泊松分布
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x P(x) 0.1779 0.3071 0.2651 0.1526 0.0658 T A (A-T)2/T
0
1 2 3 4 合计
27.90
42.50 32.37 16.44 6.26
26
40 38 17 7
0.1294
0.1474 0.9775 0.0191 0.0872 1.3606
自由度=组数-1-1=5-2=3
一个放射性物体5分钟测得脉冲数为200次, 这两种物体混合后估计5分钟脉冲数的总体 平均数及标准差是多少?
140+200=340
340 18.44
二、泊松分布的图形
泊松分布的特征只决定于平均数 ,不同的参数对应
不同的Poisson分布,即的大小决定了Poisson分布 的图形特征
x1 ( 38 29 36) / 3 34.33 x 2 ( 25 18) / 2 21.50 u 34.33 21.50 2.732 34.33 / 3 21.50 / 2
u
X1 X 2 X1 X 2 n1 n2
P<0.01,拒绝H0接受H1
用泊松分布对聚集性的研究
例
在室内不同位置放置6个平皿,隔一定时间后进行培
养,得葡萄球菌落数分别为21,26,22,18,19, 32,问细菌在室内不同位置的分布是否随机?
x 23
5.91 6 1 5
2 2 0 .05(5) 11.07 2 2 0 .05(5) , p 0.05
泊松分布资料的差异显著性检验
(三)泊松分布资料的差异显著性检验
1. 样本均数与总体均数比较: 直接计算概率法 例 8-10
例8-11
正态近似法(≥20) :
例
已知在培养液中,每毫升平均有 3 个细菌数,今采集放在 5℃冰箱中的1毫升培养液测得细菌数 5个,能否说培养液中细 菌数有无变化?
解:H0:=3/ml vs H1:3/ml
X!
发生次数至少为k次的概率为:
P( x k ) 1 P( X k 1)
累积概率
试估计每一个培养皿中菌落数小于3个的概率,大于1
个的概率。
P( X 3) P( X 2) 0.062
X 0
2
P( X 1) 1 P( X ) 0.983
例 8-6计算置信区间
由于平均数λ大于50,因而可用正态近似法进行泊松
分布的检验
u | x1 x2 | / x1 x2 x1 / n1 x2 / n2
x x
1
2
如果两样本观察单位数 不相等, 则用下式检验 u 或u x1 x2
2 x1 / n12 x2 / n2
当两样本的观察单位(时间、面积、容积)
样本,没有理由说此乡肝癌死亡率低于该高发区的平 均水平。
例 8-7
对于大样本资料置信区间可近似地运用正态分布法进
行
同一样品分别用 10 个平皿进行培养,共数得菌落数
1460个,试估计该样品菌落数的 95% 置信区间。
95%CI : 1.96 99%CI : 2.58
X1+X2≥20 5<X1+X2 < 20 例 8-12
u u x1 x 2 x1 x 2 x1 x 2 1 x1 x 2
例 8-12
用甲、乙两种培养基对水质进行细菌培养,在相同的条
件下, 用甲培养基的菌落数为100, 用乙培养基的菌落 数为150, 问两培养基的菌落数的差别有无显著性?
3 0 1
合计
400
Poisson的可加性
从总体均数为λ1的Poisson分布总体中随机抽出一份样
本,其中稀有事件的发生次数为X1次,
再独立地从总体均数λ2的Poisson分布总体中随机抽出
另一份样本,其中稀有事件的发生次数为X2,
则它们的合计发生数T=X1+X2也服从Poisson分布,总
0 2 松分布的图形是由平均数来确定的
三、泊松分布的应用
(一)概率估计和累积概率计算 (二)置信区间的估计
例 8-6 例 8-7 概率估计 例 8-8 例 8-8 例 8-9 例 8-10
(二)泊松分布的配合适度检验
(三)泊松分布资料的差异显著性检验
用途:
用来描述研究单位时间内(或单位空间、容积内)某
罕见事件发生次数的分布:如
单位体积的水或牛奶中的细菌数的分布 计数空气中细菌或灰尘的分布 放射性物质在单位时间内放射次数的分布
用来分析医学上人群中遗传缺陷、癌症等发病率很低
的非传染性疾病的发病或患病人数的分布
二、泊松分布的性质
泊松分布的概率
如果某事件的总体平均发生次数为λ,则在n个独
立试验中,则该事件发生x次的概率为:
P( X )
e=2.71828
e
x
x!
