°
=1
cos 220°+sin 220°
cos 220°

1
1cos 220°=|cos 20°|=cos 20°.] 20.化简:1
cos 2α1+tan 2α

1+sin α
1-sin α
(α为第二象限角).
[解析]∵α是第二象限角,∴cos α<0. 则原式=1
cos 2α·1+sin
2αcos 2
α-(1+sin α)2
1-sin 2α=1cos 2α
·
cos 2α
cos 2α+sin 2α-1+sin α|cos α|

-cos αcos 2α+1+sin αcos α=-1+1+sin αcos α=sin α
cos α
=tan α.
21.化简sin α
1-cos α·
tan α-sin α
tan α+sin α
.(其中α是第三象限角)
[解析]原式=sin α
1-cos α
·
sin α
cos α-sin αsin αcos α
+sin α=sin α
1-cos α
·
1-cos α
1+cos α
=sin α1-cos α
·(1-cos α)21-cos 2α=sin α1-cos α·1-cos α
|sin α|
.
又因为α是第三象限角,所以sin α<0.所以原式=sin α1-cos α·1-cos α
-sin α=-1.
22.1-2sin 10°cos 10°sin 10°-1-sin 210°
的值为( )
A .1
B .-1
C .sin 10°
D .cos 10°
[解析] [1-2sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°
-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°

cos 10°-sin 10°
sin 10°-cos 10°
=-1.
23.化简tan α
1
sin 2α
-1,其中α是第二象限角. [解析]因为α是第二象限角,所以sin α>0,cos α<0. 故tan α
1
sin 2α
-1=tan α1-sin 2α
sin 2α
=tan αcos 2αsin 2α=sin αcos α⎪⎪⎪⎪cos αsin α=sin αcos α·-cos α
sin α
=-1. 24.化简下列各式:
(1)sin α1+sin α-sin α
1-sin α
;(2)⎝⎛⎭⎫1sin α+1tan α(1-cos α). [解析] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α
=-2sin 2α
cos 2α=-2tan 2α
.
(2)原式=⎝⎛⎭⎫1sin α+cos αsin α(1-cos α)=1+cos αsin α(1-cos α)=sin 2
α
sin α
=sin α. 25.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ
+cos θ
1-tan θ=________.
[解析]sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θ
cos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,
又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=1
2,
则(sin θ+cos θ)2=1+2sin θcos θ=2,所以sin θ+cos θ=±2.
26.化简1-cos 4α-sin 4α
1-cos 6α-sin 6α
.
[解析]解法一:原式=(cos 2α+sin 2α)2-cos 4α-sin 4α(cos 2α+sin 2α)3-cos 6α-sin 6α=2cos 2αsin 2α3cos 2αsin 2α(cos 2α+sin 2α)=2
3.
解法二:原式=1-(cos 4α+sin 4α)1-(cos 6α+sin 6α)=1-[(cos 2α+sin 2α)2-2sin 2αcos 2α]
1-(cos 2α+sin 2α)(cos 4α-cos 2αsin 2α+sin 4α)
=1-1+2cos 2αsin 2α
1-[(cos 2α+sin 2α)2-3cos 2αsin 2α]=2cos 2αsin 2α3cos 2αsin 2α=2
3
. 解法三:原式=(1-cos 2α)(1+cos 2α)-sin 4α
(1-cos 2α)(1+cos 2α+cos 4α)-sin 6α=sin 2α(1+cos 2α-sin 2α)
sin 2α(1+cos 2α+cos 4α-sin 4α)
=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=2
3. 27.化简:(1)sin α
1-cos α
·
tan α-sin α
tan α+sin α
;(2)
(1-tan θ)cos 2θ+⎝⎛⎭⎫1+1tan θsin 2
θ.
[解析] (1)原式=sin α
1-cos α
·
sin α
cos α-sin αsin αcos α
+sin α=sin α
1-cos α·
1-cos α1+cos α=sin α1-cos α
·
(1-cos α)21-cos 2α

sin α1-cos α·1-cos α|sin α|
=sin α
|sin α|,当sin α>0时,原式=1;当sin α<0时,原式=-1.
(2)原式=
cos θ-sin θcos θ·cos 2θ+sin θ+cos θsin θ
·sin 2θ

cos 2θ-sin θcos θ+sin 2θ+sin θcos θ=
cos 2θ+sin 2θ=1.
28.已知α∈⎝⎛⎭⎫π4,3π4,且1+2sin αcos α+1-2sin αcos αcos α=4,则sin α-cos α2sin α+cos α
=________. [解析]∵1+2sin αcos α=(sin α+cos α)2,1-2sin αcos α=(sin α-cos α)2,∴1+2sin αcos α=|sin α+cos α|, 1-2sin αcos α=|sin α-cos α|.又∵α∈⎝⎛⎭⎫
π4,3π4,∴sin α+cos α>0,sin α-cos α>0. 由题意,得(sin α+cos α)+(sin α-cos α)cos α=4,∴sin α=2cos α.

