A common 93-kb duplicated DNA sequence at 1q21.2 in acute lymphoblastic leukemia and Burkitt lymphom
第五章 DNA序列多态性
自动序列分析仪
自动序列分析仪
荧光标记方法
Dye-Primer: 用荧光染料预先标记在测序反应引物的5′端,4种 荧光标记形成4种标记引物 在4个管中进行测序反应,特定荧光染料与相应的 ddNTP是对应关系 由同一种ddNTP终止的所有延伸链5′端都带有同一 种荧光染料。 Dye-Terminators: 用荧光染料标记ddNTP 4种荧光标记分别与4 种ddNTP底物连接 在1个管中进行测序反应, 反应产生的4组被不同ddNTP终止的延伸链分别标记 有4种不同荧光
mt DNA序列多态性在个人识别中的最大价值在于检测灵敏 度高,具有STR分析无法比拟的优势。 拷贝数多,当基因组DNA不能完成STR分型时, mt DNA序 列分析可能获得成功 尤其在毛发、指甲、骨骼等非常规检材的鉴定中有实用价值
(2)鉴定意义不在于认定,而在于排除同一性
① 母系遗传: 同一母系后代, mt DNA序列相同; 可将遗传情况追溯到一代以上,适用于失踪人员; 对于母子、母女等母系亲缘关系鉴定有参考价值。
测序反应
标准的测序反应设臵4个反应管。 每个反应管对应一种碱基,除加入待测 单链DNA模板、引物、标记dNTP、聚合酶 外以及缓冲液外,还加入一种ddNTP,合 成相应碱基为末端的系列片段。 四个管分别产生A、G、C、T四种不同 碱基为末端的长度不等的片段。
一次测序:经历变性→退火→延伸一个 循环的测序反应过程
模板与引物
模板:单链DNA 或碱变性的DNA
制备方法:构建重组体DNA
引物:通用引物
以靶DNA片段两侧翼的载体已知序列作为测 序反应的引物。 由于克隆载体的序列是已知的,可引导任何靶 DNA片段的测序反应,故被称为通用引物
模板与引物
基因测序及分析PPT教案
第234页/共32页
鸟枪法测序的缺点
随着所测基因组总量增大,所需测序的片 段大量增加,造成重复测定,也易丢失某 些序列,且数据处理分析工作量大。
高等真核生物(如人类)基因组中有大量 重复序列,导致判断失误。
第245页/共32页
引物步移策略 将待测DNA片断克隆在质粒载体上,利用引物步移延伸,从DNA
片断的一端开始逐步进行序列测定,直至另一端为止。 克服了鸟枪法的盲目性,并省去亚克隆制备步骤,也减轻了数据
分析工作量。 但由于测定下一段序列前要预先知道上游序列的碱基顺序,才能
合成适当的引物进行测序。 定向缺失克隆策略、染色体步查法等。
第256页/共32页
另外一种方法是对所有相互重叠的亚克隆进行测序, 然后直接通过计算机程序根据其重叠部分进行“拼 装”。
第189页/共32页
完整基因组的测序过程一般包括三个步骤: (1)建立克隆的物理图谱:如酵母人工染色体YAC(Yeast Artificial Chromosome)克隆、细菌人工染色体BAC (Bacterial Artificial Chromosome)克隆等; (2)利用鸟枪法(Shotgun Strategy)测定每个克隆的序列; (3)序列拼装和注释:当得到一段DNA序列之后,可以利用序 列分析工具,进行序列的拼接;继而通过与数据库序列的比较, 得到与该序列相关的信息,如基因、调控元件、重复区域等, 进而对序列的生物学特性进行注释。
DNA序列片段组装(sequence assembly),又称序列拼接)的任务就是根据这些序列片 段,重建目标DNA序列。如果能够得到DNA一条链的序列,那么根据互补原则,另一 条链的序列也就得到了。
第178页/共32页
DNA测序不能从染色体进行,首先必须克隆化,构 建基因组的物理图谱。
旁系同源基因 英语
旁系同源基因英语Paralogous Genes: An Insight into Their Evolution and Function.Paralogous genes, also known as duplicate genes or duplicated genes, are genes that have arisen from the duplication of an ancestral gene within the genome of an organism. These genes are typically found on different chromosomes or in different genomic regions within the same species. The duplication process can occur via various mechanisms, including whole-genome duplication, segmental duplication, or tandem duplication. The resulting paralogous genes may retain similar or identical functions, acquire novel functions, or become pseudogenes due to mutational inactivation.The concept of paralogous genes was introduced by Walter Gilbert in 1978 to describe the genetic relationship between genes that arise from duplication events within a species. Since then, they have been extensively studied invarious organisms, providing insights into the mechanisms of gene duplication, the evolution of gene families, and the functional diversity within genomes.Evolutionary Origin of Paralogous Genes.Gene duplication is a common phenomenon in the evolution of genomes. It can occur in response to various evolutionary pressures, including adaptive radiation, genetic drift, and mutational events. The duplicated gene may retain the original function of the ancestral gene or evolve a new function, depending on the selective pressures acting on the gene and the genomic context.Adaptive radiation occurs when a species diverges into multiple lineages, each adapting to different environments. In such cases, gene duplication can provide the genetic raw material for the evolution of novel traits, allowing the species to occupy multiple niches. For example, the duplication of a gene encoding a transcription factor may lead to the evolution of two genes with distinct expression patterns and functions, allowing the species to respond todifferent environmental cues.Genetic drift, on the other hand, occurs when random sampling of genes during reproduction leads to changes in gene frequencies within a population. This process can result in the fixation of gene duplications, even if they do not confer a direct advantage to the organism. Such duplications may persist in the genome as pseudogenes or may evolve new functions over time.Mutational events, such as chromosomal rearrangements or gene conversion, can also lead to the duplication of genes. These events can result in the duplication of entire chromosome segments or individual genes, leading to the formation of paralogous genes.Functional Divergence of Paralogous Genes.Once duplicated, paralogous genes can diverge in function due to mutations in their coding sequences, regulatory regions, or both. These mutations can result in changes in protein structure or expression patterns,leading to the evolution of novel functions.For example, the duplication of a gene encoding an enzyme may lead to the evolution of two genes with distinct substrate specificities or catalytic activities. Similarly, the duplication of a gene encoding a transcription factor may result in the evolution of two genes with distinct DNA binding sites or regulatory networks.In some cases, one of the duplicated genes may retain the original function while the other evolves a new function. This process is known as subfunctionalization, where the duplicate genes divide the ancestral gene's functions between them. Alternatively, both genes may evolve new functions, a process known as neofunctionalization.Biological Importance of Paralogous Genes.Paralogous genes play crucial roles in various biological processes, including metabolism, development, and responses to environmental stresses. By providinggenetic redundancy, they can buffer the effects ofmutations and maintain the stability of biological systems. Additionally, they can contribute to the evolution of novel traits and adaptations, allowing species to respond to changing environments.For instance, in humans, paralogous genes are involvedin a wide range of biological processes, including immune response, signal transduction, and transcription regulation. Mutations in these genes can lead to various diseases and disorders, such as cancer, neurodegenerative diseases, and genetic disorders.Conclusion.Paralogous genes are an important component of genomes, providing genetic diversity and evolutionary plasticity. By understanding the mechanisms of gene duplication and the functional divergence of paralogous genes, we can gain insights into the evolution of genomes and the adaptive strategies employed by organisms. Future studies in this field will continue to reveal the complex relationshipsbetween paralogous genes and their roles in maintaining the stability and diversity of life on Earth.。
Gene概述
The Steps: 1. A portion of the double helix is unwound by a helicase. 2. A molecule of a DNA polymerase binds to one strand of the DNA and begins moving along it in the 3' to 5' direction, using it as a template for assembling a leading strand of nucleotides and reforming a double helix. In eukaryotes, this molecule is called DNA polymerase delta (δ).