x=0,1,2,3…
λ为总体平均数
Poisson分布的条件
n值很大,而π(或1-π)很小的二项分布 π或1- π接近于0或1:如<0.001或>0.999 二项分布的条件
不相同时:
X1+x2≥20
u X1 X 2 X1 X 2 2 2 n1 n2 X1 X 2 1 X1 X 2 2 2 n1 n2
5<X1+x2 < 20
u
例8-13
例8-13 两样本计数差别的统计检验
某车间在改革生产工艺前,测取三次粉尘浓度,每升空气
中分别有38,39,36颗粉尘;改进工艺后,测取两次,分 别有25,18颗粉尘。问工艺改革前后粉尘数有无差别? H0:μ1 = μ2 H1:μ1≠μ2 α=0.05
小样本资料的泊松分布置信区间估计查附表8
例:计算置信区间
某乡有4000人口,连续3年无肝癌死亡。该乡位于肝
癌死亡率连年达到每10万人口29人的高发地区。问这 个乡肝癌死亡率是否较该高发区平均水平为低?
应死亡:4000×3×29/10万=3.48人, x=0时的95%可信区间:查表得(0,3.7) 包括了3.48,故该乡仍可认为是该高发区的一样随机
(一)概率估计和累积概率
概率估计 例 实验显示某100cm2的培养皿中菌落数等于3个的
概率
6 P( X 3) e 0.089 3!
6
3
例:如果某地居民脑血管疾病的患病率为150/10万,
那么调查该地1000名居民中有2人患脑血管疾病的概 率有多大?
n 1000 0.0015 1.5
第二节 泊松分布 (Poisson distribution)
一、泊松分布的概念
二、泊松分布的性质
三、泊松分布的应用
一、泊松分布的概念
泊松分布(Poisson distribution):为二项分布的
特例,如果某些现象的发生率π很小,而样本例数较 大,则二项分布逼近Poisson分布。
1837年S.D.Poisson提出的
样本值X=5,对应的概率
35 3 P( X 5 | 3) e 0.10081 5! 3 X 3 P( X ) e X!
2 3 4 5 6 7 8 9 10
X
0
1
P(X) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008
当平均数很小时是很偏态的,但当平均数增大时则逐
渐趋向正态,这种趋向正态的“速度”是很快的。见 图
e x P( X ) x!
Poisson分布的图形
当=20时Poisson分布接近正态分布,当>50时可 认为呈正态分布。
分别等于 1, 2, 3, 6 的泊松分布
0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
类似Fisher’s检验, P值=小于等于样本点的概率的概率之和 或者P值= 1-(大于样本点概率的概率之和)
X 0 1 2 3 4 5 6 7 8 9 10 P(X) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008
P值 =1-(大于样本点概率的概率之和) =1-P(4)-P(3)-P(2)-P(1) =1-0.1494-0.2240-0.2240-0.1680 =0.2346 >0.05, 因此不能认为放在5。C冰箱中培养液中细菌数有变化
正态近似法 样本计数与总体均数差别的统计检验
某省宫颈癌死亡率为27.58/十万,该省抽查
2 1 . 5 P( X 2) e 1.5 0.251 2!
调查该地1000名居民中有2人患脑血管疾病的概率为 25.1%
累积概率
如果稀有事件发生次数的总体均数为λ,则发生次数至 多为k次的概率为
P( X k ) P( X ) e
x 0 x 0
k
k
X
体均数为λ1+λ2。
从同一水源独立地取水样5次,进行细菌培养,
每次水样中的菌落数分别为Xi,i=1,…,5,均服 从Poisson分布,分别记为Π(λi), i=1,…,5, 把5份水样混合,其合计菌落数∑Xi也服务 Poisson分布,记为Π(λi+λi +…+λ5).