sin α-cos α2sin α+cos α=2cos α-cos α4cos α+cos α=1
5
.
29.化简: 1-2sin α2cos α
2

1+2sin α2cos α
2⎝
⎛⎭⎫0<α<π2. [解析]原式=
⎝⎛⎭⎫cos α2-sin α22+
⎝⎛⎭⎫cos α2
+sin α22=⎪⎪⎪⎪cos α2-sin α2+⎪⎪⎪⎪cos α2+sin α2.
因为α∈⎝⎛⎭⎫0,π2,所以α2∈⎝⎛⎭⎫0,π4.所以cos α2-sin α2>0,sin α2+cos α
2>0, 所以上式=cos α2-sin α2+cos α2+sin α2=2cos α
2
.
30.若1+sin θ·sin 2θ+cos θ·cos 2θ=0成立,则角θ不可能是 ( )
A .第二、三、四象限角
B .第一、二、三象限角
C .第一、二、四象限角
D .第一、三、四象限角
[解析] 由于1+sin θ·sin 2θ+cos θcos 2θ=0,且1-sin 2θ-cos 2θ=0,所以sin θ≤0,cos θ≤0,故选C. 31.若β∈[0,2π),且
1-cos 2β+1-sin 2β=sin β-cos β,则β的取值范围是( )
A.⎣⎡⎭⎫0,π2
B.⎣⎡⎦⎤π2,π
C.⎣⎡⎦⎤π,3π2
D.⎣⎡⎭⎫3π
2,2π [解析]∵
1-cos 2β+1-sin 2β=|sin β|+|cos β|=sin β-cos β,∴sin β≥0且cos β≤0.又∵β∈[0,2π),
∴β∈⎣⎡⎦⎤π2,π.故选B.
32.已知sin α=13,求1-2sin αcos α(2cos 2α-1)(1-tan α)
的值.
[解析]1-2sin αcos α(2cos 2α-1)(1-tan α)=(sin α-cos α)2
(2cos 2α-sin 2α-cos 2α)(1-tan α)
=(cos α-sin α)2(cos α+sin α)(cos α-sin α)(1-tan α)=cos α-sin α
(cos α+sin α)(1-tan α) =
1-tan α(1+tan α)(1-tan α)=1
1+tan α

当角α是第一象限角时,cos α=223,tan α=sin αcos α=24,所以原式=1
1+
2
4=8-227;
当角α是第二象限角时,cos α=-223,tan α=sin αcos α=-24,所以原式=1
1-
2
4=8+227.
33.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π),求:
(1)sin θ1-1tan θ+cos θ1-tan θ的值;(2)m 的值;(3)方程的两根及θ的值.
[解析] (1)由题意,得⎩⎪⎨
⎪⎧
sin θ+cos θ=3+1
2,
sin θcos θ=m
2

所以sin θ1-1tan θ
+cos θ1-tan θ=sin 2θsin θ-cos θ+cos 2θ
cos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ=3+12.
(2)由(1),知sin θ+cos θ=3+12,将上式两边平方,得1+2sin θcos θ=2+3
2,
所以sin θcos θ=
34,由(1),知m 2=34,所以m =3
2
. (3)由(2)可知原方程为2x 2-(3+1)x +
32=0,解得x 1=32,x 2=1
2
. 所以⎩⎨⎧
sin θ=32,
cos θ=1
2
或⎩⎨⎧
sin θ=1
2,
cos θ=3
2
.又θ∈(0,2π),所以θ=π3或π
6
.
题型五 应用同角三角函数关系式证明
1.下列等式中恒成立的个数为( )
①sin 21=1-cos 21;②sin 2α+cos 2α=sin 23+cos 23;③sin α=tan αcos α⎝⎛⎭⎫α≠π
2+k π,k ∈Z . A .1 B .2 C .3
D .0
[解析]①②③都正确,故选C. 2.求证:sin α1-cos α·cos αtan α
1+cos α
=1.
[解析]sin α1-cos α·cos αtan α1+cos α=sin α1-cos α·cos α·
sin αcos α1+cos α=sin α1-cos α·sin α1+cos α=sin 2α1-cos 2
α=sin 2α
sin 2α=1. 3.求证:1+tan 2α=1
cos 2α.
[解析]1+tan 2α=1+
sin 2αcos 2α=cos 2α+sin 2αcos 2α=1
cos 2α
. 4.求证:sin α(1+tan α)+cos α·⎝⎛⎭⎫1+1tan α=1sin α+1cos α
. [解析]左边=sin α⎝⎛⎭⎫1+sin αcos α+cos α⎝⎛⎭⎫1+cos αsin α =sin α+sin 2
αcos α+cos α+cos 2
αsin α
=sin 2α+cos 2αsin α+sin 2α+cos 2αcos α=1sin α+1
cos α=右边.即原等式成立.
5.求证:
tan αsin αtan α-sin α=tan α+sin α
tan αsin α
.
[解析]法一:(切化弦)
左边=sin 2αsin α-sin αcos α=sin α
1-cos α,
右边=sin α+sin αcos αsin 2α=1+cos αsin α
.
因为sin 2α=1-cos 2α=(1+cos α)(1-cos α),
所以sin α
1-cos α=1+cos αsin α,所以左边=右边.所以原等式成立.
法二:(由右至左)
因为右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α=tan 2α(1-cos 2α)
(tan α-sin α)tan αsin α
=tan 2αsin 2α(tan α-sin α)tan αsin α=tan αsin α
tan α-sin α=左边,所以原等式成立. 6.求证:2sin x cos x -1cos 2x -sin 2x =tan x -1
tan x +1
.
[解析]证法一:∵左边=2sin x cos x -(sin 2x +cos 2x )cos 2x -sin 2x =-(sin 2x -2sin x cos x +cos 2x )cos 2x -sin 2x =(sin x -cos x )2
sin 2x -cos 2x

