中考数学解析版试卷分类汇编专题不等式组及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式(组)
一、选择题
1. ( 2014广西贺州,第7题3分)不等式的解集在数轴上表示正确的是()
A.B.C.D.
考
点:
在数轴上表示不等式的解集;解一元一次不等式组.
分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可
解
答:
解:,解得,
故选:A.
点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
2. ( 2014广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB边的取值范围是()
A.1cm<AB<4cm B.5cm<AB<10cm C.4cm<AB<8cm D.4cm<AB<10cm
考
点:
等腰三角形的性质;解一元一次不等式组;三角形三边关系.
分
析:
设AB=AC=x,则BC=20﹣2x,根据三角形的三边关系即可得出结论.
解
答:
解:∵在等腰△ABC中,AB=AC,其周长为20cm,
∴设AB=AC=xcm,则BC=(20﹣2x)cm,
∴,
解得5cm<x<10cm.
故选B.
点评:本题考查的是等腰三角形的性质,熟知等腰三角形的两腰相等是解答此题的关键.
3.(2014年云南省,第3题3分)不等式组的解集是()A. x>B.﹣1≤x<C.x<D.x≥﹣1
考点:解一元一次不等式组.
分析:分别求出各不等式的解集,再求出其公共解集即可.
解答:解:,由①得,x>,由②得,x≥﹣1,
故此不等式组的解集为:x>.
故选A.
点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
4.(2014年广东汕尾,第3题4分)若x>y,则下列式子中错误的是()
A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y
分析:根据不等式的基本性质,进行选择即可.
解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A正确;
B、根据不等式的性质2,可得>,故B正确;
C、根据不等式的性质1,可得x+3>y+3,故C正确;
D、根据不等式的性质3,可得﹣3x<﹣3y,故D错误;故选D.
点评:本题考查了不等式的性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
5.(2014毕节地区,第5题3分)下列叙述正确的是()
6.(2014武汉)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()
7.(2014邵阳,第6题3分)不等式组的解集在数轴上表示正确的是()
8.(2014·台湾,第22题3分)图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱( )
A.6 B.7 C.8 D.9
分析:设晓莉和朋友共有x人,分别计算选择包厢和选择人数的费用,然后根据选择包厢计费方案会比人数计费方案便宜,列不等式求解.
解:设晓莉和朋友共有x人,
若选择包厢计费方案需付:900×6+99x元,
若选择人数计费方案需付:540×x+(6﹣3)×80×x=780x(元),
∴900×6+99x<780x,
解得:x>=7.
∴至少有8人.
故选C.
点评:本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.
9. (2014湘潭,第6题,3分)式子有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1
考
点:
二次根式有意义的条件.
分析:根据二次根式的被开方数是非负数列出不等式x﹣1≥0,通过解该不等式即可求得x的取值范围.
解
答:
解:根据题意,得x﹣1≥0,
解得,x≥1.
故选C.
点评:此题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
10. (2014益阳,第5题,4分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()
A.m>1B.m=1C.m<1D.m≤1
考点:根的判别式.
分析:根据根的判别式,令△≥0,建立关于m的不等式,解答即可.
解答:解:∵方程x2﹣2x+m=0总有实数根,
∴△≥0,
即4﹣4m≥0,
∴﹣4m≥﹣4,
∴m≤1.
故选D.
点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0方程有两个不相等的实数根;
(2)△=0方程有两个相等的实数根;
(3)△<0方程没有实数根.
11. (2014株洲,第2题,3分)x取下列各数中的哪个数时,二次根式有意义()
A.﹣2B.0C.2D.4
考
点:
二次根式有意义的条件.
分
析:
二次根式的被开方数是非负数.
解
答:
解:依题意,得
x﹣3≥0,
解得,x≥3.
观察选项,只有D符合题意.
故选:D.
点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
12. (2014株洲,第6题,3分)一元一次不等式组的解集中,整数解的个数是()
A.4B.5C.6D.7
考
点:
一元一次不等式组的整数解.
分
析:
先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.
解
答:
解:∵解不等式2x+1>0得:x>﹣,
解不等式x﹣5≤0得:x≤5,
∴不等式组的解集是﹣<x≤5,
整数解为0,1,2,3,4,5,共6个,
故选C.
点评:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
13.(2014滨州,第6题3分)a,b都是实数,且a<b,则下列不等式的变形正确的是()
A.a+x>b+x B.﹣a+1<﹣
C.3a<3b D.>
b+1
考点:不等式的性质
分析:根据不等式的性质1,可判断A,根据不等式的性质
3、1可判断B,根据不等式的性质2,可判断C、D.解答:解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;
B、不等式的两边都乘或除以同一个负数,不等号的
方向改变,故B错误;
C、不等式的两边都乘以或除以同一个正数,不等号
的方向不变,故C正确;
D、不等式的两边都乘以或除以同一个正数,不等号
的方向不变,故D错误;
故选:C.
点评:本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.
14.(2014德州,第6题3分)不等式组的解集在数轴上可表示为()A.B.C.D.
考
点:
在数轴上表示不等式的解集;解一元一次不等式组
分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
解不等式组得:,再分别表示在数轴上即可得解.
解
答:
解:解得,
故选:D.
点评:本题考查了在数周表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
15.(2014年山东泰安,第15题3分)若不等式组有解,则实数a 的取值范围是()
A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36分析:先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.
解:,解①得:x<a﹣1,解②得:x≥﹣37,
则a﹣1>﹣37,解得:a>﹣36.故选C.
点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.
二.填空题
1. ( 2014广东,第15题4分)不等式组的解集是1<x<4 .
考点:解一元一次不等式组.
专题:计算题.
分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.
解答:解:,
由①得:x<4;由②得:x>1,
则不等式组的解集为1<x<4.
故答案为:1<x<4.
点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.2.(2014新疆,第10题5分)不等式组的解集是.
考点:解一元一次不等式组
分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.
解答:
解:,
解①得:x>﹣5,
3.(2014温州,第13题5分)不等式3x﹣2>4的解是x>2 .
考点:解一元一次不等式.
分析:先移项,再合并同类项,把x的系数化为1即可.
解答:解:移项得,3x>4+2,
合并同类项得,3x>6,
把x的系数化为1得,x>2.
故答案为:x>2.
点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此
题的关键.
4.(2014毕节地区,第17题5分)不等式组的解集为﹣4≤x≤1 .
5.(2014武汉,第18题6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.
函数解析式为y=2x﹣3.
解2x﹣3≥0得,x≥.
点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.
6.(2014四川自贡,第12题4分)不等式组的解集是1<x≤.考点:解一元一次不等式组
分析:分别求出各不等式的解集,再求出其公共解集即可.
解答:解:,由①得,x≤,由②得,x>1,
故此不等式组的解集为:1<x≤.
故答案为:1<x≤.
点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7.(2014·浙江金华,第11题4分)写出一个解为x1
≥的一元一次不等式▲ .
【答案】x10
-≥(答案不唯一).
【解析】
试题分析:根据不等式的性质,从x≥1逆推即可得到一元一次不等式:x1x10
≥⇒-≥(答案不唯一).
考点:1.开放型;2.不等式的解集.
8. (2014株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5 .
考点:抛物线与x轴的交点
分析:函数图象经过四个象限,需满足3个条件:
(I)函数是二次函数;
(II)二次函数与x轴有两个交点;
(III)二次函数与y轴的正半轴相交.
解答:解:函数图象经过四个象限,需满足3个条件:
(I)函数是二次函数.因此a﹣1≠0,即a≠1①
(II)二次函数与x轴有两个交点.因此△=9﹣4(a﹣1)=﹣4a﹣11>0,解得a<﹣②
(III)二次函数与y轴的正半轴相交.因此>0,解得a>1或a<﹣5③综合①②③式,可得:a<﹣5.
故答案为:a<﹣5.
点评:本题考查二次函数的图象与性质、二次函数与x轴的交点、二次函数与y轴交点等知识点,解题关键是确定“函数图象经过四个象限”所满足的条件.
9. (2014年江苏南京,第15题,2分)铁路部门规定旅客免费携带行李箱的长、
宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3:2,则该行李箱的长的最大值为cm.
考点:一元一次不等式的应用。
分析:设长为3x,宽为2x,再由行李箱的长、宽、高之和不超过160cm,可得出不等式,解出即可.
解答:设长为3x,宽为2x,由题意,得:5x+30≤160,
解得:x≤26,故行李箱的长的最大值为78.故答案为:78cm.
