Behavior of potassium titanate whisker in simulated body fluid

合集下载

CA数据库简介-张玲

CA数据库简介-张玲

9. Organization (组织机构、团体作者) Nanjing Institute of Chemical Technology BASF 10. Journal (刊物名称) AIChE.J J. Amer. Chem. Soc.
11. Document Type (文献类型) 12. Language (原始文献的语种) 13. Year (文献出版年份)
避免人为的错误和随意性 例如:聚四氟乙烯
– PTFE 2395篇 – polytetrafluoroethylene 946篇 – polytetraflouroethylene 7篇
全!
– polytetrafloroethylene 1篇
– polytetrafluorethylene 1篇 – Teflon 534篇
《The Merck Index》 《Kirk-Othmer Encyclopedia of Chemical Technology》
《Ullmann’s Encyclopedia of Industrial Chemistry》
也可以在线检索
CA记录格式
CAN
Title
Author
Journal
Language
Year
Organizaton
Search 高级检索 (1)
最有用的 检索方法
用布尔逻辑语and,or,not 将检索词、 CAS 登录号、作 者、分子式、文件类型等结合起来进行检索,提高检准率、 检全率。 例: 要求查南京化工大学时钧关于膜研究 以外的文章。 (Shi, J. or Shi, J or Shi, Jun) and (Nanjing Inst. Chem. Technol. or Nanjing Institute of Chemical Technology ) not Membrane

CA数据库简介-

CA数据库简介-
分子式检索是按Hill 体系排列的
C前,H后,其它元素按字顺排列
不含C,则所有元素均按字顺排列 对酸、醇、有机胺的金属盐,均按母体 名称排列,金属离子不计入分子式。 例:H2CO3——CH2O3 TiO2 ——O2Ti
Form 分子式检索 (2)
想检索锐钛型二氧化钛TiO2方面的文章
TiO2的形态很多,性能各异,有
锐钛型(Anatase) 金红石型(Rutile) 等.
Subst 化学物质检索
例:1-Propanaminium, 3-carboxy-2-
hydroxy-N,N,N-trimethyl, inner salt, (2R)-
CAS RN 登录号检索 (1)
CAS RN——CAS Register Number (美国化学文摘社登 录号) 针对化学物质一物多名的问题, CAS制定了唯一性的命
9. Organization (组织机构、团体作者) Nanjing Institute of Chemical Technology BASF 10. Journal (刊物名称) AIChE.J J. Amer. Chem. Soc.
11. Document Type (文献类型) 12. Language (原始文献的语种) 13. Year (文献出版年份)
Search 高级检索(3)
检索词中可输入某些符号: 使用代字符 ?
每一个“?”只代表一 个字符
如: ep?xy 即可检索到 epoxy
使用截词符 *
* 符号表示该单词 前方一致
例: catalytic* 可以检索到 catalytic 和 catalytical 等。
Form 分子式检索 (1)
CAS RN 检索的优点 (1)

PA6综述

PA6综述

纤维增强PA6前言聚酰胺6 (PA6),俗称尼龙6 (Nylon6),又称聚己内酰胺(Polycaprolactam),其分子式为n NH CH 25CO ,它通常是由 -己内酰胺缩聚制成,分子链带极性酰胺基(-NHCO-)基团。

PA6是一种结晶型聚合物,其外观为半透明或不透明的乳白色,相对分子质量一般在1.5万至3万之间。

尼龙6具有优良的自润滑性和耐磨性,机械强度较高,耐热性、电绝缘性好,而且低温性能优良,耐化学药品性好,特别是具有优良耐油性。

尼龙6的加工成型性比尼龙66容易,此外制品的表面光泽性较好,能在较宽的温度范围内应用;但由于其吸水率较高,使其在一定程度上产生塑化作用,导致制品的尺寸稳定性较差;尼龙6的熔点一般为230~235℃,与PA66相比刚性小、熔点低、加工性能优良,有很好的冲击性能和分散性。

由于PA6的易吸水性,所以加工前应对PA6粒料进行干燥处理,使其含水量降至0.1%以下,以免在制品中出现气泡,造成瑕疵和缺陷,PA6的干燥温度一般低于100℃,这样可以有效的防止PA6热降解及表面氧化]1[。

对PA6增强改性主要是利用纤维进行共混,提高PA6的强度,同时也改善PA6的抗水性。

纤维增强改性是指将一定配比的基体树脂、纤维材料、添加剂等,进行共混改性。

可显著改善复合材料物理机械性能,如刚性、强度、耐热性等;还能提高复合材料的最高使用温度,减轻复合材料的质量,增强耐腐蚀性等。

从而起到增加复合材料的附加价值,改善复合材料的应用价值,拓宽复合材料的应用领域。

一、无机纤维增强PA61、 玻璃纤维(Glass Fiber, GF )玻璃纤维的成分和玻璃一样,在人们的印象中玻璃强度较低,易碎,不可能作为增强材料。

事实上,当其牵伸成细丝之后,不但不像玻纤那样坚硬,反而具有一定的柔韧性。

其强度和弹性模量都非常大。

因此,可以作为一些聚合物基体的增强材料。

实验结果也表明,玻纤维的直径越小,其强度反而越高]2[。

低维材料(二)[优质课堂]

低维材料(二)[优质课堂]
无疲劳效应。晶须没有明显的疲劳特征, 即 使被磨成粉末、切断, 其强度也不受损失。
优质课堂
10
(2) 良好的相容性
晶须的尺寸细微, 不影响复合材料成型流动 性,接近于无填充的树脂。晶须可以在高 分子基体中分布得很均匀, 可以使极薄、极 狭小甚至边角部位都能得到增强填充。
优质课堂
11
(3) 优良平滑性及化学稳定性
机械强度高。晶须作为细微的单晶体, 内部 结构十分完整。具有非常坚韧的性质, 其抗 张强度为玻璃纤维的5--10 倍, 比硼纤维有 更好的韧性。
耐高温性。晶须具有不会引起高温滑移的 完整性, 温度升高时, 晶须不分解、不软化, 其强度几乎没有损失。这个特性使其在防 火材料中的应用成为可能。
优质课堂
优质课堂
16
按VS机制生长的部分晶须
晶须种类 制备方法
Al2O3 β-SiC
AlF3水解法 碳热还原法
莫来石 气相法
莫来石 溶胶-凝胶法
莫来石 热处理法
Sn h-BN
自发反应 热处理法
原料
AlF3, H2O C,高岭土 Al2O3, AlF3
铝硅干凝胶,AlF3
铝硅玻璃,AlF3
Sn h-BN,N2
晶须增强工程塑料膨胀系数及成型收缩率 小,有极高的尺寸精度和光洁的平滑表面, 远远超过碳纤维和玻璃纤维增强材料制品。
(4) 再生性能好
用晶须增强的复合材料有良好的重复使用 性。实验表明:添加晶须的复合材料经多 次加工,热稳定性好,力学性能变化也不 大, 再生循环使用性能好。
优质课堂
12
晶须的生长机制
9
能弹性地承受较大的应变而无永久变形。试 验证明,晶须经4%的应变还在弹性范围内, 不产生永久形变,而块状晶体的弹性变形范 围却小于0.1%。

海藻玉壶汤治疗桥本甲状腺炎临床研究

海藻玉壶汤治疗桥本甲状腺炎临床研究

海藻玉壶汤治疗桥本甲状腺炎临床研究田林涛1,王新梅1,郭笑丹2,雷 烨1,魏文静1(1.陕西中医药大学第二附属医院,陕西 咸阳 712099; 2.陕西省核工业二一五医院,陕西 咸阳 710054)[摘要] 目的:探讨海藻玉壶汤对桥本甲状腺炎疗效及对甲状腺自身免疫性抗体、Th1/Th2相关细胞因子的影响。

方法:将94例桥本甲状腺炎患者按随机数字表法分为观察组和对照组各47例。

对照组患者服用硒酵母片和左旋甲状腺素钠片进行治疗,观察组在此基础上服用海藻玉壶汤,两组疗程均为3个月。

比较两组中医症状积分、治疗总有效率,以及甲状腺球蛋白抗体(TGAb )、甲状腺过氧化物酶抗体(TPO -Ab )、游离三碘甲状腺原氨酸(FT 3)、游离四碘甲状腺原氨酸(FT 4)、促甲状腺激素(TSH )、白细胞介素-10(IL -10)、白细胞介素-12(IL -12)、γ干扰素(IFN -γ)水平,并观察不良反应情况。