(sin x -cos x )2
(sin x -cos x )(sin x +cos x )=sin x -cos x sin x +cos x =tan x -1tan x +1
=右边.∴原式成立.
证法二:∵右边=sin x
cos x
-1sin x cos x
+1=sin x -cos x sin x +cos x ;
左边=1-2sin x cos x sin 2x -cos 2x =(sin x -cos x )2sin 2x -cos 2x =(sin x -cos x )2(sin x -cos x )·(sin x +cos x )=sin x -cos x sin x +cos x .
∴左边=右边,原式成立.
7.求证:(1)sin α-cos α+1sin α+cos α-1=1+sin α
cos α;(2)2(sin 6 θ+cos 6 θ)-3(sin 4 θ+cos 4 θ)+1=0.
[解析] (1)左边=(sin α-cos α+1)(sin α+cos α+1)(sin α+cos α-1)(sin α+cos α+1)=(sin α+1)2-cos 2 α
(sin α+cos α)2-1
=(sin 2 α+2sin α+1)-(1-sin 2 α)sin 2 α+cos 2 α+2sin αcos α-1=2sin 2 α+2sin α1+2sin αcos α-1=2sin α(sin α+1)2sin αcos α=1+sin α cos α=右边,
∴原等式成立.
(2)左边=2[(s i n 2 θ)3+(cos 2θ)3]-3(sin 4 θ+cos 4 θ)+1
=2(sin 2 θ+cos 2 θ)(sin 4 θ-sin 2 θcos 2 θ+cos 4 θ)-3(sin 4 θ+cos 4 θ)+1
=(2sin 4 θ-2sin 2 θcos 2 θ+2cos 4 θ)-(3sin 4 θ+3cos 4 θ)+1=-(sin 4 θ+2sin 2 θcos 2 θ+cos 4 θ)+1 =-(sin 2 θ+cos 2 θ)2+1=-1+1=0=右边, ∴原等式成立. 8.若3π
2
<α<2π,求证:
1-cos α
1+cos α

1+cos α1-cos α
=-2
sin α.
[解析]∵3π
2
<α<2π,∴sin α<0.
左边=(1-cos α)2
(1+cos α)(1-cos α)+
(1+cos α)2
(1-cos α)(1+cos α)

(1-cos α)2
sin 2α+
(1+cos α)2sin 2α=|1-cos α||sin α|+|1+cos α||sin α|=-1-cos αsin α-1+cos α
sin α
=-2
sin α=右边.∴原等式成立.
9.求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan (720°+2x )
1+tan (360°+2x )
.
[解析] 法一:右边=1-tan 2x
1+tan 2x
=1-
sin 2x
cos 2x 1+
sin 2x cos 2x
=cos 2x -sin 2x cos 2x +sin 2x
=(cos 2x -sin 2x )2(cos 2x +sin 2x )(cos 2x -sin 2x )=cos 22x +sin 22x -2cos 2x sin 2x
cos 22x -sin 22x =
1-2sin 2x cos 2x
cos 22x -sin 22x
=左边.所以原等式成立.
法二:左边=sin 22x +cos 22x -2sin 2x cos 2x cos 22x -sin 22x =(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x
cos 2x +sin 2x .
右边=1-tan 2x
1+tan 2x
=1-
sin 2x cos 2x 1+
sin 2x cos 2x =cos 2x -sin 2x cos 2x +sin 2x .所以原等式成立.
10.求证:1+2sin αcos αsin 2α-cos 2α=1+tan α
tan α-1
.
[解析]左边=sin 2α+cos 2α+2sin αcos αsin 2α-cos 2α=(sin α+cos α)2
(sin α-cos α)(sin α+cos α)

sin α+cos αsin α-cos α=1+tan αtan α-1
=右边.所以原式成立.
11.已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1. [解析]因为tan 2α=2tan 2β+1,所以tan 2α+1=2tan 2β+2,
所以sin 2αcos 2α+1=2⎝⎛⎭⎫sin 2βcos 2β+1,所以1cos 2α=2cos 2β
,所以1-sin 2β=2(1-sin 2α),即sin 2β=2sin 2α-1.。

相关文档
最新文档