例
某一放射性物体,以一分钟为时间单位的放射性计数
应用均数=方差的特点可以检验样本中各计数(x1 ,
x2 ,… xn)是否来自同一总体有随机样本。用所观察到 的样本数据,作如下卡方检验,其自由度为n-1
2
i 1
( xi x )
n
2
x
这一检验和上面介绍的泊松分布配合适度检验都可用
于检验某一样本是否来自泊松分布,或检验某事件 (或颗粒)之间是否独立或是否有聚集性。
则接受这一分布属于泊 松分布的假设,说明菌 落分布是随机的,没有 聚集性。
小结
在总体比例很小时,样本含量n趋
向于无穷大时,二项分布也就趋 向于泊松分布
泊松分布可看作是单位时间、单
位面积或单位容积中颗粒数或某 罕见事件发生数的概率分布
泊松分布的特征
泊松分布的应用范围
泊松分布的均数与它的方差相等
计算平均数和 例:有人观察血细胞计数池中400小格,并数出小格中红 和方差,看 细胞数,如下图,问此分布是否符合Poisson分布? 是否相等 每小格红细胞数(x) 0 1 2 3 4 5 6 7 小格数 11 36 76 80 74 58 38 17
8
9 10 11
6
当n很大而π很小,且nπ =为常数时,二项分布近似 Poisson分布 Poisson分布的总体均数和方差相等:即=2 当增大时,Poisson分布渐近正态分布;当≥20时Poisson 分布资料可作为正态分布处理 Poisson分布具有可加性
Poisson分布的均数和方差
n 当 0时 , 1 1 n (1 ) n
为50,20,20,40,10,问如果以5分钟为时间单位, 其标准差是多少?
据泊松分布的可加性原理,可计算出5分钟计数为:
50+20+20+40+10=140
若测定的数据只限于此,则5分钟的放射性脉冲计数
的均值可估计为140,则标准差为
140 11.83
例
一个放射性物体5分钟测得脉冲数为140,另
例 8-9泊松分布的配合适度
将培养皿中的细菌稀 表8-4 细菌在计数小方格中的分布 释液置于血球计上, 每小格 观察的 数出小方格中的细菌 细菌数(x) 方格数(f) 数,共计128个方格, 计数结果见右表。问 0 26 此分布是否符合泊松 1 40 分布? 2 38
3 4 17 7
Poisson分布拟合优度检验计算表
10万人,作回顾调查,得某年宫颈癌死亡人数 为30人。假设该地女性人口年龄构成与全省基 本相同。问该地宫颈癌死亡率与全省有无差别?
当泊松分布均数较大时,可用正态分布来近似,且方
差=均数,用下式进行检验,统计量Z近似服从标准正 态分布
Z
X 0
0
2. 两样本均数比较的u检验
当两样本的观察单位(时间、面积、容积) 相同时:
0
1 2 3 4 合计
27.90
42.50 32.37 16.44 6.26
26
40 38 17 7
0.1294
0.1474 0.9775 0.0191 0.0872 1.3606
自由度=组数-1-1=5-2=3
一个放射性物体5分钟测得脉冲数为200次, 这两种物体混合后估计5分钟脉冲数的总体 平均数及标准差是多少?
140+200=340
340 18.44
二、泊松分布的图形
泊松分布的特征只决定于平均数 ,不同的参数对应
不同的Poisson分布,即的大小决定了Poisson分布 的图形特征
x1 ( 38 29 36) / 3 34.33 x 2 ( 25 18) / 2 21.50 u 34.33 21.50 2.732 34.33 / 3 21.50 / 2
u
X1 X 2 X1 X 2 n1 n2
P<0.01,拒绝H0接受H1
用泊松分布对聚集性的研究
例
在室内不同位置放置6个平皿,隔一定时间后进行培
养,得葡萄球菌落数分别为21,26,22,18,19, 32,问细菌在室内不同位置的分布是否随机?
x 23
5.91 6 1 5
2 2 0 .05(5) 11.07 2 2 0 .05(5) , p 0.05
泊松分布资料的差异显著性检验
(三)泊松分布资料的差异显著性检验
1. 样本均数与总体均数比较: 直接计算概率法 例 8-10
例8-11
正态近似法(≥20) :
例
已知在培养液中,每毫升平均有 3 个细菌数,今采集放在 5℃冰箱中的1毫升培养液测得细菌数 5个,能否说培养液中细 菌数有无变化?
解:H0:=3/ml vs H1:3/ml
X!