结果:治疗后两组甲状腺肿大、咽部异物感、胸闷胁痛、乏力评分,以及血清TGAb 、TPO -Ab 、TSH 、IL -12、IFN -γ水平均较治疗前降低,且观察组低于对照组(均P <0.05);两组血清FT 3、FT 4、IL -10水平均较治疗前升高,且观察组高于对照组(均P <0.05);观察组治疗总有效率95.74%,对照组82.98%,观察组疗效优于对照组(P <0.05);两组均未出现不良反应事件。

结论:海藻玉壶汤联合常规西药治疗桥本甲状腺炎疗效较好,可降低甲状腺自身抗体水平并恢复甲状腺功能,其机制可能是通过下调Th1型细胞因子、上调Th2型细胞因子以改善甲状腺功能。

[关键词] 桥本甲状腺炎;海藻玉壶汤;甲状腺自身免疫性抗体;甲状腺激素;Th1/Th2细胞因子[中图分类号] R259.814 [文献标志码] A [文章编号] 0257-358X (2024)01-0041-07DOI :10.16295/ki.0257-358x.2024.01.009Clinical Study of Haizao Yuhu Decoction (海藻玉壶汤) in Treatment of Hashimoto ThyroiditisTIAN Lintao 1,WANG Xinmei 1,GUO Xiaodan 2,LEI Ye 1,WEI Wenjing 1(1.The Second Affiliated Hospital of Shaanxi University of Chinese Medicine ,Xianyang 712099,China ;2.NO.215 Hospital of Shaanxi Nuclear Industry ,Xianyang 710054,China )Abstract Objective :To explore the effect of Haizao Yuhu Decoction (海藻玉壶汤) in treatment of Hashimoto thyroiditis and its effect on thyroid autoimmune antibodies and Th1/Th2 related cytokines. Methods :A total of 94 patients with Hashimoto thyroiditis were divided into the observation group and the control groupby using random number table method ,with 47 cases in each group. The control group was treatedwith selenium yeast tablets and levothyroxine sodium tablets ,and the observation group was treated with Haizao Yuhu Decoction on the basis of the treatment of the control group. The course oftreatment in both groups was three months. Chinese[收稿日期] 2023-07-03[基金项目] 陕西省中医药管理局科研课题(编号:LCMS051);陕西中医药大学第二附属医院学科创新团队项目(编号:2019-QN02)[作者简介] 田林涛(1980—),男,河南驻马店人,医学硕士,主治医师,主要从事内分泌代谢研究。

霍格沃兹之遗 英语包

霍格沃兹之遗 英语包

霍格沃兹之遗英语包The Forgotten Legacy of HogwartsIn the annals of wizarding history, few institutions have captured the imagination and reverence of the magical community as Hogwarts School of Witchcraft and Wizardry. This legendary institution, nestled amidst the rolling hills and dense forests of Scotland, has long been the hallmark of magical education, producing some of the most renowned and powerful witches and wizards the world has ever known.Yet, as the years have passed, the true legacy of Hogwarts has become obscured by the passage of time and the ever-evolving landscape of the wizarding world. Many of the school's most significant contributions and the remarkable individuals who walked its hallowed halls have been relegated to the footnotes of history, their stories and accomplishments fading from the collective memory of the magical community.One such forgotten legacy is the Hogwarts English Language Pack a remarkable initiative that sought to bridge the linguistic divide within the wizarding world and empower students from all backgrounds toexcel in the global arena of magic.The Hogwarts English Language Pack was conceived in the late 19th century, a time when the wizarding world was rapidly expanding its reach and influence, with magical communities springing up in every corner of the globe. As the wizarding community became increasingly interconnected, the need for a common language of communication became increasingly apparent.At the forefront of this initiative was Headmaster Armando Dippet, a visionary educator who recognized the transformative power of language in the wizarding world. Dippet understood that the ability to communicate effectively in English, the lingua franca of the magical community, would open doors for Hogwarts students, allowing them to forge connections, pursue opportunities, and make meaningful contributions on a global scale.Under Dippet's leadership, the Hogwarts English Language Pack was born a comprehensive program that wove the teaching of English into the fabric of the Hogwarts curriculum. From the moment students stepped foot on the Hogwarts Express, they were immersed in an environment that prioritized English proficiency, with classes, lectures, and even casual conversations conducted in the language.The impact of the Hogwarts English Language Pack was profound.Students who once struggled with the language barriers found themselves empowered to engage with their peers from around the world, to participate in international magical conferences and symposia, and to secure prestigious internships and job placements in the global wizarding community.Among the most celebrated alumni of the Hogwarts English Language Pack was Albus Dumbledore, whose mastery of the English language and ability to communicate with wizards and witches from diverse backgrounds was instrumental in his rise to prominence. Dumbledore's fluency in English allowed him to forge alliances, broker treaties, and navigate the complex political landscape of the wizarding world with unparalleled skill.Similarly, Minerva McGonagall, the legendary Transfiguration professor and eventual Headmistress of Hogwarts, credited the Hogwarts English Language Pack with opening doors and opportunities that might have otherwise been closed to her. McGonagall's prowess in English enabled her to collaborate with researchers and scholars from around the world, contributing to groundbreaking advancements in the field of Transfiguration.The Hogwarts English Language Pack also played a crucial role in shaping the careers of many other renowned witches and wizards, from Newt Scamander, the celebrated magizoologist, to GarrickOllivander, the renowned wandmaker whose expertise was sought after by magical communities across the globe.Yet, despite the profound impact of the Hogwarts English Language Pack, its legacy has been largely forgotten in the modern wizarding world. As the focus of magical education has shifted to more specialized and technical fields, the importance of language proficiency has been overshadowed, and the Hogwarts English Language Pack has faded into obscurity.This is a travesty, for the Hogwarts English Language Pack was not merely a program it was a testament to the power of education to transcend linguistic and cultural barriers, to bring people together, and to empower individuals to make a lasting impact on the world.In a time when the wizarding community faces new challenges and the need for global cooperation and understanding is more vital than ever, the forgotten legacy of the Hogwarts English Language Pack serves as a poignant reminder of the transformative potential of language and the importance of preserving the rich tapestry of Hogwarts' history.It is time to rediscover and celebrate the Hogwarts English Language Pack, to honor the visionary educators and trailblazing students who paved the way for a more interconnected and inclusive wizardingworld. For in the legacy of this forgotten program lies the key to unlocking the true potential of Hogwarts and the wizards and witches it has produced for generations.。

威学一百托福考试2018年6月10日内容解析

威学一百托福考试2018年6月10日内容解析

威学一百托福考试2018年6月10日内容解析阅读P1Augusten帝国的农业P2global conveyer,讲到global ice age可能与它的break down有关P3pesticideP4宇宙大爆炸导致行星形成月球上的陨石坑记录不全但是还是能发现两个信息,表明大规模的爆炸在39亿年之前。

地球其实更容易受到撞击因为它目标更大引力更强,但是火山把痕迹都抹掉了。

P5动物冬眠行为P6中国艺术文化P7火星上的沙尘暴P8罗马帝国对英国工业的影响P9雌鸟喜欢羽毛漂亮,能飞的远的雄鸟,这些鸟更能成功配偶,抚育后代。

雄鸟羽毛亮就更容易吸引捕食者,所以就需要更强的能力逃避追捕,这也是有吸引力的原因之一。

羽毛亮也意味着更少的被细菌和寄生虫感染,意味着健康。

P10关于鹿,雌鹿雄鹿都会更新鹿茸,和哺乳动物不太一样。

鹿茸的生长要消耗很多能量。

一些elk从old world到new world跨过了一个connection,而麋鹿方向相反。

一种特别的鹿以lichen 为食,因为它有酶,人有的时候就会吃这种鹿补充能量。

词汇feature=aspectmere=rarely听力Conversation 1一个picnic遇到了damage,虽然食物很好,但是又下雨饮料也坏了。

前面有说IDcard不能付款,老师说这个已经标明了是学生没注意看,建议学生上网填个反馈,学生还提了个建议,但是老师说要考虑到成本问题,所以可能不行Conversation 2学生与教授。