3. Because DNA synthesis can only occur 5' to 3', a molecule of a second type of DNA polymerase (epsilon, ε, in eukaryotes) binds to the other template strand as the double helix opens. This molecule must synthesize discontinuous segments of polynucleotides (Okazaki fragments). Another enzyme, DNA ligase I then stitches these together into the lagging strand.
• There are an estimated 19,000-20,000 human protein-coding genes.
hudw Genome and gene
Prions underlie the transmission of TSEs in the animal kingdom, between humans, and from animals to humans. Once prions have entered a host organism, they spread from the site of invasion to the brain, their ultimate target organ.
The C-value (C值) is the total amount of DNA in the genome (per haploid set of chromosomes).
Gene:a DNA strech which can produce a product of protein or RNA.
There are more genes in higher organisms; But the increase is not linear correlation between gene number and C-value.
1. Genome of virus
the non-cellular or non-independency life
Genes in phages are continuous; but introns are common in viruses of eukaryotes
Phage (噬菌体)
Phage T7
基因组节段重复和串联重复
基因组节段重复和串联重复英文回答:Genomic Segmental Duplications and Tandem Duplications.Genomic segmental duplications (SDs) and tandem duplications are two types of structural variants that involve the duplication of DNA segments. They are both common features of the human genome, and they playimportant roles in genome evolution and function.Segmental Duplications.Segmental duplications are large (>1 kb) duplicationsof DNA that are dispersed throughout the genome. They are typically several kilobases to several megabases in size, and they can be either tandemly arranged or inverted. Segmental duplications are often highly homologous,with >95% sequence identity between the duplicated segments.Segmental duplications are thought to arise from unequal crossing-over events during meiosis. These events can occur when two homologous chromosomes misalign during synapsis, leading to the exchange of genetic material between the chromosomes. If the exchanged segments are large, they can result in the formation of segmental duplications.Segmental duplications are a significant source of genetic variation in the human genome. They can contain genes, regulatory elements, and other functional elements. This can lead to changes in gene expression, gene regulation, and other genomic functions. Segmental duplications have also been implicated in a number of human diseases, including cancer, autism, and schizophrenia.Tandem Duplications.Tandem duplications are duplications of DNA segments that are located adjacent to each other on the same chromosome. They are typically small (1-100 bp) in size, and they can be either direct (in the same orientation) orinverted (in the opposite orientation). Tandem duplications are often highly homologous, with >95% sequence identity between the duplicated segments.Tandem duplications are thought to arise from a variety of mechanisms, including slipped-strand mispairing during DNA replication, unequal crossing-over events, and gene amplification. Slipped-strand mispairing occurs when the DNA template strand is misaligned with the newly synthesized strand during DNA replication. This can lead to the duplication of a short segment of DNA. Unequalcrossing-over events can also lead to the formation of tandem duplications if the misaligned chromosomes exchange genetic material in a non-reciprocal manner. Gene amplification is a process by which a gene is duplicated multiple times in a tandem array. This can occur through a variety of mechanisms, including unequal crossing-over and retrotransposition.Tandem duplications are a common feature of the human genome. They can be found in both coding and non-coding regions of the genome. Tandem duplications can have avariety of effects on gene expression and function. For example, tandem duplications in coding regions can lead to changes in protein structure and function. Tandem duplications in non-coding regions can affect generegulation by altering the binding sites for transcription factors and other regulatory proteins. Tandem duplications have also been implicated in a number of human diseases, including cancer, neurodegenerative diseases, and developmental disorders.中文回答:基因组片段重复和串联重复。