点评:本题考查了一元一次不等式的应用,解答本题的额关键是仔细审题,找到不等关系,建立不等式.
10. (2014年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与
自变量x的部分对应值如表:
x…﹣10123…
y…105212…
则当y<5时,x的取值范围是.
考点:二次函数与不等式
分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y <5时,x的取值范围即可.
解答:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,
所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.
点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.
三.解答题
1. ( 2014安徽省,第20题10分)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨
(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元
考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.
分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.
(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.
解答:解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得
,
解得.
答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;
(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.
a=100x+30y=100x+30(240﹣x)=70x+7200,
由于a的值随x的增大而增大,所以当x=60时,a值最小,
最小值=70×60+7200=11400(元).
答:2014年该企业最少需要支付这两种垃圾处理费共11400元.
点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;
2. ( 2014珠海,第12题6分)解不等式组:.
考点:解一元一次不等式组.
分析:分别求出各不等式的解集,再求出其公共解集即可.
解答:解:,由①得,x>﹣2,由②得,x≤﹣1,
故此不等式组的解集为:﹣2<x≤﹣1.
点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.
3. ( 2014珠海,第20题9分)阅读下列材料:
解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:
解∵x﹣y=2,∴x=y+2
又∵x>1,∵y+2>1.∴y>﹣1.
又∵y<0,∴﹣1<y<0.…①
同理得:1<x<2.…②
由①+②得﹣1+1<y+x<0+2
∴x+y的取值范围是0<x+y<2
请按照上述方法,完成下列问题:
(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5 .
(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).
考点:一元一次不等式组的应用.
专题:阅读型.
分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;
(2)理解解题过程,按照解题思路求解.
解答:解:(1)∵x﹣y=3,
∴x=y+3,
又∵x>2,
∴y+3>2,
∴y>﹣1.
又∵y<1,
∴﹣1<y<1,…①
同理得:2<x<4,…②
由①+②得﹣1+2<y+x<1+4
∴x+y的取值范围是1<x+y<5;
(2)∵x﹣y=a,
∴x=y+a,
又∵x<﹣1,
∴y+a<﹣1,
∴y<﹣a﹣1,
又∵y>1,
∴1<y<﹣a﹣1,…①
同理得:a+1<x<﹣1,…②
由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),
∴x+y的取值范围是a+2<x+y<﹣a﹣2.
点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.
4. ( 2014广西玉林市、防城港市,第24题9分)我市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求我市到明年年底控制电动车拥有量不超过万辆,估计每年报废的电动车数量是上一年年底电动车拥有量的10%,假定每年新增电动车数量相同,问:
(1)从今年年初起每年新增电动车数量最多是多少万辆
(2)在(1)的结论下,今年年底到明年年底电动车拥有量的年增长率是多少(结果精确到%)
考点:一元二次方程的应用;一元一次不等式的应用.
分析:(1)根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可;
(2)分别求出今年年底电动车数量,进而求出今年年底到明年年底电动车拥有量的年增长率.
解答:解:(1)设从今年年初起每年新增电动车数量是x万辆,
由题意可得出:今年将报废电动车:10×10%=1(万辆),
∴[(10﹣1)+x](1﹣10%)+x≤,
解得:x≤2.
答:从今年年初起每年新增电动车数量最多是2万辆;
(2)∵今年年底电动车拥有量为:(10﹣1)+x=11(万辆),
明年年底电动车拥有量为:万辆,
∴设今年年底到明年年底电动车拥有量的年增长率是y,则11(1+y)=,
解得:y≈=%.
答:今年年底到明年年底电动车拥有量的年增长率是%.
点评:此题主要考查了一元一次不等式的应用以及一元一次方程的应用,分别表示出今年与明年电动车数量是解题关键.
5.(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大并求最大利润.
考点:二次函数的应用;一元一次不等式组的应用.
分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;
(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.
解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,
由题意得,,
解不等式①得,x≥11,
解不等式②得,x≤15,
所以,不等式组的解集是11≤x≤15,
∵x为正整数,
∴x可取的值为11、12、13、14、15,
所以,该商家共有5种进货方案;
(2)设总利润为W元,
y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,
则W=(1760﹣y1)x1+(1700﹣y2)x2,
=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),
=1760x+20x2﹣1500x+10x2﹣800x+12000,
=30x2﹣540x+12000,
=30(x﹣9)2+9570,
当x>9时,W随x的增大而增大,
∵11≤x≤15,
∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),
答:采购空调15台时,获得总利润最大,最大利润值为10650元.
点评:本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.
6.(2014年天津市,第19题8分)解不等式组
请结合题意填空,完成本题的解答:
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为.
考点:解一元一次不等式组;在数轴上表示不等式的解集.
分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:(I)解不等式①,得x≥﹣1;
(II)解不等式②得,x≤1,
(III)在数轴上表示为:
;
(IN)故此不等式的解集为:﹣1≤x≤1.
故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.
点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7.(2014舟山,第21题8分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.
(1)求每辆A型车和B型车的售价各为多少元.
(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案
考点:一元一次不等式组的应用;二元一次方程组的应用
分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;
(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.
解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则
,
解得.
答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;
(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得
,
解得2≤a≤3.
∵a是正整数,
∴a=2或a=3.
∴共有两种方案:
方案一:购买2辆A型车和4辆B型车;
方案二:购买3辆A型车和3辆B型车.
点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.
8.(2014年广东汕尾,第23题11分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天
分析:(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
(2)设至少应安排甲队工作x天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,
解得:x=50经检验x=50是原方程的解,
则甲工程队每天能完成绿化的面积是50×2=100(m2),
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;
(2)设至少应安排甲队工作x天,根据题意得:
+×≤8,解得:x≥10,
答:至少应安排甲队工作10天.
点评:此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程和不等式,解分式方程时要注意检验.
9.(2014襄阳,第24题10分)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,.某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:
品种购买价(元/
成活率
棵)
甲2090%
设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)设y与x之间的函数关系式,并写出自变量取值范围;
(2)承包商要获得不低于中标价16%的利润,应如何选购树苗
(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则城府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润最大利润是多少
答:自变量的取值范围是:0<x≤3000;
(2)由题意,得12x+20000≥260000×16%,
解得:x≥1800,
∴1800≤x≤3000,
购买甲种树苗不少于1800棵且不多于3000棵;
(3)①若成活率不低于93%且低于94%时,由题意得
,
解得1200<x≤2400
在y=12x+20000中,
∵12>0,
∴y随x的增大而增大,
∴当x=2400时,
y最大=48800,
②若成活率达到94%以上(含94%),则+(6000﹣x)≥×6000,
解得:x≤1200,
10.(2014孝感,第23题10分)我市荸荠喜获丰收,某生产基地收获荸荠40吨.经市场调查,可采用批发、零售、加工销售三种销售方式,这三种销售方式每吨荸荠的利润如下表:
销售方式批发零售加工销售
利润(百元/吨)122230
设按计划全部售出后的总利润为y百元,其中批发量为x吨,且加工销售量为15吨.
(1)求y与x之间的函数关系式;
(2)若零售量不超过批发量的4倍,求该生产基地按计划全部售完荸荠后获得的最大利润.
考
点:
一次函数的应用;一元一次不等式组的应用.
分析:(1)根据总利润=批发的利润+零售的利润+加工销售的利润就可以得出结论;
(2)由(1)的解析式,根据零售量不超过批发量的4倍,建立不等式求出x的取值范围,由一次函数的性质就可以求出结论.
解
答:
解:(1)依题意可知零售量为(25﹣x)吨,则y=12 x+22(25﹣x)+30×15
∴y=﹣10 x+1000;
(2)依题意有:,
解得:5≤x≤25.
∵k=﹣10<0,
∴y随x的增大而减小.
∴当x=5时,y有最大值,且y最大=950(百元).∴最大利润为950百元.
点评:本题考查了总利润=批发的利润+零售的利润+加工销售的利润的运用,一元一次不等式组的运用,一次函数的性质的运用,解答时求出一次函数的解析式是关键.
11.(2014邵阳,第23题8分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块
12.(2014四川自贡,第21题10分)学校新到一批理、化、生实验器材需要整理,若实验管理员李老师一人单独整理需要40分钟完成,现在李老师与工人王师傅共同整理20分钟后,李老师因事外出,王师傅再单独整理了20分钟才完成任务.(1)王师傅单独整理这批实验器材需要多少分钟
(2)学校要求王师傅的工作时间不能超过30分钟,要完成整理这批器材,李老师至少要工作多少分钟
考点:分式方程的应用;一元一次不等式的应用
专题:应用题.。