学生选了舞蹈课,这舞蹈课与音乐课结合。

老师说他以前上的舞蹈课都没有强调音乐的作用,就是机械的重复练习。

门课要求学生创作自己的舞蹈加入我自己的很多想法,然后教授就说很好。

接着说开始就讲了一个艺术家就是跳舞结合了音乐。

其他人批判该艺术家守旧,不懂得创新,然而教授就表扬说这个艺术家音乐和舞蹈,起舞整个人很生动,音乐的演绎很棒。

这个艺术家他每次与其他艺术家表演都受表扬。

《哈利波特》专有名词中英对照

《哈利波特》专有名词中英对照

《哈利波特》专有名词——中英对照人名(Albus Dumbledore)——阿不思·邓布利多,现霍格沃茨学校校长,最伟大的校长。

(Armando Dippet)埃曼多·迪佩特,邓布里多的前人。

(Arthur Weasley)——亚瑟·韦斯莱。

(Bartemius (Barty) Crouch)——(巴特缪斯)巴蒂·克劳奇。

(Bill Weasley)比尔·韦斯莱(Bloody Baron)——血人巴罗,斯莱特林的幽灵。

(Charlie Weasley)查理·韦斯莱(Cornelius Fudge)康奈利·福吉。

(Dobby)——多比,男性家养小精灵。

(Dolores Jane Umbrigde)多洛雷斯·乌姆里奇(Draco Malfoy)——德拉科·马尔福。

(Dudley)达力(Fat Lady)——胖夫人。

(Filch)——费尔奇,霍格沃茨的看门人(Fleur Delacour)——芙蓉·德拉库尔,布斯巴顿(Beauxbatons)在三强争霸赛中的勇士。

(Fred & George)弗雷德,乔治(Gilderoy Lockhart)——吉德罗·洛哈特教授(Ginny)金妮(Gregory Doyle)——格利高里·高尔。

(Harry Potter)——哈利·波特(Hermione Granger)——赫敏·格兰杰。

(Horace Slughorn)霍拉斯·斯拉格霍恩(Igor Karkaroff)——伊格尔·卡卡洛夫(Lord Voldemort)——伏地魔。

(Lucius Malfoy)——卢修斯·马尔福。

(Ludo Bagman)——卢多·巴格曼,魔法部体育运动司司长。

(Luna Lovegood)卢娜·丽夫古德(Madam Pinse)——平斯夫人,霍格沃茨图书管理员。

氢氧化钠溶液替代石灰乳改造研究贾恒1刘泽锐2

氢氧化钠溶液替代石灰乳改造研究贾恒1刘泽锐2

氢氧化钠溶液替代石灰乳改造研究贾恒1 刘泽锐2发布时间:2023-07-16T04:59:25.365Z 来源:《科技新时代》2023年9期作者:贾恒1 刘泽锐2[导读] 废水处理站因工艺升级,现将含铬废水处理系统中起到中和作用的固态碱药剂溶液替换为30 %的氢氧化钠药剂溶液进行中和作用(氢氧化钠储罐溢流管已接入独立地坑中、储罐周围围挡已建筑完毕)。

以便于更好的进行中和反应,且能大幅缩减危废物的产出量,减少环境污染提升环保质量的同时也为公司降低了运行成本。

天津太钢天管不锈钢有限公司天津 300000摘要:废水处理站因工艺升级,现将含铬废水处理系统中起到中和作用的固态碱药剂溶液替换为30 %的氢氧化钠药剂溶液进行中和作用(氢氧化钠储罐溢流管已接入独立地坑中、储罐周围围挡已建筑完毕)。

以便于更好的进行中和反应,且能大幅缩减危废物的产出量,减少环境污染提升环保质量的同时也为公司降低了运行成本。

关键词:含铬废水;中和反应;降低成本Research on the Transformation of Replacing Calcium hydroxide with Sodium Hydroxide SolutionJia heng1,Liu zerui2Abstract:Due to the process upgrade of the wastewater treatment station,the solid alkali agent solution that plays a neutralization role in the chromium containing wastewater treatment system is replaced by 30 % sodium hydroxide agent solution for neutralization.(The overflow pipe of the sodium hydroxide storage tank has been connected to an independent pit,and the surrounding enclosure of the storage tank has been built.)To facilitate better neutralization reactions,significantly reduce the output of hazardous waste,reduce environmental pollution,improve environmental quality,and also reduce operating costs for the company.Keywords:chromium containing wastewater;Neutralization reaction;cost reduction.铬是一种重金属元素,在工业领域应用广泛[1],尤其是钢铁制造业,会产生大量的含铬废水,微量的铬是对人体所必需的,但是工业废水中产生的铬主要是以Cr3+和Cr6+化合物的形式存在,并且Cr6+溶解性极强,可通过皮肤接触或者呼吸道的方式进入人体,处理不当会导致癌变或者畸变[2]。