DNA测序原理及数据分析
测序成功的图谱
测序失败的图谱
引物因素
引物二聚体
模板上没有引物结合位点
钉子峰
质粒污染
非特异性PCR产物污染
荧光物质污染
测序产物纯化不当
主要内容
原理: DNA测序原理
全自动DNA测序仪
应用: DNA测序用途及策略
DNA测序流程及影响因素 分析: 数据转换 序列拼接软件
Chromas软件的应用
对DNA纯度的要求较高
PCR产物一定要经过纯化后再测序 琼脂糖凝胶电泳查看有无杂带-割胶回收 测序反应体系中,尽量减小模板DNA体积以减 少杂质
引物的选用
靶DNA片段克隆于载体中
采用能与位于靶 DNA侧翼的载体序列相退火的通用 引物 PCR产物直接测序 需要选用与靶DNA序列互补的引物 引物设计原则与普通PCR引物设计原则相同 引物影响因素:引物纯度、错配、引物二聚体、 引物二级结构等
dNTP、ddNTP结构
缺少一个羟基 dNTP ddNTP
测序示意图
同位素标记
四种终止物必须在4个PCR管中进行反应
四管反应,四道电泳
时间长 序列短 污染大 操作难
四色荧光标记在引物上
电泳
四色荧光标记在终止物上
四种混合物可以在一个PCR管中进行反应
只需一道电泳检测
测序反应与PCR的差异
长片段测序策略
随机法(或鸟枪测序法shotgun)
对靶DNA随机片段的亚克隆进行测序,利用计算机 拼接排序。
定向法
利用测序反应中取得的核苷酸序列设计新的寡核 苷酸片段充当后续反应的引物,从而循序渐进地获得 靶DNA片段的序列。
鸟枪法测序
基因组DNA
重组的类型、机制与转座(self)
二.同源重组的分子机制
交叉学说与断裂重接模型 Holliday模型
(1)交叉学说与断裂重接模型
1909年 janssens 提出交叉型假说:每 次交叉表明父母本的一条染色单体接触、 断裂和重接,形成一个新的组合,其他 两条染色单体仍保持完整状态;
1937年Darlington提出重组的断裂和重 接模型:减数分裂中同源染色体相互分 离就像将绳子的两股分开一样会产生扭 曲,为消除张力,两姐妹染色体单体在 对应位点发生断链,然后非姐妹染色体 单体的“断头”相互重接,产生重组。
链孢霉的生活史
分生孢子(n)
菌丝 (n)
子实体 交配型A
核融合 合子核(2n) 减数分裂I
交配型B
减数分裂II
萌发(n)
有丝分裂
子囊孢子(n)
脉孢霉减数分裂
非姐妹染色单
+
体未发生交换
+
+
+
+
+
+
+
+
+
-
-
-
-
-
MI
M II
-
-
+
+
+
+
-
-
+
-
-
-
+
2、3非姐妹染色
-
单体发生交换
+
+
-
-
+
n
+
•经修补后连接形成重组和非重组的异源DNA链
Holliday模型 对基因转变机制的解释
Holliday模型中无论哪种解离方式,都 会产生两个异源的DNA双链
DNA测序常见问题解析
Q:为什么我在测序报告上找不到我的引物序列?A:这里分以下几种情况:1. PCR引物作为测序引物进行测序时,所测序列是从引物3'末端后第一个碱基开始的,而且刚刚开始的碱基由于在毛细管电泳中不能很好地分离而导致准确性下降,所以找不到您的引物序列。
对于较短的PCR产物(<600 bp),可以用另一端的引物进行测序,从另一端测序可以一直测到序列的末端,就可以在序列的末端得到您的引物的反向互补序列。
对于较长的序列,一个测序反应测不到头,因此就只能将您的PCR产物片段克隆到适当的载体中,用载体上的通用引物进行测序。
由于载体上的通用引物与您的插入序列之间还有一段距离,因此就可以得到您的完整的引物序列。
由于在测序的起始端总会有一些碱基无法准确读出,因此,您如果想得到您的PCR产物的完整序列,最好克隆后进行测序。
2. 有时质粒做模板进行测序时,由于某些原因,质粒上没有插入外源片段,为空载体,所测的序列完全为载体序列,此时也找不到引物序列。
3. 找不到克隆片段的扩增引物。
发生这种情况原因有2个:(1)您在构建质粒时采用的工具酶的酶切位点距离您的测序引物太近,由于荧光染料的干扰在序列开始的部分会不十分准确。
比如pBluescript ⅡKS这个质粒如果采用Sac I做工具酶,采用T7引物测序:那么从T7引物末端到Sac I的酶切位点只有6个bp,这样酶切位点后的扩增引物序列在测序报告上很可能不完整。
解决的办法是采用M13 Forward引物来测序,这样可以保证Sac I的位点和之后的引物序列都可以完整的出现在报告中。
(2)您的插入片段的插入方向是反的,这时您不妨找一下您引物的反向互补序列。
或者您插入的片段可能不是您的目的片段,而是由于非特异性扩增出来的片段,还有可能您送过来的样品被污染。
Q:测序发现引物有突变或缺失是什么原因?A:测序发现引物区有突变,主要考虑三个方面的原因:测序,PCR/克隆过程,引物本身。
DNA 序列拼接软件
DNAStar→Seqman (subprogram of DNAStar)----------------------------------Sequencher 5.0 Demo序列拼接软件,还具有ORF分析、蛋白翻译、酶切位点作图、杂合子识别等分析功能。
-------------------------------------百度注册信息User’s name: 序列拼接Password: xulie123456---------------------------------用ContigExpress做序列拼接ContigExpress软件可用于做序列拼接,主要使用方法如下:解压缩下载的压缩文件contig.zip文件,保证文件CExpress.exeContigExpress软件可用于做序列拼接,主要使用方法如下:解压缩下载的压缩文件contig.zip文件,保证文件CExpress.exe,Gexudat.def 在同一个目录下,打开Cexpress.exe应用程序,进入ContigExpress操作界面。
点击菜单上的“Project”选择“Add Fragments”,一般我们发给您的是SCF 文件,如果您有其它格式的文件,也可以选择。
选择您存放SCF文件(即我们Email给您的测序结果的彩图文件)的目录,选择文件并打开,从而添加进ContigExpress软件。
在此以A、B两个序列为例,如果有多个序列的也可以同时添加进入。
选中要拼接的序列,再选菜单中的“Assemble”下的“Assemble Selected Fragments”命令,或用工具栏上的按钮。
若两个结果能够拼接起来的,会得到一个Assemble1下的contig1的结果。
双击contig1,打开拼接后的结果。
此时可能会因为两条序列的测序结果误差,会有不同的地方,在拼接图片框中的绿色竖杠就表示了这些不同的地方。
接着可点击绿色竖杠找到有误差的地方,进行修改。
大豆与野生大豆部分同源基因间基因置换分析
大豆与野生大豆部分同源基因间基因置换分析作者:郭赫王希胤来源:《种子科技》2021年第16期摘要:以大豆和野生大豆为研究对象,利用系统发育分析比较推断其最近一次加倍事件所产生的同源基因间发生基因置换的规模。
结果表明,大豆中有37对同源基因间发生了基因置换,野生大豆中有33对同源基因发生了基因置换。
通过对基因置换与基因在染色体上的位置关系研究发现,靠近染色体两端的基因更容易发生基因置换。
关键词:大豆;野生大豆;基因置换文章编号: 1005-2690(2021)16-0002-03 中国图书分类号: S565.1 文献标志码: B大豆(Glycine max)是重要的经济作物和油料作物。
大豆经历过豆科共有的四倍体事件(Legume-common tetraploid,LCT)后又经历过一次大豆独有的四倍体事件(Soybean-specific tetraploid,SST)[1],是同源四倍体。
目前,大豆与野生大豆(Glycine soja)的全基因組测序工作已经完成[2-3]。
对大豆与野生大豆于最近一次全基因组加倍事件产生的同源基因间进行比较研究,有利于理解其基因组的进化。
全基因组加倍(whole genome duplication,WGD)即多倍化是基因复制的主要方式之一,植物的进化过程中多倍化是反复发生的,多倍化产生的大量重复基因为新功能的进化提供了原材料[4]。
全基因组加倍后发生的染色体重组、基因丢失等现象对基因组结构及功能都造成很大影响[5]。
遗传重组(genetic recomnnation)作为生物进化的主要推动力之一,对DNA序列损伤的修复和同源序列间信息的传递有着重要意义[6]。
很多物种多倍化后产生的同源序列之间的同源重组与经典的同源片段间重组不同,称为非正常遗传重组[7]。
单向的一个基因替换其同源基因的过程称为基因置换(gene conversion)[8-9]。
1 材料和方法1.1 物种基因组数据豆科植物大豆和野生大豆的全基因序列由公共数据库NCBI(https:///)下载获得,包括其全基因组DNA(cds)序列、蛋白质序列(pep)以及其基因注释文件(gff3)。
生物信息学-06多序列比对和进化树分析
第六章 多序列比对和分子系统
发育分析
第一节 序列间比对
Definitions
Pairwise alignment
The process of lining up two sequences to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology.
Pairwise sequence alignment programs
Multiple sequence alignment programs
How to get multiple sequences? Sequence BLAST Program
Two kinds of multiple sequence alignment resources
[1] Databases of multiple sequence alignments Text-based searches of CDD, Pfam (profile HMMs), PROSITE Database searches with a query sequence with BLAST, CDD, PFAM [2] Multiple sequence alignmentW, CLUSTAL X
Homology (同源性)
Similarity attributed to descent from a common ancestor.
【精品】转录组RNAseq术语解释
【关键字】精品RNA-Seq名词解释1.index测序的标签,用于测定混合样本,通过每个样本添加的不同标签进行数据区分,鉴别测序样品。
2.碱基质量值(Quality Score或Q-score)是碱基识别(Base Calling)出错的概率的整数映射。
碱基质量值越高表明碱基识别越可靠,碱基测错的可能性越小。
3.Q30碱基质量值为Q30代表碱基的精确度在99.9%。
4.FPKM(Fragments Per Kilobase of transcript per Million fragments mapped)每1百万个map上的reads中map到外显子的每1K个碱基上的fragment个数。
计算公式为公式中,cDNA Fragments 表示比对到某一转录本上的片段数目,即双端Reads数目;Mapped Reads(Millions)表示Mapped Reads总数,以10为单位;Transcript Length(kb):转录本长度,以kb个碱基为单位。
5.FC(Fold Change)即差异表达倍数。
6.FDR(False Discovery Rate)即错误发现率,定义为在多重假设检验过程中,错误拒绝(拒绝真的原(零)假设)的个数占所有被拒绝的原假设个数的比例的期望值。
通过控制FDR来决定P值的阈值。
7.P值(P-value)即概率,反映某一事件发生的可能性大小。
统计学根据显著性检验方法所得到的P 值,一般以P<0.05为显著,P<0.01为非常显著,其含义是样本间的差异由抽样误差所致的概率小于0.05或0.01。
8.可变剪接(Alternative splicing)有些基因的一个mRNA前体通过不同的剪接方式(选择不同的剪接位点)产生不同的mRNA剪接异构体,这一过程称为可变剪接(或选择性剪接,alternative splicing)。
可变剪接是调节基因表达和产生蛋白质组多样性的重要机制,是导致真核生物基因和蛋白质数量较大差异的重要原因。
三核苷酸短链重复序列扩展合成特性及其机理研究
谨以此论文献给一直给予我悉心指导的梁兴国教授及关心支持我的家人、朋友!----------王阳三核苷酸短链重复序列扩展合成特性及其机理研究摘要简单重复序列在各种生物基因组中广泛存在,同分子进化、遗传多样性、分子标记和某些遗传性疾病等密切相关。
其中以对三核苷酸重复序列的研究居多,但大多只是作为一种较为异常的现象或是针对一些遗传性疾病而进行的独立研究,比较零散,且对于机理的探讨也较为肤浅。
本研究以全部64种18碱基的三核苷酸单链重复序列以及它们两两配对形成的32种双链重复序列作为研究对象,对它们在聚合酶作用下的恒温扩展合成进行了系统研究。
探讨了反应温度、序列本身、DNA聚合酶种类和浓度等一系列因素对扩展效率和产物长度的影响,发现三核苷酸具有普遍的恒温扩展特性,且单链和双链扩展情况截然不同,在此基础上还初步探讨了外源序列对重复序列扩展的抑制作用。
除单一碱基组成的短链外,其他所有单链重复序列在合适的温度都能扩展。
总体而言GC含量较多的短链大部分扩展效率较高,短链的最适扩展温度与GC 组成呈一定的正相关关系。
短链扩展速度极快,反应1-4 h即有长达数十碱基对以上的长链产物出现。
在低至5 U/mL的Vent(exo-)DNA聚合酶及1 nM的低浓度短链条件下,扩展能力依然较强,说明短链重复序列具有极易扩展的特性。
用具有特定识别位点的限制性内切酶对扩展产物进行酶切,发现产物能被完全切开,说明产物中含有大量的特定重复序列。
产物经测序表明确由大量的三核苷酸自身重复和互补重复组成。
在此基础上提出了可能的扩展机理。
对于双链的恒温扩展研究发现,在70o C恒温条件下,Vent DNA聚合酶能促使双链发生扩展反应,绝大多数产物单一性良好。
该反应能在较宽的温度范围内发生,例如即使在37o C的常温下耐热性聚合酶仍能催化(AAA)6/(TTT)6发生扩展反应,且在一定范围内产物分子量大小随反应时间线性增加,线性良好。
序列组成对短链的扩展也具有一定影响,GC含量为1/3的序列具有较高的生成速率,基本上能在4.0 h的扩展反应后得到2.0 kb以上的产物,扩展速率达到8.0 bp/min 以上。
河北省保定市曲阳县职业中学2020-2021学年高三生物测试题含解析
河北省保定市曲阳县职业中学2020-2021学年高三生物测试题含解析一、选择题(本题共40小题,每小题1.5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列图甲是动物细胞融合过程,图乙是将一定量的淀粉酶和足量的淀粉混合后,麦芽糖积累量随温度变化的情况。
对图中有关的生物学意义描述正确的是()A.甲中A、B细胞只能取自动物胚胎或幼龄动物的器官组织B.乙中T2到T3的曲线表明酶的活性已达到最大C.丙中a、b、c可依次表示某一细胞在有丝分裂后期的染色体、染色单体和DNA数D.丁中,部分细菌、蓝藻可以完成①过程,④过程需氧②过程不需氧参考答案:D2.某人血液中甲状腺激素浓度过高,引起了线粒体原有功能的改变,即虽然进行有机物的氧化及电子传递但无ATP的形成。
根据这一事实,可以预料此人:A.食量小,耗氧量低,肥胖,皮肤温度比正常人高B.食量大,耗氧量高,消瘦,皮肤温度比正常人低C.食量大,耗氧量高,肥胖,皮肤温度比正常人高D.食量大,耗氧量高,消瘦,皮肤温度比正常人高参考答案:D3. 下列叙述错误的是()A. 糖原在滑面内质网上合成B. 溶酶体能分解衰老、损伤的细胞器C. 高尔基体具有膜结构, 在细胞中主要是增大膜面积D.核糖体的化学成分是RNA和蛋白质参考答案:C4. 如图是患甲病(等位基因用A、a表示)和乙病(等位基因用B、b表示)的遗传系谱图,3号和8号的家庭中无乙病史。
下列叙述与该家系遗传特性不相符合的是()A.如果只考虑甲、乙两种病的遗传,4号个体体细胞中可含有4个致病基因B.如果只考虑甲病的遗传,12号是杂合体的概率为1/2C.正常情况下5号个体的儿子可能患乙病,但不能肯定是否患甲病D.如果11号与无病史的男子结婚生育,无需进行产前诊断参考答案:B5. 下列过程中,涉及肽键数量变化的是 ( )A.洋葱根尖细胞染色体的复制B.用纤维素酶处理植物细胞C.小肠上皮细胞吸收氨基酸D.蛋清中加入NaCl使蛋白质析出参考答案:A6. 下列关于生物大分子的叙述不正确的是()A. 糖原、脂肪、蛋白质和脱氧核糖都是细胞内的生物大分子B. 在小麦细胞中由A、G、T、C四种碱基参与构成的核苷酸最多有7种C. 细胞中氨基酸种类和数量相同的蛋白质不一定是同一种蛋白质D. M个氨基酸N条肽链构成的蛋白质分子完全水解共需(M-N)个水分子参考答案:A脂肪、脱氧核糖不是细胞内的生物大分子,A错误;小麦细胞中,即有DNA,也有RNA,由A、G、C组成的核苷酸有3种核糖核苷酸和3种脱氧核糖核苷酸,由T构成的核苷酸只有1种(胸腺嘧啶)脱氧核苷酸,所以由A、G、T、C四种碱基参与构成的核苷酸最多有3+3+1=7种,B正确;细胞中氨基酸种类和数量相同的蛋白质,其氨基酸的排列顺序或蛋白质的空间结构可能不同,因此不一定是同一种蛋白质,C正确;一个由N条肽链组成的蛋白质分子共有M个氨基酸,该蛋白质分子完全水解共需水分子数=氨基酸脱下的水分子数=肽键数目=氨基酸数-肽链数=(M-N)个水分子,D正确。
四大因素,从源头解析Duplication
四大因素,从源头解析Duplication展开全文导语:测序技术面世至今发生了诸多的技术革新,经历了sanger测序为代表的第一代测序、高通量为代表的第二代测序和单分子实时测序为代表的第三代测序。
迄今为止,高通量测序(next generation sequencing NGS)技术日趋成熟,正式进入临床疾病诊疗阶段,与我们生活息息相关。
Dup背景解读高通量测序检验流程可分为“实验室操作”(又称为“湿实验”)和“生物信息学分析”(又称“干实验”)两部分。
对应的实验操作部分,可点击高通量建库了解。
生物信息学主要是测序完成之后的数据分析和解读,包括数据的拆分、比对和汇总,其中数据的有效性,也就是报告中常见的duplication rate 这一名词,是生信分析的一个重要指标,它让我们对测序得出的数据进行一个大致的了解。
所谓Dup,即重复序列Duplicate reads(涉及相关概念可点击此处),这些重复序列在总测序序列中占比简称为Dup rate。
由于这些重复序列不能带来额外信息,相反会影响变异检测结果准确性,因此下游生信分析中这些重复序列是需要去除的去掉,这也就意味着Dup rate越高,数据利用率越低,测序成本浪费的也就越多。
因此在NGS 生信分析中首要了解的就是dup rate的占比。
常见测序对应Dup可能值测序类型Dup rate 值全外显子测序(WES)10%左右全基因组测序(WGS)10%左右全基因组DNA甲基化测序(WGBS)> 10%转录组测序(RNA-seq)30%~40%左右多重PCR测序和捕获Panel测序与测序的区域以及测序量有关影响Duplication Rate的因素高通量测序技术的不断革新,生物信息学的分析也不断进步与发展,就dup来源,根据其定义与现实的案列分析,客观来讲主要有以下几个方面:1.样本本身所导致的dup值2.建库过程中产生的dup值(片段化,接头连接,PCR扩增)3. Cluster生成对dup的影响(主要指上机之后)4. 光学分辨引起的dup通常来讲,我们认为的dup都是些无效数据,且基本上都是从建库过程中产生的,但实际案列告诉我们,有些时候dup也是“好”的有用数据,上机过程导致的dup值可能要要比我们建库过程中产生的dup值要大的多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Short communicationA common 93-kb duplicated DNA sequence at 1q21.2in acutelymphoblastic leukemia and Burkitt lymphomaRoberta La Starza a ,Barbara Crescenzi a ,Valentina Pierini a ,Silvia Romoli a ,Paolo Gorello a ,Lucia Brandimarte a ,Caterina Matteucci a ,Maria Grazia Kropp b ,Gianluca Barba a ,Massimo Fabrizio Martelli a ,Cristina Mecucci a ,*aDepartment of Hematology,University of Perugia,IBiT Foundation,Fondazione IRCCS Biotecnologie nel Trapianto,via Brunamonti 51,06122Perugia,ItalybDepartment of Hematology,‘‘A.Pugliese’’Hospital,Catanzaro,ItalyReceived 16October 2006;received in revised form 17January 2007;accepted 22January 2007AbstractIn three patients with acute lymphoblastic leukemia (ALL)and in another with Burkitt lymphoma (BL),conventional cytogenetics and fluorescence in situ hybridization (FISH),applied singly or in combination,showed 1q duplication in two cases of ALL with hyperdiploid karyotypes,1q dupli-cation resulting from an unbalanced translocation in a third case of ALL,and inv dup(1)(q)in a pa-tient with BL.Centromeric or telomeric breakpoints and extension of the 1q duplicons varied in each case.FISH defined a minimal,common duplicated region of 93kb at band 1q21.2correspond-ing to clone RP11-212K13.In this region three putative oncogenes or tumor suppressor genes havebeen mapped:SF3B4(splicing factor 3b,subunit 4),OTUD7B (OTU domain containing 7B),and MTMR11(myotubularin related protein 11).For the first time,a minimal common 1q21.2dupli-cated sequence has been identified in lymphoid malignancies in a region where putative oncogenes or suppressor genes have been mapped.This finding elucidates the genomic background of ALL and BL with 1q duplication and provides the basis for molecular studies investigating which genes are involved in leukemogenesis or disease progression in these cases.Ó2007Elsevier Inc.All rights reserved.1.IntroductionChromosome 1long arm duplications,or dup(1q),and trisomy 1q are recurrent changes in chronic myeloprolifer-ative disorders,multiple myeloma (MM),acute lympho-blastic leukemia (ALL),and Burkitt lymphoma/leukemia (BL).In chronic myeloproliferative disorders,both a 1q23~q32duplication and an unbalanced 1q translocation with various chromosomes,producing a gain of the entire 1q arm,have been observed [1].In up to 40%of patients with MM,1q12~q32duplications,whole-arm transloca-tions,or jumping translocations are associated with com-plex karyotypes,aggressive disease,and poor prognosis [2].In BL,dup(1q)is the most frequent secondary changeassociated with t(8;14)(q24;q32);it appears to be linked to disease progression rather than pathogenesis [3,4].Whether dup(1q)and trisomy 1q in lymphoid and myeloid malig-nancies underlie the same molecular lesions remains to be established.We characterized dup(1q)in lymphoid malignancies and identified a common 1q21.2duplicated region in three cases of ALL and one case of BL.Our findings provide the basis for designing molecular studies to investigate any putative oncogenes or tumor suppressor genes that could underlie 1q duplication in ALL and BL.2.Materials and methods 2.1.PatientsWe studied three ALL (patients 1e 3)and one BL (pa-tient 4)at diagnosis (Table 1).Conventional cytogenetic and fluorescence in situ hybridization (FISH)analyses were*Corresponding author.Tel.:þ39-075-5783808;fax:þ39-075-5783691.E-mail address:crimecux@unipg.it (C.Mecucci).0165-4608/07/$e see front matter Ó2007Elsevier Inc.All rights reserved.doi:10.1016/j.cancergencyto.2007.01.011Cancer Genetics and Cytogenetics 175(2007)73e 76performed on bone marrow cells(patients1e3)and pleural and ascitic effusion(patient4).2.2.CytogeneticsKaryotypes were obtained on G-banded metaphases af-ter24-and48-hour cultures and were described according to ISCN2005[5].2.3.FISHMetaphase FISH was performed in dual-color experi-ments,as previously described,with34DNA clones for the1q arm mapping from centromere RP11-97A5to telo-mere RP1-160H3(Fig.1A)[6,7].Probe D1Z5(Oncor,Re-snova,Italy)for the centromeric alpha satellite region and probe PUC1.77for heterochromatin were also used[8]. DNA clones for the telomeric region of chromosomes1 (PAC GS-160-H23),2(PAC GS-1011-O17),11(PAC GS-770-G7),and15(PAC GS-124-O5)were used to fully elu-cidate complex changes[9].In each experiment,a minimum offive abnormal metaphase cells were analyzed with afluo-rescence microscope(Provis,Olympus,Milan,Italy)equip-ped with a charge-coupled device camera(Sensys, Photometrics)operated with SmartCapture software(Vysis, Stuttgart,Germany).3.Results3.1.PatientsTwo of the patients were male(1ALL;1BL)and two were female(2ALL).Two ALL patients and the one BL patient were children(5,9,and11years old)and one ALL patient was a46-year-old adult.Clinical and hemato-logical features and cytogeneticfindings are summarized in Table1.3.2.CytogeneticsIn patients1and2,dup(1q)was present in hyperdiploid karyotypes.Patient3had three leukemic clones.A recipro-cal t(1;18)(q21;q12)was common to all.It was isolated in the main clone and associated with del(3q)alone or with an add(2q)in the two related sidelines.Patient4showed a complex karyotype with t(8;14)(q24;q32)and additional changes including an add(1q42).3.3.FISHFISHfindings are summarized in Figure1.FISH with DNA clones for the1q arm confirmed dup(1q)in patients 1and2and detected it in patient4.In patient4,the add(1)(q42)derived from an inv dup(1)(q25q11)and an unbalanced translocation with the15q21~22band,that is,der(1)t(1;15)(q25~31;q21~22)dup(1)(q25q11)(Fig.1B, upper).FISH with PAC GS-160-H23for the1qter region confirmed chromosome1q translocated to chromosome 15:that is,der(15)t(1;15)(q25~31;q21~22).FISH with PAC GS-124-O5for the15qter region showed chromosome 15q translocated to dup(11)(q11q25):that is,der(11) t(11;15)(q25;q21~22)dup(11)(q11q25).FISH with PAC GS-770-G7for the11qter region yielded only one hybrid-ization signal on normal11,suggesting that der(11)was in-volved in an unbalanced translocation(data not shown).In patient3,FISH revealed a duplication of1q11~q21bands that was translocated to chromosome band2q36:that is, der(2)t(1;2)(q11q21;q36)(Fig.1B,lower).FISH with PAC GS-1011-O17for the2qter region confirmed the trans-location as unbalanced(data not shown).In patients1,3,and4,the dup(1q)centromeric break-points fell within heterochromatic sequences.In patient2, the breakpoint was narrowed to between two contiguous clones:that is,to RP11-196G18(proximal)and RP11-212K13(distal).In patients1,2,and4,the telomeric break-points were located distal to ABL2/1q25.2and in patient3 the breakpoint was mapped between two contiguous clones:RP11-212K13(proximal)and RP11-458I7(distal) at band1q21.2(Fig.1A).A minimal duplicated DNA se-quence that was common to all four patients was identified at chromosome band1q21.2.It extends93kb and corre-sponds to clone RP11-212K13.4.DiscussionThe genomic mechanisms and molecular lesions under-lying dup(1q)in lymphoid malignancies remain to be estab-lished.To date,FISH studies have mapped dup(1q) centromeric breakpoints in the centric or pericentric region of chromosome1within,or in close proximity to,theTable1Clinical,hematological,and cytogenetic features of four patients with dup(1)(q)Patient Sex/Age Diagnosis Karyotype1F/9ALL-L156,XX,þX,dup(1q),þ5,þ6,þ9,þ10,þ14,þ17,þ18,þ21,þ22[6]46,XX[7]2M/5ALL-L254,XY,dup(1q),þ5,þ6,þ9,þ10,þ14,þ15,þ17,þ18[15]3F/46ALL-L246,XX,t(1;18)(p11;p11)[3]/46,idem,del(3q)[5]/46,idem,add(2)(q36)[6]/add(2)(q36).ish der(2)t(1;2)(q11q21;q36) 4M/11BL47,XY,add(1)(q42),þ7,t(8;14)(q24;q32),dup(11)(q11q25),add(15)(q25),þ18[15]/add(1)(q42).ish der(1)t(1;15)(q25~31;q21~22)dup(1)(q25q11)Abbreviations:ALL,acute lymphoblastic leukemia;BL,Burkitt lymphoma;F,female;M,male. Starza et al./Cancer Genetics and Cytogenetics175(2007)73e76heterochromatic sequences [10].The present study identi-fied a minimal common duplicated DNA euchromatic sequence in four cases of ALL/BL.Although 1q duplicons in ALL and BL have various sizes with different proximal and distal breakpoints,they share a sequence at band 1q21.2corresponding to clone RP11-212K13and extending for 93kb.Three putative on-cogenes or tumor suppressor genes have been mapped in the 1q21common duplicated region [7].The SF3B4gene,an RNA-binding protein,is one of the four subunits of splicing factor 3B,which is widespread in human tissues,including bone marrow [7].The OTUD7B gene encodes for a cytoplasmic protein and functions as deubiquitinating enzyme and as a negative regulator of the NF k B transcription factor,which controls cell proliferation,apoptosis,and angiogenesis [11].Remarkably,NF k B and the signaling pathway involved in its activation have been shown to be constitutively activated in solid tumors and in lymphoid malignancies [12].The MTMR11gene is a member of the tyrosine phospha-tase family,whose main activity is to dephosphorylate D3-phosphorylated inositol phospholipids.It is expressed in bone marrow cells,spleen,and thymus [13].Mutations or altered expression of three members of the lipid phospha-tase family are found in congenital neuropathies,singly or in combination.MTM1,the first member of this family to be identified,is responsible for X-linked myotubular my-opathy;MTMR2and MTMR13(alias for SBF2)mutations have been detected in two forms of Charcot-Marie-Tooth disease [14e 16].Although none of these three genes has been directly linked to hematological malignancies in humans,so far,it remains to be investigatedwhetherABDNA clone band locus/gene1234D1Z51q11centromerepuc 1.771q12heterochromatin RP11-97A51q21.1LOC440670RP11-544O241q21.1SEC22L1RP11-94I21q21.1LOC400778RP11-337C181q21.1PRKAB2RP11-533N141q21.1BCL9RP11-14N71q21.1LOC440683RP11-403I131q21.1LOC401967RP5-998N211q21LOC440686RP11-277L21q21LOC440688RP11-353N41q21KIAA0493RP11-196G181q21FCGR1ARP11-212K131q21.2MTMR11,OTUD7B,SF3B4RP11-458I71q21.2PLEKHO1,VP54A RP4-790G171q21.2ANP32E RP11-54A41q21.2KIAA0460RP11-235D191q21.2CTSK RP11-316M11q21.2SETDB1RP11-68I181q21.2MGC29891RP11-98D181q21.3SNX27RP11-107M161q21.3FAM16B RP11-182L111q21.3SPRR1B RP11-307C121q22PMVK RP11-29H231q22ASH1L RP11-336K241q22RIT1RP11-139I141q22RHBG RP11-98G71q22MEF2D RP11-66D171q23.1BCAN RP11-107D161q23.1SH2D2A RP11-110J11q23.1ARHGEF11RP11-217A121q23.1IRTA2RP11-404F101q23.2SLAMF1RP11-38C181q23.3LMX1A RP11-152A161q25.2ABL2RP1-160H31q44subtelomereFig.1.(A)FISH findings with 1q11~q44DNA clones in three cases of acute lymphoblastic leukemia and one of Burkitt lymphoma.Red squares indicate DNA clones in three copies,black squares indicate DNA clones in two copies,and white squares indicate DNA clones that were not tested.(B)Upper:FISH with PUC 1.77(green)and clone RP11-212K13(red)in patient 4shows three red e green fusion signals:one on normal chromosome 1and two on der(1)t(1;15)(q25~31;q21~22)inv dup(1)(q25q11)(arrow ).Lower :FISH with PUC 1.77(green)in patient 3gave three hybridization signals,one on normal chromosome 1,one on der(1)t(1;18),and one on add(2)t(1;2)(q11;q36)(arrow ).75 Starza et al./Cancer Genetics and Cytogenetics 175(2007)73e 76deregulation of one or more plays a role in the leukemo-genic process in ALL and BL with1q21duplication.Whatever the molecular events underlying1q21duplica-tion,they seem to be closely correlated to leukemogenic pathways.A constitutional duplication of proximal1q, dup(1)(q11~q22),has been reported in a pediatric patient, with normal phenotype,who developed a T lymphoblastic lymphoma/leukemia[17].Moreover,Ghose et al.[18] showed in mice that duplication of1q11~q32is associated with proliferation of human leukemic B-cell clones and metastasis formation.In conclusion,we identified a minimal common1q21.2 duplicated sequence in a region in which three putative on-cogenes or tumor suppressor genes have been mapped.In elucidating the genomic background of ALL and BL with 1q21duplication,our study provides the basis for designing molecular studies to investigate which,if any,of these genes is involved in lymphoid leukemogenesis or progression.AcknowledgmentsAIRC(Associazione Italiana Ricerca sul Cancro),CNR-MIUR(Consiglio Nazionale delle Ricerche-Ministero per l’Istruzione,l’Universita`e la Ricerca Scientifica);Fonda-zione Cassa di Risparmio,Perugia,Italy;FIRB,Italy;and Associazione‘‘Sergio Luciani,’’Fabriano,Italy. B.C.is supported by a grant from FIRC(Fondazione Italiana Ri-cerca sul Cancro).BAC clones were kindly provided by Dr.Mariano Rocchi(DAPEG Sez di Genetica,University of Bari,Italy);Telomeric DNA clones were kindly pro-vided by Dr.J Flint(Institute of Molecular Medicine,John Radcliffe hospital,Oxford,UK).Authors wish to thank Dr. Geraldine Boyd for assistance in the preparation of the manuscript.References[1]Bench AJ,Cross NCP,Huntly BJP,Nacheva EP,Green AR.Myelo-proliferative disorders.Best Pract Res Clinic Haematol2001;14: 531e51.