发生次数至少为k次的概率为:
P( x k ) 1 P( X k 1)
累积概率
试估计每一个培养皿中菌落数小于3个的概率,大于1
个的概率。
P( X 3) P( X 2) 0.062
X 0
2
P( X 1) 1 P( X ) 0.983
例 8-6计算置信区间
由于平均数λ大于50,因而可用正态近似法进行泊松
分布的检验
u | x1 x2 | / x1 x2 x1 / n1 x2 / n2
x x
1
2
如果两样本观察单位数 不相等, 则用下式检验 u 或u x1 x2
2 x1 / n12 x2 / n2
当两样本的观察单位(时间、面积、容积)
样本,没有理由说此乡肝癌死亡率低于该高发区的平 均水平。
例 8-7
对于大样本资料置信区间可近似地运用正态分布法进
行
同一样品分别用 10 个平皿进行培养,共数得菌落数
1460个,试估计该样品菌落数的 95% 置信区间。
95%CI : 1.96 99%CI : 2.58
X1+X2≥20 5<X1+X2 < 20 例 8-12
u u x1 x 2 x1 x 2 x1 x 2 1 x1 x 2
例 8-12
用甲、乙两种培养基对水质进行细菌培养,在相同的条
件下, 用甲培养基的菌落数为100, 用乙培养基的菌落 数为150, 问两培养基的菌落数的差别有无显著性?
3 0 1
合计
400
Poisson的可加性
从总体均数为λ1的Poisson分布总体中随机抽出一份样
本,其中稀有事件的发生次数为X1次,
再独立地从总体均数λ2的Poisson分布总体中随机抽出
另一份样本,其中稀有事件的发生次数为X2,
则它们的合计发生数T=X1+X2也服从Poisson分布,总
0 2 松分布的图形是由平均数来确定的
三、泊松分布的应用
(一)概率估计和累积概率计算 (二)置信区间的估计
例 8-6 例 8-7 概率估计 例 8-8 例 8-8 例 8-9 例 8-10
(二)泊松分布的配合适度检验
(三)泊松分布资料的差异显著性检验
用途:
用来描述研究单位时间内(或单位空间、容积内)某
罕见事件发生次数的分布:如
单位体积的水或牛奶中的细菌数的分布 计数空气中细菌或灰尘的分布 放射性物质在单位时间内放射次数的分布
用来分析医学上人群中遗传缺陷、癌症等发病率很低
的非传染性疾病的发病或患病人数的分布
二、泊松分布的性质
泊松分布的概率
如果某事件的总体平均发生次数为λ,则在n个独
立试验中,则该事件发生x次的概率为:
P( X )
e=2.71828
e
x
x!
x=0,1,2,3…
λ为总体平均数
Poisson分布的条件
n值很大,而π(或1-π)很小的二项分布 π或1- π接近于0或1:如<0.001或>0.999 二项分布的条件
不相同时:
X1+x2≥20
u X1 X 2 X1 X 2 2 2 n1 n2 X1 X 2 1 X1 X 2 2 2 n1 n2
5<X1+x2 < 20
u
例8-13
例8-13 两样本计数差别的统计检验
某车间在改革生产工艺前,测取三次粉尘浓度,每升空气
中分别有38,39,36颗粉尘;改进工艺后,测取两次,分 别有25,18颗粉尘。问工艺改革前后粉尘数有无差别? H0:μ1 = μ2 H1:μ1≠μ2 α=0.05
小样本资料的泊松分布置信区间估计查附表8
例:计算置信区间
某乡有4000人口,连续3年无肝癌死亡。该乡位于肝
癌死亡率连年达到每10万人口29人的高发地区。问这 个乡肝癌死亡率是否较该高发区平均水平为低?
应死亡:4000×3×29/10万=3.48人, x=0时的95%可信区间:查表得(0,3.7) 包括了3.48,故该乡仍可认为是该高发区的一样随机
(一)概率估计和累积概率
概率估计 例 实验显示某100cm2的培养皿中菌落数等于3个的
概率
6 P( X 3) e 0.089 3!
6
3
例:如果某地居民脑血管疾病的患病率为150/10万,
那么调查该地1000名居民中有2人患脑血管疾病的概 率有多大?
n 1000 0.0015 1.5
第二节 泊松分布 (Poisson distribution)
一、泊松分布的概念
二、泊松分布的性质
三、泊松分布的应用
一、泊松分布的概念
泊松分布(Poisson distribution):为二项分布的
特例,如果某些现象的发生率π很小,而样本例数较 大,则二项分布逼近Poisson分布。
1837年S.D.Poisson提出的
样本值X=5,对应的概率
35 3 P( X 5 | 3) e 0.10081 5! 3 X 3 P( X ) e X!
2 3 4 5 6 7 8 9 10
X
0
1
P(X) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008
当平均数很小时是很偏态的,但当平均数增大时则逐
渐趋向正态,这种趋向正态的“速度”是很快的。见 图
e x P( X ) x!