材料专业学术英文词汇

材料专业学术英文词汇

材料专业学术翻译必备词汇编号中文 英文1 合金合金 alloy2 材料材料 material3 复合材料复合材料 properties4 制备制备 preparation5 强度强度 strength6 力学力学 mechanical7 力学性能力学性能 mechanical8 复合复合 composite9 薄膜薄膜 films10 基体基体 matrix11 增强增强 reinforced12 非晶非晶 amorphous13 基复合材料基复合材料 composites14 纤维纤维 fiber15 纳米纳米 nanometer16 金属金属 metal17 合成合成 synthesis18 界面界面 interface19 颗粒颗粒 particles20 法制备法制备 prepared21 尺寸尺寸 size22 形状形状 shape23 烧结烧结 sintering24 磁性磁性 magnetic25 断裂断裂 fracture26 聚合物聚合物 polymer27 衍射衍射 diffraction28 记忆记忆 memory29 陶瓷陶瓷 ceramic30 磨损磨损 wear31 表征表征 characterization 32 拉伸拉伸 tensile33 形状记忆形状记忆 memory34 摩擦摩擦 friction35 碳纤维碳纤维 carbon 38 凝胶凝胶 sol-gel39 应变应变 strain40 性能研究性能研究 properties41 晶粒晶粒 grain42 粒径粒径 size43 硬度硬度 hardness44 粒子粒子 particles45 涂层涂层 coating46 氧化氧化 oxidation47 疲劳疲劳 fatigue48 组织组织 microstructure49 石墨石墨 graphite50 机械机械 mechanical51 相变相变 phase52 冲击冲击 impact53 形貌形貌 morphology54 有机有机 organic55 损伤损伤 damage56 有限有限 finite57 粉体粉体 powder58 无机无机 inorganic59 电化学电化学 electrochemical60 梯度梯度 gradient61 多孔多孔 porous62 树脂树脂 resin63 扫描电镜扫描电镜 sem64 晶化晶化 crystallization65 记忆合金记忆合金 memory66 玻璃玻璃 glass67 退火退火 annealing68 非晶态非晶态 amorphous69 溶胶-凝胶凝胶 sol-gel70 蒙脱土蒙脱土 montmorillonite71 样品样品 samples72 粒度粒度 size73 耐磨耐磨 wear74 韧性韧性 toughness75 介电介电 dielectric76 颗粒增强颗粒增强 reinforced78 环氧树脂环氧树脂 epoxy79 纳米tio tio80 掺杂掺杂 doped81 拉伸强度拉伸强度 strength82 阻尼阻尼 damping83 微观结构微观结构 microstructure84 合金化合金化 alloying85 制备方法制备方法 preparation86 沉积沉积 deposition87 透射电镜透射电镜 tem88 模量模量 modulus89 水热水热 hydrothermal90 磨损性磨损性 wear91 凝固凝固 solidification92 贮氢贮氢 hydrogen93 磨损性能磨损性能 wear94 球磨球磨 milling95 分数分数 fraction96 剪切剪切 shear97 氧化物氧化物 oxide98 直径直径 diameter99 蠕变蠕变 creep100 弹性模量性模量 modulus101 储氢 hydrogen102 压电 piezoelectric103 电阻 resistivity104 纤维增强维增强 composites105 纳米复合材料米复合材料 preparation106 制备出备出 prepared107 磁性能性能 magnetic108 导电 conductive109 晶粒尺寸粒尺寸 size110 弯曲 bending111 光催化催化 tio112 非晶合金晶合金 amorphous113 铝基复合材料基复合材料 composites114 金刚石刚石 diamond115 沉淀 precipitation116 分散 dispersion118显微组织微组织 microstructure 119 s ic 复合材料复合材料 sic 120硬质合金质合金 cemented 121 摩擦系数擦系数 friction 122 吸波 absorbing 123 杂化 hybrid 124 模板 template 125 催化剂化剂 catalyst 126 塑性 plastic 127晶体 crystal 128 s ic 颗粒颗粒 sic 129 功能材料能材料 materials 130 铝合金合金 alloy 131 表面积面积 surface 132 填充 filled 133 电导率导率 conductivity 134控溅射溅射 sputtering135金属基复合材料属基复合材料 composites 136 磁控溅射控溅射 sputtering 137 结晶 crystallization 138 磁控 magnetron 139均匀 uniform 140 弯曲强度曲强度 strength 141 纳米碳米碳 carbon 142 偶联 coupling 143 电化学性能化学性能 electrochemical 144及性能性能 properties 145 a l 复合材料复合材料 composite 146 高分子分子 polymer 147 本构 constitutive 148 晶格 lattice 149编织 braided 150 断裂韧性裂韧性 toughness 151 尼龙 nylon 152 摩擦磨损性擦磨损性 friction 153 耐磨性磨性 wear 154 摩擦学擦学 tribological 155 共晶 eutectic 156 聚丙烯丙烯 polypropylene 158 偶联剂联剂 coupling 159 泡沫 foam 160前驱 precursor 161高温合金温合金 superalloy 162 显微结构微结构 microstructure 163氧化铝化铝 alumina164 扫描电子显微镜描电子显微镜 sem 165 时效 aging 166 熔体 melt 167 凝胶法胶法 sol-gel 168 橡胶 rubber 169 微结构结构 microstructure 170 铸造 casting 171铝基 aluminum 172 抗拉强度拉强度 strength 173 导热thermal174 透射电子显微镜射电子显微镜 tem 175插层 intercalation 176 冲击强度击强度 impact 177超导 superconducting 178 记忆效应忆效应 memory 179 固化 curing 180晶须 whisker181 溶胶-凝胶法制凝胶法制 sol-gel 182 催化 catalytic 183 导电性电性 conductivity 184 环氧 epoxy 185 晶界 grain 186前驱体驱体 precursor 187 机械性能械性能 mechanical 188 抗弯 strength 189 粘度 viscosity 190热力学力学 thermodynamic191 溶胶-凝胶法制备凝胶法制备 sol-gel 192块体 bulk 193 抗弯强度弯强度 strength 194粘土 clay195 微观组织观组织 microstructure 196孔径 pore 198压缩 compression 199 摩擦磨损擦磨损 wear 200 马氏体氏体 martensitic 201制得 prepared202 复合材料性能合材料性能 composites 203气氛 atmosphere 204 制备工艺备工艺 preparation 205 平均粒径均粒径 size 206 衬底 substrate 207相组成组成 phase 208表面处理面处理 surface 209 杂化材料化材料 hybrid 210 材料中料中 materials 211 断口fracture212增强复合材料强复合材料 composites 213 马氏体相变氏体相变 transformation 214 球形 spherical 215 混杂 hybrid 216聚氨酯氨酯 polyurethane 217 纳米材料米材料 nanometer 218位错 dislocation 219纳米粒子米粒子 particles 220 表面形貌面形貌 surface 221 试样 samples 222 电学 properties 223 有序 ordered 224 电压 voltage 225 析出 phase 226 拉伸性伸性 tensile 227 大块 bulk 228 立方 cubic 229聚苯胺苯胺 polyaniline 230 抗氧化性氧化性 oxidation 231 增韧 toughening 232物相 phase 233表面改性面改性 modification 234 拉伸性能伸性能 tensile 235 相结构结构 phase 236优异 excellent238铁电 ferroelectric 239 复合材料力学性能 composites 240 碳化硅化硅 sic 241 共混 blends 242炭纤维纤维 carbon 243 复合材料层合材料层 composite 244挤压 extrusion 245 表面活性剂面活性剂 surfactant 246阵列 arrays 247 高分子材料分子材料 polymer 248 应变率变率 strain 249短纤维纤维 fiber 250 摩擦学性能擦学性能 tribological 251浸渗 infiltration 252 阻尼性能尼性能 damping 253室温下温下 room254复合材料层合板合材料层合板 composite 255 剪切强度切强度 strength 256 流变 rheological 257 磨损率损率wear258 化学气相沉积学气相沉积 deposition 259 热膨胀膨胀 thermal 260屏蔽 shielding 261发光 luminescence262 功能梯度能梯度 functionally 263 层合板合板 laminates 264 器件 devices 265 铁氧体氧体 ferrite 266 刚度 stiffness 267介电性能电性能 dielectric 268 x rd 分析分析 xrd 269 锐钛矿钛矿 anatase 270炭黑 carbon 271热应力应力 thermal 272材料性能料性能 properties 273 溶胶-凝胶法凝胶法 sol-gel 274 单向 unidirectional 275 衍射仪射仪 xrd 277水泥 cement 278退火温度火温度 annealing 279粉末冶金末冶金 powder 280 溶胶凝胶胶凝胶 sol-gel 281 熔融 melt 282 钛酸 titanate 283 磁合金合金 magnetic 284脆性 brittle285金属间化合物属间化合物 intermetallic 286 非晶态合金晶态合金 amorphous 287超细 ultrafine 288羟基磷灰石基磷灰石 hydroxyapatite 289 各向异性向异性 anisotropy 290镀层 coating 291 颗粒尺寸粒尺寸 size 292 拉曼 raman 293新材料材料 materials 294 t ic 颗粒颗粒 tic 295孔隙率隙率 porosity 296制备技术备技术 preparation 297 屈服强度服强度 strength 298金红石红石 rutile299 采用溶胶-凝胶凝胶 sol-gel 300 电容量容量 capacity 301 热电 thermoelectric 302抗菌 antibacterial 303聚酰亚胺酰亚胺 polyimide 304二氧化硅氧化硅 silica 305 放电容量电容量 capacity 306 层板 laminates 307 微球 microspheres 308 熔点 melting 309 屈曲 buckling 310 包覆 coated 311致密化密化 densification 312磁化强度化强度 magnetization 313疲劳寿命劳寿命 fatigue 314本构关系构关系 constitutive 315组织结构织结构 microstructure 317 热塑性塑性 thermoplastic 318形核 nucleation 319复合粒子合粒子 composite 320材料制备料制备 preparation 321 晶化过程化过程 crystallization 322 层间 interlaminar 323 陶瓷基瓷基 ceramic 324多晶 polycrystalline 325纳米结构米结构 nanostructures 326 纳米复合米复合 composite 327 热导率导率 conductivity 328 空心 hollow 329致密度密度 density 330 x 射线衍射仪 xrd 331 层状 layered 332 矫顽力顽力 coercivity 333纳米粉体米粉体 powder 334 界面结合面结合 interface 335超导体导体 superconductor 336 衍射分析射分析 diffraction 337纳米粉米粉 powders 338 磨损机理损机理 wear 339泡沫铝沫铝 aluminum 340进行表征行表征 characterized 341 梯度功能度功能 gradient 342 耐磨性能磨性能 wear 343平均粒均粒 particle 344聚苯乙烯苯乙烯 polystyrene345陶瓷基复合材料瓷基复合材料 composites 346 陶瓷材料瓷材料 ceramics 347石墨化墨化 graphitization 348 摩擦材料擦材料 friction 349 熔化 melting 350 多层 multilayer 351及其性能其性能 properties 352 酚醛树脂醛树脂 resin353 电沉积沉积 electrodeposition 354 分散剂散剂 dispersant 355相图 phase357壳聚糖聚糖 chitosan 358 抗氧化性能氧化性能 oxidation 359 钙钛矿钛矿 perovskite 360 分层 delamination 361 热循环循环 thermal 362 氢量 hydrogen 363 蒙脱石脱石 montmorillonite 364 接枝 grafting 365 导率 conductivity 366 放氢 hydrogen 367 微粒 particles 368 伸长率长率 elongation 369延伸率伸率 elongation 370 烧结工艺结工艺 sintering 371 层合 laminated 372 纳米级米级 nanometer 373 莫来石来石 mullite 374 磁导率导率 permeability 375填料 filler 376热电材料电材料 thermoelectric 377 射线衍射线衍射 ray 378铸造法造法 casting 379 粒度分布度分布 size 380 原子力子力 afm381 共沉淀沉淀 coprecipitation 382 水解 hydrolysis 383 抗热 thermal 384 高能球能球 ball 385干摩擦摩擦 friction 386聚合物基合物基 polymer 387 疲劳裂纹劳裂纹 fatigue 388 分散性散性 dispersion 389 硅烷 silane 390 弛豫 relaxation 391 物理性能理性能 properties 392晶相 phase393饱和磁化强度和磁化强度 magnetization 394 凝固过程固过程 solidification 395共聚物聚物 copolymer e 397薄膜材料膜材料 films 398 导热系数热系数 conductivity 399 居里 curie 400第二相二相 phase401复合材料制备合材料制备 composites 402 多孔材料孔材料 porous 403水热法热法 hydrothermal404原子力显微镜子力显微镜 afm 405 压电复合材料电复合材料 piezoelectric 406 尼龙6 nylon 407高能球磨能球磨 milling 408 显微硬度微硬度 microhardness 409基片 substrate 410 纳米技术米技术 nanotechnology 411 直径为径为 diameter 412 织构 texture 413 氮化 nitride 414热性能性能 properties 415 磁致伸缩致伸缩 magnetostriction 416 成核 nucleation 417 老化 aging 418细化 grain 419 压电材料电材料 piezoelectric 420 纳米晶米晶 amorphous 421 s i 合金合金 si 422 复合镀层合镀层 composite 423 缠绕 winding 424 抗氧化氧化 oxidation 425表观 apparent426 环氧复合材料氧复合材料 epoxy 427 甲基 methyl 428 聚乙烯乙烯 polyethylene 429 复合膜合膜 composite 430表面修饰面修饰 surface 431大块非晶块非晶 amorphous 432 结构材料构材料 materials 433表面能面能 surface 434材料表面料表面 surface 436粘弹性弹性 viscoelastic 437 基体合金体合金 alloy 438单相 phase 439 梯度材料度材料 material 440 六方 hexagonal 441 四方 tetragonal 442 蜂窝 honeycomb 443 阳极氧化极氧化 anodic 444 塑料 plastics 445超塑性塑性 superplastic 446 s em 观察观察 sem 447烧蚀 ablation 448 复合薄膜合薄膜 films 449 树脂基脂基 resin 450 高聚物聚物 polymer 451 气相 vapor 452电子能谱子能谱 xps 453 硅烷偶联烷偶联 coupling 454 团聚 particles 455基底 substrate 456断口形貌口形貌 fracture 457 抗压强度压强度 strength 458 储能 storage 459松弛 relaxation 460 拉曼光谱曼光谱 raman 461 孔率 porosity 462 沸石 zeolite 463 熔炼 melting 464磁体 magnet 465 s em 分析分析 sem 466润湿性湿性 wettability 467 电磁屏蔽磁屏蔽 shielding 468 升温 heating 469 致密 dense 470沉淀法淀法 precipitation 471差热分析热分析 dta 472成功制备功制备 prepared 473 复合体系合体系 composites 474浸渍 impregnation476 复合粉体合粉体 powders 477 沥青 pitch478磁电阻电阻 magnetoresistance 479导电性能电性能 conductivity 480光电子能谱电子能谱 xps 481 材料力学料力学 mechanical 482 夹层 sandwich 483 玻璃化璃化 glass 484衬底上底上 substrates485原位复合材料位复合材料 composites 486 智能材料能材料 materials 487 碳化物化物 carbide 488 复相 composite 489氧化锆化锆 zirconia 490 基体材料体材料 matrix 491 渗透 infiltration 492 退火处理火处理 annealing 493磨粒 wear 494 氧化行为化行为 oxidation 495 细小 fine 496基合金合金 alloy 497 粒径分布径分布 size 498润滑 lubrication 499定向凝固向凝固 solidification 500 晶格常数格常数 lattice 501晶粒度粒度 size 502 颗粒表面粒表面 surface 503吸收峰收峰 absorption 504磨损特性损特性 wear 505水热合成热合成 hydrothermal 506薄膜表面膜表面 films 507 性质研究质研究 properties 508 试件 specimen 509 结晶度晶度 crystallinity 510聚四氟乙烯四氟乙烯 ptfe 511 硅烷偶联剂烷偶联剂 silane 512 碳化 carbide 513试验机验机 tester 514结合强度合强度 bonding 516晶型 crystal 517介电损耗电损耗 dielectric 518复合涂层合涂层 coating 519 压电陶瓷电陶瓷 piezoelectric 520磨损量损量 wear 521 组织与性能织与性能 microstructure 522 合成法成法 synthesis 523烧结过程结过程 sintering 524 金属材料属材料 materials 525引发剂发剂 initiator 526有机蒙脱土机蒙脱土 montmorillonite 527 水热法制热法制 hydrothermal 528再结晶结晶 recrystallization 529 沉积速率积速率 deposition 530 非晶相晶相 amorphous 531 尖端 tip 532 淬火 quenching 533 亚稳 metastable 534穆斯 mossbauer 535 穆斯堡尔斯堡尔 mossbauer 536 偏析 segregation 537 种材料材料 materials 538 先驱 precursor 539物性 properties 540 石墨化度墨化度 graphitization 541 中空 hollow 542 弥散 particles 543淀粉 starch 544 水热法制备热法制备 hydrothermal 545涂料 coating 546复合粉末合粉末 powder 547 晶粒长大粒长大 grain 548 s em 等sem549 复合材料组织合材料组织 microstructure 550 界面结构面结构 interface 551 煅烧 calcined 552共混物混物 blends 553结晶行为晶行为 crystallization554混杂复合材料杂复合材料 hybrid 556 摩擦因数擦因数 friction 557钛基 titanium 558磁性材料性材料 magnetic 559 制备纳米备纳米 nanometer 560界面上面上 interface 561晶粒大小粒大小 size 562 阻尼材料尼材料 damping 563热分析分析 thermal564复合材料层板合材料层板 laminates 565 二氧化钛氧化钛 titanium 566沉积法积法 deposition 567 光催化剂催化剂 tio 568余辉 afterglow 569断裂行为裂行为 fracture 570颗粒大小粒大小 size 571 合金组织金组织 alloy 572非晶形成晶形成 amorphous 573 杨氏模量氏模量 modulus 574 前驱物驱物 precursor 575 过冷 alloy 576 尖晶石晶石 spinel 577化学镀学镀 electroless578溶胶凝胶法制备胶凝胶法制备 sol-gel 579 本构方程构方程 constitutive 580 磁学 magnetic 581 气氛下氛下 atmosphere 582 钛合金合金 titanium 583 微粉 powder 584压电性电性 piezoelectric 585 s ic 晶须晶须 sic 586 应力应变力应变 strain 587 石英 quartz 588 热电性电性 thermoelectric 589 相转变转变 phase 590 合成方法成方法 synthesis 591 热学 thermal 592 气孔率孔率 porosity 593永磁 magnetic 594 流变性能变性能 rheological596 热压烧结压烧结 sintering597 正硅酸乙酯硅酸乙酯 teos598 点阵 lattice599 梯度功能材料度功能材料 fgm600 带材 tapes601 磨粒磨损粒磨损 wear602 碳含量含量 carbon603 仿生 biomimetic604 快速凝固速凝固 solidification 605 预制 preform606 差示 dsc607 发泡 foaming608 疲劳损伤劳损伤 fatigue609 尺度 size610 镍基高温合金基高温合金 superalloy611 透过率过率 transmittance 612 溅射法制射法制 sputtering613 结构表征构表征 characterization 614 差示扫描示扫描 dsc615 通过sem sem616 水泥基泥基 cement617 木材 wood618 t em分析分析 tem619 量热 calorimetry620 复合物合物 composites621 铁电薄膜电薄膜 ferroelectric 622 共混体系混体系 blends623 先驱体驱体 precursor624 晶态 crystalline625 冲击性能击性能 impact626 离心 centrifugal627 断裂伸长率裂伸长率 elongation628 有机-无机无机 organic-inorganic 629 块状 bulk630 相沉淀沉淀 precipitation 631 织物 fabric632 因数 coefficient633 合成与表征成与表征 synthesis634 缺口 notch 636 弹性体性体 elastomer637 金属氧化物属氧化物 oxide638 均匀化匀化 homogenization639 吸收光谱收光谱 absorption640 磨损行为损行为 wear641 高岭土岭土 kaolin642 功能梯度材料能梯度材料 fgm643 滞后 hysteresis644 气凝胶凝胶 aerogel645 记忆性忆性 memory646 磁流体流体 magnetic647 铁磁 ferromagnetic648 合金成分金成分 alloy649 微米 micron650 蠕变性能变性能 creep651 聚氯乙烯氯乙烯 pvc652 湮没 annihilation653 断裂力学裂力学 fracture654 滑移 slip655 差示扫描量热示扫描量热 dsc656 等温结晶温结晶 crystallization657 树脂基复合材料脂基复合材料 composite658 阳极 anodic659 退火后火后 annealing660 发光性光性 properties661 木粉 wood662 交联 crosslinking663 过渡金属渡金属 transition664 无定形定形 amorphous665 拉伸试验伸试验 tensile666 溅射法射法 sputtering667 硅橡胶橡胶 rubber668 明胶 gelatin669 生物相容性物相容性 biocompatibility670 界面处面处 interface671 陶瓷复合材料瓷复合材料 composite672 共沉淀法制沉淀法制 coprecipitation673 本构模型构模型 constitutive674 合金材料金材料 alloy676 隐身 stealth677 比强度强度 strength678 改性研究性研究 modification679 采用粉末用粉末 powder680 晶粒细化粒细化 grain681 抗磨 wear682 元合金合金 alloy683 剪切变形切变形 shear684 高温超导温超导 superconducting685 金红石型红石型 rutile686 晶化行为化行为 crystallization687 催化性能化性能 catalytic688 热挤压挤压 extrusion689 微观 microstructure690 t em观察观察 tem691 缺口冲击口冲击 impact692 生物材料物材料 biomaterials693 涂覆 coating694 纳米氧化米氧化 nanometer695 x射线光电子能谱 xps696 硅灰石灰石 wollastonite697 摩擦条件擦条件 friction698 衍射峰射峰 diffraction699 块体材料体材料 bulk700 溶质 solute701 冲击韧性击韧性 impact702 锐钛矿型钛矿型 anatase703 凝固组织固组织 microstructure704 磨损试验机损试验机 tester705 丙烯酸甲酯烯酸甲酯 pmma706 r aman光谱光谱 raman707 减振 damping708 聚酯 polyester709 体材料材料 materials710 航空 aerospace711 光吸收吸收 absorption712 韧化 toughening713 疲劳裂纹扩展劳裂纹扩展 fatigue714 超塑 superplastic716 半导体材料导体材料 semiconductor 717 剪应力应力 shear718 发光材料光材料 luminescence 719 凝胶法制胶法制 gel720 甲基丙烯酸甲酯基丙烯酸甲酯 pmma721 硬质 hard722 摩擦性能擦性能 friction723 电致变色致变色 electrochromic 724 超细粉细粉 powder725 增强相强相 reinforced726 薄带 ribbons727 结构弛豫构弛豫 relaxation728 光学材料学材料 materials729 s ic陶瓷陶瓷 sic730 纤维含量维含量 fiber731 高阻尼阻尼 damping732 镍基 nickel733 热导 thermal734 奥氏体氏体 austenite735 单轴 uniaxial736 超导电性导电性 superconductivity 737 高温氧化温氧化 oxidation738 树脂基体脂基体 matrix739 含能 energetic740 粘着 adhesion741 穆斯堡尔谱斯堡尔谱 mossbauer742 脱层 delamination 743 反射率射率 reflectivity744 单晶高温合金晶高温合金 superalloy745 粘结 bonded746 快淬 quenching747 熔融插层融插层 intercalation 748 外加 applied749 钙钛矿结构钛矿结构 perovskite750 减摩 friction751 复合氧化物合氧化物 oxide752 苯乙烯乙烯 styrene753 合金表面金表面 alloy754 爆轰 detonation 756 断裂过程裂过程 fracture 757 纺织 textile。

陶瓷纤维TISMO在丙烯酸酯橡胶中的应用-2014-08-16

陶瓷纤维TISMO在丙烯酸酯橡胶中的应用-2014-08-16

陶瓷纤维TISMO在丙烯酸酯橡胶中的应用大冢材料科技(上海)有限公司钱寒东,贺炅皓,邵红琪,丁婕,青柳诚一,摘要:随着我国汽车工业快速发展,对丙烯酸酯的需求日益增加,而提高丙烯酸酯橡胶的性能,丰富该材料的配合体系也日益重要。

通过本文中的实验,我们可以发现陶瓷纤维钛酸钾材料TISMO在丙烯酸酯橡胶中表现出优异的性能特点,可以大大弥补白色填料对丙烯酸酯橡胶补强的性能需求。

特别是可以提高白色丙烯酸酯橡胶产品的拉伸强度,耐高温性能。

关键词:丙烯酸酯橡胶,TISMO,TERRACESS,钛酸钾,晶须,汽车橡胶,物理性能,拉伸强度。

Application of Ceramic Fiber TISMO in ACM RubberOtsuka material technology (Shanghai) Co., Ltd.Qian Handong, He Jionghao, Shao Hongqi, Ding Jie, Aoyagi SeiichiAbstract: With the rapid growth of China's automobile industry, the demand for acrylic rubber is increasing. It becomes more and more important to improve the performance of acrylic rubber, and enrich its compounding. In this study, we can find that the ceramic fiber potassium titanate material TISMO exhibited excellent performance in ACM rubber. TISMO can be applied as the white reinforcing filler for the acrylic rubber. Especially TISMO can improve the tensile strength and thermal resistance of the white color ACM rubber products.Keywords: acrylic rubber, TISMO, TERRACESS, potassium titanate whisker, automobile rubber, physical properties, tensile strength.1.前言丙烯酸酯橡胶(简称ACM)是以丙烯酸酯为主单体经共聚而得的弹性体,其主链为饱和碳链,侧基为极性酯基,使其溶解度参数与多种油.特别是矿物油相差甚远,因而表现出良好的耐油性,这是丙烯酸酯橡胶的重要特性。

英语作文科学小实验土豆的沉沉

英语作文科学小实验土豆的沉沉

英语作文科学小实验土豆的沉沉## Exploring the Buoyancy of Potatoes: A Scientific Experiment.Introduction.Potatoes, the ubiquitous tubers of the nightshade family, have long been a staple in human diets around the globe. However, beyond their culinary versatility, potatoes possess intriguing properties that invite scientific exploration. One such property is their variable buoyancyin water, a phenomenon that has inspired countless experiments and demonstrations. In this comprehensive study, we delve into the science behind potato buoyancy,unraveling the factors that influence their ability tofloat or sink.Materials.To conduct this scientific investigation, the followingmaterials are required:Fresh potatoes (various sizes and densities)。

Large container of water (e.g., bucket, sink)。

Salt (sodium chloride)。

Measuring cups and spoons.Graduated cylinder or pipette.Stopwatch or timer.Pen and paper for recording data.Procedure.1. Observe Natural Buoyancy: Place a potato gently into the container of water. Observe whether it floats or sinks. Repeat this process with potatoes of different sizes and densities. Record the results.2. Effect of Salt Concentration: Prepare a series of salt solutions with varying concentrations (e.g., 0%, 10%, 20%, 30%). Gradually increase the salt concentration and test the buoyancy of a potato in each solution. Determine the minimum salt concentration required to make the potato float.3. Buoyancy Time: Measure the time it takes for a potato to sink from the surface to the bottom of the water. Repeat this measurement for potatoes of different sizes and densities. Analyze the relationship between buoyancy time and potato characteristics.4. Gas Production and Buoyancy: Submerge a potato in water and observe any changes in its appearance over time. If gas bubbles form on the potato's surface, measure the volume of gas produced over a period of time. Investigate the correlation between gas production and buoyancy.Data Collection and Analysis.Record the following data during the experiment:Potato size and density.Salt solution concentration.Buoyancy time.Gas volume (if applicable)。

《马王堆汉墓帛书》英文版

《马王堆汉墓帛书》英文版

《马王堆汉墓帛书》英文版The Mawangdui Silk Manuscripts: A Glimpse into Ancient Chinese CivilizationIntroduction:In the year 1973, a significant archaeological discovery was made in a tomb at Mawangdui in Changsha, China. Unearthing a collection of ancient silk manuscripts, known as the "Mawangdui Silk Manuscripts," shed lighton the rich cultural heritage of the Han Dynasty. These manuscripts provide valuable insights into various aspects of Ancient Chinese civilization, including language, medicine, astrology, and literature.Origins and Importance:The Mawangdui Silk Manuscripts date back to the Western Han Dynasty, approximately two thousand years ago. They were discovered in three tombs belonging to high-ranking members of the ruling class – Li Cang, the Marquis of Dai, Lady Dai, his wife, and their son. These texts are of immense importance as they offer a direct glimpse into the beliefs, practices, and intellectual pursuits prevalent during that time.Themes and Content:The Mawangdui Silk Manuscripts cover a wide range of topics, showcasing the diversity and depth of Ancient Chinese culture. They consist of medical texts, historical records, maps, philosophical treatises, and even personal letters. These manuscripts are remarkably well-preserved, owing to the airtight condition within the tombs.Medical Texts:One of the most remarkable aspects of the Mawangdui Silk Manuscripts is the medical knowledge they reveal. The texts include descriptions of acupuncture techniques, herbal remedies, and detailed accounts of various diseases and their treatments. The discovery of these manuscripts greatly enhanced our understanding of ancient Chinese medicine and its evolution over time.Astrology and Divination:The Mawangdui Silk Manuscripts also contain writings related to astrology and divination. These manuscripts provide detailed information about celestial movements, constellations, and methods to predict future events. The texts demonstrate the significance of astrology in Ancient Chinese society and its influence on decision-making processes.Literary Works:In addition to medical and astrological texts, the Mawangdui Silk Manuscripts encompass several literary works. These include poems, songs, and stories that offer glimpses into the creative minds of ancient Chinese writers. The manuscripts shed light on the artistic and literary pursuits that were valued during the Han Dynasty.Language and Calligraphy:The Mawangdui Silk Manuscripts provide valuable insights into the development of the Chinese language and calligraphy. The texts exhibit variations in writing styles and characters, offering clues to the evolution ofthe Chinese script. The intricate calligraphy found in these manuscripts showcases the skill and artistry of ancient Chinese calligraphers.Implications and Legacy:The discovery and study of the Mawangdui Silk Manuscripts have significantly contributed to our understanding of Ancient Chinese civilization. These manuscripts have brought to light the innovative ideas, technological advancements, and cultural nuances of the time. They provide evidence of a society that valued education, literature, and intellectual pursuits.The Mawangdui Silk Manuscripts have also had a profound impact on the preservation and conservation of ancient artifacts in China. The successful preservation of these delicate silk manuscripts has paved the way for improved techniques and methodologies in the field of archaeology.Conclusion:The Mawangdui Silk Manuscripts, with their rich and diverse content, have provided a unique window into the lives of people living during the Han Dynasty. From medicine to astrology, literature to language, these manuscripts reveal the intellectual depth and cultural vibrancy of Ancient China. The importance of their discovery and ongoing research cannot be overstated, as they continually enrich our understanding of the past and serve as a testament to the enduring legacy of Chinese civilization.。

磨刀石目数英语

磨刀石目数英语

磨刀石目数英语The Grit of the WhetstoneAmidst the hustle and bustle of modern life, where technology reigns supreme and efficiency is the mantra, there exists a humble tool that has stood the test of time – the whetstone. This unassuming stone, with its varying degrees of grit, has played a crucial role in sharpening the blades that have shaped the course of human history, from the kitchen knives that prepare our daily meals to the swords that have decided the fate of nations.The whetstone, a simple yet ingenious device, has its origins deeply rooted in the annals of human civilization. Its use can be traced back to the dawn of mankind, when our ancestors first discovered the value of a sharp edge in their tools and weapons. As our ancestors honed their skills and crafted increasingly sophisticated implements, the whetstone became an indispensable companion, a means to maintain the keen edge that was essential for survival and progress.In the modern era, the whetstone has not lost its significance. In fact, its importance has only grown as we continue to rely on sharp blades in our daily lives. From the professional chef who meticulouslysharpens their knives to the outdoor enthusiast who maintains the edge of their survival tools, the whetstone remains a trusted companion. Its ability to transform a dull blade into a razor-sharp instrument is a testament to the timeless wisdom of our forebears.But the whetstone is more than just a tool; it is a symbol of patience, perseverance, and the pursuit of perfection. The act of sharpening a blade requires a steady hand, a keen eye, and a deep understanding of the materials and techniques involved. It is a process that demands focus, attention to detail, and a willingness to invest time and effort into achieving the desired result.As one runs the blade across the whetstone, the gentle hiss of steel against stone becomes a meditative rhythm, a soothing cadence that calms the mind and centers the soul. The gradual transformation of the blade, from dull to gleaming, is a tangible representation of the power of human effort and the rewards that come from dedicated practice.In a world that often values speed and instant gratification, the whetstone serves as a reminder of the importance of patience and the pursuit of excellence. It teaches us that true mastery is not achieved through shortcuts or half-measures, but through a steadfast commitment to the process, a willingness to embrace the challenges, and a deep appreciation for the art of sharpening.Beyond its practical applications, the whetstone also holds a deeper symbolic significance. It represents the idea that the sharpest tools are not always the most complex or technologically advanced, but rather those that have been honed and refined through time-honored techniques. It is a testament to the enduring value of traditional craftsmanship and the wisdom of those who have come before us.As we navigate the rapidly changing landscape of the modern world, the whetstone serves as a reminder that some things are timeless, that the pursuit of excellence is a universal human endeavor, and that the true measure of a tool's worth lies not in its appearance, but in its ability to perform its intended function with unparalleled precision and efficiency.In the end, the grit of the whetstone is not just about the sharpening of blades; it is about the sharpening of the human spirit, the cultivation of patience, and the pursuit of perfection in all that we do. It is a testament to the enduring power of simplicity, the beauty of craftsmanship, and the timeless wisdom that has guided us through the ages. And for those who understand its true significance, the whetstone remains a cherished and indispensable tool, a symbol of our shared humanity and our unwavering commitment to excellence.。

六钛酸钾晶须的低能耗制备和光催化性能

六钛酸钾晶须的低能耗制备和光催化性能

六钛酸钾晶须的低能耗制备和光催化性能王永红;张春晨;汪中尚;朱建华;陈干;王旭【摘要】用TiCl4作为钛源,用环氧化物驱动溶胶-凝胶化动力学过程,预制备出纳米TiO2粉末;将此纳米粉与乙酸钾混合,经烧结制备出K2 Ti6 O13晶须.研究不同烧结温度和保温时间对晶须结构与形貌影响;利用XRD和SEM对其晶相组成和形貌进行分析,并对其光催化活性进行分析表征.结果表明,样品在1000℃保温3 h,自然冷却,可获得超细六钛酸钾晶须;晶须平均直径在0.3μm,长径比(L/D)最大可达到12,粗细均匀,分散性良好;在500 W汞灯照射1 h条件下,制备的六钛酸钾晶须对抗生素(四环素tetracycline,TC)为模型探针分子具有优异的光催化性能.【期刊名称】《功能材料》【年(卷),期】2018(049)007【总页数】5页(P7014-7017,7023)【关键词】环氧驱动;溶胶-凝胶;钛酸钾晶须;煅烧法;前驱物;催化降解【作者】王永红;张春晨;汪中尚;朱建华;陈干;王旭【作者单位】合肥工业大学材料科学与工程学院,合肥 230009;合肥工业大学材料科学与工程学院,合肥 230009;合肥工业大学材料科学与工程学院,合肥 230009;安徽永高塑料发展有限公司,安徽广德 242200;合肥工业大学材料科学与工程学院,合肥 230009;合肥工业大学材料科学与工程学院,合肥 230009【正文语种】中文【中图分类】TB3210 引言六钛酸钾晶须是一种呈针状单晶无机化合物,属于单斜晶系[1],由TiO6八面体通过共棱和共面形成的隧道状微结构,隧道轴与晶体轴平行,K+在隧道中间不易溶出,故六钛酸钾具有良好的化学稳定性和物理机械性能[2],如耐高温、耐摩擦、耐腐蚀、防火隔热等优异特性,被广泛用于隔热材料、摩擦材料、工程塑料、耐热绝缘材料[3]。

近来,还被用作膜分离材料[4]。

同时,钛酸钾作为半导体光催化材料,廉价易得、无毒害,也受到了越来越多的关注[5]。

哈利波特名词中英文对照表

哈利波特名词中英文对照表

哈利。

波特Harry Potter罗恩。

韦斯莱Ron Weasley赫敏。

格兰杰Hermione Granger阿不思。

邓不利多Albus Dumbledore吉德罗.洛哈特Gibleroy Lockhart米勒娃.麦格Professor Minerva Mcgonagall[Professor是教授]西弗勒斯.斯内普Professor Severus Snape卢平Professor Lupin多比Dobby闪闪Winky伏地魔V oldemort汤姆。

里德尔Tom Riddle鲁伯。

海格Rubeus Hagrid奇洛Professor Quirrel斯普劳特Professor Sprout霍琦夫人Madam Hooch特里劳妮Porfessor Trelawney小天狼星布莱克Sirius Black小矮星彼得Peter Pettigrew弗立维Professor Flitwick塞德里克。

迪戈里Cedric Diggory威克多尔.克鲁姆Viktor Krum费尔奇Filch芙蓉.德拉库尔Fleur Delacour疯眼汉穆迪Mad-eye Moody巴蒂.克劳奇Mr Crouch卢多.巴格曼Ludo Bagman康奈利.福吉Cornelius Fudge比尔。

韦斯莱Bill Weasley查理。

韦斯莱Charlie Weasley弗雷德.韦斯莱Fred Weasley乔治。

韦斯莱George Weasley金妮。

韦斯莱Ginny Weasley珀西。

韦斯莱Percy Weasley亚瑟.韦斯莱Aurthor Weasley莫丽.韦斯莱Molly Weasley弗农。

德斯礼Vernon Dursley佩妮。

德斯礼Petunia Dursley达力。

德斯礼Dudley Dursley秋。

张Cho Chang拉文德。

布朗Lavender Brown帕瓦蒂。

佩蒂尔Parvati Patil德拉科。

哈利波特与魔法石英文单词笔记(第二章)