[2]Hanamura I,Stewart JP,Huang Y,Zhan F,Santra M,Sawyer JR,Hollmig K,Zangarri M,Pineda-Roman M,van Rhee F,Cavallo F, Burington B,Crowley J,Tricot G,Barlogie B,Shaughnessy JD Jr.Frequent gain of chromosome band1q21in plasma cell dyscrasias detected byfluorescence in situ hybridization:incidence increases from MGUS to relapsed myeloma and is related to prognosis and dis-ease progression following tandem stem cell transplantation.Blood 2006;108:1724e32.[3]Berger R,Bernheim A.Cytogenetic studies on Burkitt’s lymphoma-leukemia.Cancer Genet Cytogenet1982;7:231e44.[4]Offit K,Wong G,Filippa DA,Tao Y,Chaganti RSK.Cytogeneticanalysis of434consecutively ascertained specimens of non-Hodgkin’s lymphoma:clinical correlations.Blood1991;77:1508e15.[5]ISCN2005:an international system for human cytogenetic nomen-clature(2005).In:Shaffer LG,Tommerup N,editors.Basel:S.Kar-ger,2005.[6]Dierlamm J,Wlodarska I,Michaux L,La Starza R,Zeller W,Mecucci C,Van den Berghe H.Successful use of the same slide for consecutivefluorescence in situ hybridization(FISH)experi-ments.Genes Chromosomes Cancer1996;16:261e4.[7]Entrez Gene database.Available at:/entrez/query(build36.2).Accessed April16,2007.[8]La Starza R,Aventin A,Falzetti D,Wlodarska I,FernandezPeralta AM,Gonzales-Aguilera JJ,Ciolli S,Martelli MF, Mecucci C.Regions of juxtaposition in unbalanced1q rearrange-ments of malignant hemopathies.Leukemia2001;15:861e3.[9]Knight SJL,Lese CM,Precht KS,Kuc J,Ning Y,Lucas S,Regan R,Brenan M,Nicod A,Lawrie NM,Cardy DLN,Nguyen H, Hudson TJ,Riethman HC,Ledbetter DH,Flint J.An optimized set of human telomere clones for studying telomere integrity and archi-tecture.Am J Hum Genet2000;67:320e32.[10]Busson-Le Coniat M,Salomon-Nguyen F,Dastugue N,Maarek O,Lafage-Pochitaloff M,Mozziconacci M-J,Baranger L,Brizard F, Radford I,Jeanpierre M,Bernard OA,Berger R.Fluorescence in situ hybridization analysis of chromosome1abnormalities in hematopoi-etic disorders:rearrangements of DNA satellite II and new recurrent translocations.Leukemia1999;13:1975e81.[11]Evans PC,Smith TS,Lai M-J,Williams MG,Barker DF,Heyninck K,Kreike MM,Beyaert R,Blundell TL,Kilshaw PJ.A novel type of deubiquitinating enzyme.J Biol Chem2003;278: 23180e6.[12]Karin M,Cao Y,Greten FR,Li Z-W.NF-k B in cancer:from innocentbystander to major culprit.Nature Rev2002;2:301e10.[13]Wishart MJ,Taylor GS,Slama JT,Dixon JE.PTEN and myotubularinphosphoinositide phosphastases:bringing bioinformatics to the lab bench.Curr Opin Cell Biol2001;13:172e81.[14]Laporte J,Hu LJ,Kretz C,Mandel JL,Kioschis P,Coy JF,Klauck SM,Poustka A,Dahl N.A gene mutated in X-linked myotub-ular myopathy defines a new putative tyrosine phosphatase family conserved in yeast.Nat Genet1996;13:175e82.[15]Bolino A,Muglia M,Conforti FL,LeGuern E,Salih MA,Georgiou DM,Christodoulou K,Hausmanowa-Petrusewicz I, Mandich P,Schenone A,Gambardella A,Bono F,Quattrone A, Devoto M,Monaco AP.Charcot-Marie-Tooth type4B is caused by mutations in the gene encoding myotubularin-related protein-2.Nat Genet2000;25:17e9.[16]Azzedine H,Bolino A,Taieb T,Birouk N,Di Duca M,Bouhouche A,Benamou S,Mrabet A,Hammadouche T,Chkili T,Gouider R, Ravazzolo R,Brice A,Laporte J,LeGuern E.Mutations in MTMR13,a new pseudophosphatase homologue of MTMR2and Sbf1,in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma.Am J Hum Genet2003;72:1141e53.[17]Chan NPH,NG MHL,Cheng SH,Lee V,Tsang KS,Lau TT,Li CK.Hereditary duplication of proximal chromosome1q(q11q22)in a pa-tient with T lymphoblastic lymphoma/leukemia:a family study usingG banding and comparative genomic hybridization.J Med Genet2002;39:79e82.[18]Ghose T,Lee CL,Fernandez LA,Lee SH,Raman R,Colp P.Role of1q trisomy in tumorigenicity,growth,and metastasis of human leuke-mic B-cell clones in nude mice.Cancer Res1990;50:3737e42. Starza et al./Cancer Genetics and Cytogenetics175(2007)73e76。