Poisson分布的图形
当=20时Poisson分布接近正态分布,当>50时可 认为呈正态分布。
分别等于 1, 2, 3, 6 的泊松分布
0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
类似Fisher’s检验, P值=小于等于样本点的概率的概率之和 或者P值= 1-(大于样本点概率的概率之和)
X 0 1 2 3 4 5 6 7 8 9 10 P(X) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008
P值 =1-(大于样本点概率的概率之和) =1-P(4)-P(3)-P(2)-P(1) =1-0.1494-0.2240-0.2240-0.1680 =0.2346 >0.05, 因此不能认为放在5。C冰箱中培养液中细菌数有变化
正态近似法 样本计数与总体均数差别的统计检验
某省宫颈癌死亡率为27.58/十万,该省抽查
2 1 . 5 P( X 2) e 1.5 0.251 2!
调查该地1000名居民中有2人患脑血管疾病的概率为 25.1%
累积概率
如果稀有事件发生次数的总体均数为λ,则发生次数至 多为k次的概率为
P( X k ) P( X ) e
x 0 x 0
k
k
X
体均数为λ1+λ2。
从同一水源独立地取水样5次,进行细菌培养,
每次水样中的菌落数分别为Xi,i=1,…,5,均服 从Poisson分布,分别记为Π(λi), i=1,…,5, 把5份水样混合,其合计菌落数∑Xi也服务 Poisson分布,记为Π(λi+λi +…+λ5).
例
某一放射性物体,以一分钟为时间单位的放射性计数
应用均数=方差的特点可以检验样本中各计数(x1 ,
x2 ,… xn)是否来自同一总体有随机样本。用所观察到 的样本数据,作如下卡方检验,其自由度为n-1
2
i 1
( xi x )
n
2
x
这一检验和上面介绍的泊松分布配合适度检验都可用
于检验某一样本是否来自泊松分布,或检验某事件 (或颗粒)之间是否独立或是否有聚集性。
则接受这一分布属于泊 松分布的假设,说明菌 落分布是随机的,没有 聚集性。
小结
在总体比例很小时,样本含量n趋
向于无穷大时,二项分布也就趋 向于泊松分布
泊松分布可看作是单位时间、单
位面积或单位容积中颗粒数或某 罕见事件发生数的概率分布
泊松分布的特征
泊松分布的应用范围
泊松分布的均数与它的方差相等
计算平均数和 例:有人观察血细胞计数池中400小格,并数出小格中红 和方差,看 细胞数,如下图,问此分布是否符合Poisson分布? 是否相等 每小格红细胞数(x) 0 1 2 3 4 5 6 7 小格数 11 36 76 80 74 58 38 17
8
9 10 11
6
当n很大而π很小,且nπ =为常数时,二项分布近似 Poisson分布 Poisson分布的总体均数和方差相等:即=2 当增大时,Poisson分布渐近正态分布;当≥20时Poisson 分布资料可作为正态分布处理 Poisson分布具有可加性
Poisson分布的均数和方差
n 当 0时 , 1 1 n (1 ) n
为50,20,20,40,10,问如果以5分钟为时间单位, 其标准差是多少?
据泊松分布的可加性原理,可计算出5分钟计数为:
50+20+20+40+10=140
若测定的数据只限于此,则5分钟的放射性脉冲计数
的均值可估计为140,则标准差为
140 11.83
例
一个放射性物体5分钟测得脉冲数为140,另
例 8-9泊松分布的配合适度
将培养皿中的细菌稀 表8-4 细菌在计数小方格中的分布 释液置于血球计上, 每小格 观察的 数出小方格中的细菌 细菌数(x) 方格数(f) 数,共计128个方格, 计数结果见右表。问 0 26 此分布是否符合泊松 1 40 分布? 2 38
3 4 17 7
Poisson分布拟合优度检验计算表
10万人,作回顾调查,得某年宫颈癌死亡人数 为30人。假设该地女性人口年龄构成与全省基 本相同。问该地宫颈癌死亡率与全省有无差别?
当泊松分布均数较大时,可用正态分布来近似,且方
差=均数,用下式进行检验,统计量Z近似服从标准正 态分布
Z
X 0
0
2. 两样本均数比较的u检验
当两样本的观察单位(时间、面积、容积) 相同时: