人教版数学九年级上册23 第1课时 旋转的概念与性质导学案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转
投我以桃,报之以李。
《诗经·大雅·抑》
原创不容易,【关注】,不迷路!
23.1图形的旋转
23.1.1第1课时旋转的概念与性质
学习目标:1.掌握旋转的有关概念及基本性质.
2.能够根据旋转的基本性质解决实际问题.
重点:掌握旋转的有关概念及基本性质.
难点:探索旋转的性质并能运用旋转的性质解决实际问题.
一、知识链接
1.将图①平移,使点A的对应点为点C,画出平移后的图形.
2.如图②,已知△ABC和直线l,请画出△ABC关于直线l的对称图形.
图①图②
二、要点探究
探究点1:旋转的概念
观察与思考观察荡秋千、转动的钟表和风车,它们有什么共同的特征?
思考怎样来定义上面这些图形的变换?
知识要点在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心.转动的角称为旋转角.如果图形上
的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.转动的方向分为顺时针与逆时针.
例1下列物体的运动是旋转的有.
①电梯的升降运动;
②行驶中的汽车车轮;
③方向盘的转动;
④骑自行车的人;
⑤坐在摩天轮里的小朋友.
方法总结:判断一种运动是否属于旋转,先看图形是否在同一平面内运动,其次要看是否有旋转中心,旋转角,旋转方向,还要注意判断变化前后图形大小是否发生了变化.
例2若叶片A绕O顺时针旋转到叶片B,则旋转中心是______,旋转角是
_________,旋转角等于____度,其中的对应点有_______、_______、_______、_______、_______、_______.
练习如图,三角形ABD经过旋转后到三角形ACE的位置,其中∠BAC=60°.
(1)旋转中心是哪一点?
(2)旋转了多少度?顺时针还是逆时针?
(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置?
要点归纳:确定一次图形的旋转时,必须明确旋转中心、旋转角、旋转方向.
旋转的范围是“平面内”,其中“旋转中心,旋转方向,旋转角度”称之为旋转的三要素.
典例精析
例3如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点
O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
A.30°
B.45°
C.90°
D.135°
方总结:一个图形由一个位置旋转到另一个位置,如果有固定不动的点,那么这个点就是旋转中心,对应点与旋转中心所连线段的夹角等于旋转角.
探究点2:旋转的性质
合作探究1根据图形填空
旋转中心是点__________;
图中对应点有;
图中对应线段有_____________________________________.
每对对应线段的长度有怎样的关系?________.
图中旋转角等于________.
合作探究2观察下图,你能得到什么结论?
知识要点:旋转的性质
1.对应点到旋转中心的离相等;
2.两组对应点分别与旋转中心的连线所成的角相等;
3.旋转中心是唯一不动的点;
4.旋转不改变图形的形状和大小.
想一想如图,将△ABC逆时针旋转△ADE,如何确定它们的旋转中心位置?
练一练如图,在平面直角坐标系xOy中,△ABC的顶点A(1,2)、B(-2,2)、C(-1,0).若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()
A.0,0)
B.(1,0)
C.(1,-1)
D.(2.5,0.5)
方法总结:旋转中心在对应点连线的垂直平分线上,找到旋转中心,找到两组对应点连线的垂直平分线的交点即可.
例4如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D 恰好在同一直线上,求∠B的度数.
变式如图,△ABC为钝角三角形,将△ABC绕点A逆时针旋转120°,得到△AB'C',连接B'.若AC'∥BB,则∠CAB'的度数为多少?
例5如图,四边形ABCD是正方形,△ADF按顺时针方向旋转一定角度后得
到△ABE,已知AF=5,AB=8,求DE的长度.
方法总结:利用旋转的性质解决问题时应抓住以下几点:(1)明确旋转中的“变”与“不变”;
(2)找准旋转前后的“对应关系”;(3)充分挖掘旋转过程中的相等关系.
三、课堂小结
旋转
定义三要素:旋中心,旋转方向和旋转角度
性质
①旋转前后的图形全等;
②对应点到旋转中心的距离相等;
③对应点与旋转中心所连线段的夹角
等于旋转角.
1.下列现象中属于旋转的有()
①地下水位逐年下降;②传送带的移动;③水龙头开关的转动;④钟摆的运动;⑤荡秋千运动.
A.2个
B.3个
C.4个
D.5个
2.下列说法正确的是()
A.旋转改变图形的形状和大小
B.平移改变图形的位置
C.图形可以沿某直线方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
3.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是()
A.DE=3
B.AE=4
C.∠CAB是旋转角
D.∠CAE是旋转角第3题图第4题图第5题
图
4.如图,在平面直角坐标系中,有一个Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.则旋转中心的坐标是(
)
A.(0,0)B.(-1,0)C.(1,0)D.(0,-1)
5.如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.
拓展提高:
6.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D按逆时针方向旋转90°得到△DCM.
(1)求证:EF=MF;
(2)当AE=1时,求EF的长.
参考答案
自主学习
一、知识链接
1.图略
2.图略
课堂探究
二、要点探究
探究点1:
观察与思考
思考答:把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.
钟表的指针在不停地转动,从3时到5时,时针转动了60度;
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
风车风轮的每个叶片在风的吹动下转动到新的位置.
例1③⑤
例2O∠AOB60A与BB与CC与DD与EE与FF与A
练习解:(1)旋转中心是点A.(2)旋转了60°,逆时针.(3)点M转到了AC
的中点上.
例3C
探究点2:
合作探究1C点A与点A′,点B与点B′,点M与点M′,点N与点N′
线段CA与CA′、CB与CB′、AB与A′B′相等45°
合作探究2解:角:∠AOA'=∠BOB'=∠COC';线:AO=A'O,BO=B'O,CO=C'O 想一想解:如图,两条对应点连线段的垂直平分线的交点O即为旋转中心.
练一练C
例4解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AB=AD.
∴∠B=1
(180°-150°)=15°.
2
变式解:∵将△ABC绕点A逆时针旋转120°,得到△AB'C',∴∠BAB'=∠CAC'=120°,AB=AB'.∴∠AB'B=1
(180°-120°)=30°.又∵AC'∥BB',∴∠
2
B'AC'=∠AB'B=30°.
∴∠CAB'=∠CAC'-∠B'AC'=120°-30°=90°.
例5解:∵△ADF按顺时针方向旋转一定角度后得到△ABE,∴AE=AF=5,AD=AB=8.
∴DE=AD-AE=8-5=3.
当堂检测
1.B
2.B
3.D
4.A
5.135
拓展提高:
(1)证明:∵△DAE绕点D逆时针旋转90°得到△DCM,∴DE=DM,∠EDM=90°,
∵∠EDF=45°,∴∠FDM=45°,∴∠EDF=∠FDM.又∵DF=DF,DE=DM,∴△DEF ≌△DMF,∴EF=MF.
(2)解:设EF=MF=x,∵AE=CM=1,AB=BC=3,∴EB=AB-AE=3-1=2,
BM=BC+CM=3+1=4,
∴BF=BM-MF=4-x.在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4
-x)2=x2,解得x=5
2.则EF的长为5
2
.
【素材积累】
岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
又召他到寝阁,对他说:“中兴的大事,全部委托给你了。
”金人攻打拱州、亳州,刘锜向朝廷告急,宋高宗命令岳飞火速增援,并在赐给岳飞的亲笔信中说:“设施之事,一以委卿,朕不遥度。
”岳飞于是调兵遣将,分路出战,自己率领轻装骑兵驻扎在郾城,兵锋锐气十足。
但是,后来高宗和秦桧决定与金议和,向金称臣纳贡。
就在岳飞积极准备渡过黄河收复失地的时候,高宗和秦桧却连发12道金字牌班师诏,命令岳飞退兵。
后岳飞被以“莫须有”的罪名毒死于临安风波亭,时年仅39岁。