哈利波特与魔法石英文单词笔记(第二章)

哈利波特与魔法石英文读书单词笔记Chapter two: The Vanishing GlassMantelpiece: n. 壁炉架,壁炉台Fateful: adj. 重大的Bonnet; n. 软帽, 无边帽;阀盖 vt. 给…..装上罩;给….戴上帽子(英版中为Bobble hats, 绒球帽)Carousel: n. 旋转木马;行李传送带;轮播(英版中为roundabout, 同译)At the moment:此刻,当时Shrill:adj. 尖锐的;刺耳的 adv. 尖锐地 vi. 尖声喊叫 vt. 尖声喊叫 n. 尖叫声With a start:吓一跳,一惊地,突然一下子Rap:n. 轻敲;指责;说唱乐;交谈 v. 抢走,轻敲,敲击致使;使着迷;交谈;说唱Demand: v. 强烈要求;需要,逼问;查问,查询 n. (坚决的或困难的)要求;(顾客的)要求Get a move on:赶快,快点吧Don’t you dare: 不要,不准Groan: vi. 呻吟;抱怨;发吱嘎声 vt. 呻吟;抱怨 n. 呻吟;叹息;吱嘎声Not to mention:更不必说;不必提及He didn’t look it, but he was very fast:look指看起来像(同seem to be),it代指看起来不像是能够跑的快的人。

根据前后文语境意思会变化。

Have something to do with:与…有关Knobbly: adj. 有节的,多疙瘩的(等于knobby)Sellotape: n. 透明胶带,塑料胶带Bark: v. (狗)吠叫,厉声发令,厉声质问,擦破(或蹭破)…皮By way of:经由;当作Simply: adv. 简单地;仅仅;简直;朴素地;坦白地All over the place:到处His face fall;他的脸沉下来Wolf down:狼吞虎咽地吃Parcel: n. 包裹,小包 vt. 打包;捆扎Ruffle:v. (用手指)将头发弄乱;(鸟发怒或炫耀)竖起羽毛;(使)起伏不平 n.皱褶饰边;生气;混乱;起伏Want one’s money worth:想要物有所值But it wasn’t easy when he reminded himself it would be a whole year before he had to look at Tibbles, Snowy, Mr Paws and Tufty again.但是当他想到要整整一年之后才会再见到踢踢,雪儿,爪子先生和毛毛(都是猫的名字),他又觉得难过不起来了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Behavior of potassium titanate whisker in simulated bodyfluidXin Wang,Shuang Jin Liu,Yu Min Qi,Li Chen Zhao,Chun Xiang Cui nKey Laboratory for New Type of Functional Materials in Hebei Province,School of Material Science and Engineering,Hebei University of Technology,Dingzigu Road,Hongqiao District,Tianjin300130,Chinaa r t i c l e i n f oArticle history:Received13November2013Accepted23July2014Available online1August2014Keywords:BiomaterialPotassium titanateSimulated bodyfluidMicrostructurePhase transformationBiocompatibilitya b s t r a c tTwo sintering products containing potassium titanates were fabricated and cultivated in simulated bodyfluid for12days.It was found that the molar ratio of titanium/potassium of potassium titanate is a keyfactor to control the behavior of potassium titanate in bodyfluid environment.Low potassium titanatessuch as K2Ti2O5and K2Ti4O9transformed into calcium titanate due to its intrinsic characteristics of ionexchange.However,potassium hexatitanate was structurally stable adsorbing needle-like hydroxyapa-tite.The experimental results indicated that potassium hexatitanate possesses excellent biocompatibilitywhich is better than low potassium titanates.&2014Elsevier B.V.All rights reserved.1.IntroductionMetallic biomaterials have attracted considerable attentionin recent years due to their good mechanical properties[1–4].Generally,metallic biomaterials such as steels,titanium alloys andmagnesium alloys have good mechanical properties but shortageof biocompatibility than those biological ceramics.Except devel-opment of those low modulus alloys free of toxic elements,another strategy is to modify the surface of metallic materials toimprove their biocompatibility[5–9].Many efforts in chemical orphysical modification on the surface of metals have shown greateffect.For example,making a coating contained hydroxyapatite(HA),titanium-dioxide or potassium titanate(PT)on titaniumalloys has been proven to be a promising methods to improvethe biocompatibility of titanium alloys[10–13].Potassium titanate,which can be rewritten as K2Ti n O2nþ1(orK2OÁn TiO2,n¼1,2,4,6,8),is an important inorganic material,possessing varied structures,good mechanical properties,specialfunctional properties and biocompatibility[14,15].One typical PT,K2Ti6O13or potassium hexatitanate has been used as reinforce-ment in ceramics,polymers and metal matrix bio-composites[16–18].When making a coating containing PT,it is difficult toobtain totally pure PTs such as K2Ti6O13or K2Ti8O17due to thepresence of residual metastable phases such as K2Ti2O5etc.In addition,PT has different chemical behavior with different nvalue.It is thus necessary to study the biocompatibility of differentPTs for developing new biomaterials using PTs.2.Materials and methodPotassium titanate was prepared by sintering the mixture ofraw material powder including potassium carbonate(K2CO3)andtitanium dioxide(TiO2).With a molar ratio of K2CO3and TiO2(K/T)1:3,the sintering sample P13was prepared at9001C for1h toobtain low PT(n r6,e.g.K2Ti4O9).Moreover,with K/T¼1:5(P15),high PT(n Z6, e.g.K2Ti6O13)was expected to be prepared at10001C for1h.The two sintered samples were then immersedinto simulated bodyfluid(SBF)cultivating for12D to evaluate thebiocompatibility and bioactivity of different PTs(S13and S15isthe cultivated sample of P13and P15in this paper,respectively.).The composition of ions in applied SBF is in elsewhere[12].The morphology evaluations of the PT samples before and aftercultivation in SBF were performed on a scanning electron micro-scope(SEM,Philips XL30TMP)and an optical microscope(XDS-1B,COIC,China).The microstructure of potassium hexatitanate aftercultivation in SBF was examined by a transmission electron micro-scope(TEM,Philips Tacnai F20)with an energy dispersive spectro-meter(EDS).The phase composition was investigated by an X-raydiffractometry(XRD,Philips X'pert TMD).3.Results and discussionFig.1shows the XRD spectra of the prepared potassium titanatesamples.It was found that different PTs were successfully pre-pared by changing K/T.For sample P15,some sharp peakscorresponding to K2Ti6O13and K2Ti4O9can be observed,implyingthat the major phase is K2Ti6O13with some amount of K2Ti4O9asContents lists available at ScienceDirectjournal homepage:/locate/matletMaterials Letters/10.1016/j.matlet.2014.07.1450167-577X/&2014Elsevier B.V.All rightsreserved.n Corresponding author.Tel.:þ862226564125.E-mail address:hutcui@(C.X.Cui).Materials Letters135(2014)139–142residual phase.With a lower K/T,the major phases of P13are K 2Ti 4O 9and K 2TiO 3.Therefore,P15can be regarded as high PT K 2Ti 6O 13whisker and P13is then regarded as low PT K 2TiO 3or K 2Ti 4O 9.Fig.1also displays the XRD spectra of cultivated PT samples in SBF compared with the original samples,showing that the cultivation product of the two samples is quite different.For S15,the XRD spectrum contains such peaks for CaTiO 3,K 2Ti 6O 13and HA as shown in Fig.1.However,for S13,there is only CaTiO 3can be found existing in its spectrum.Fig.2shows the morphologies of the PT samples before and after cultivating in SBF.For P13,it shows a flake pattern for the as-prepared status as shown in Fig.2(a).After cultivating in SBF for 12days,it turns to a block-like pattern which the flake-like product disappeared as shown in Fig.2(c).For P15,the sintering product is a kind of whisker (Fig.2(b))which also keeps the original morphology after cultivation in SBF for 12D (Fig.2(d)),indicating that it is very stable in SBF.Moreover,some small particles can be observed adsorbing on the whiskers as shown in the inset in Fig.2(d).To identify the particles adsorbing on the whiskers,TEM and EDS were used which the results are shown in Fig.3.It was found that the particles around the whisker in Fig.2(d)actually are some clumps formed by a kind of needle-like whisker in nano-scale rich in Ca and P as shown in Fig.3(a).The EDS analysis results (in Fig.3(b))show that the atomic ratio of Ca/P of region C in Fig.3(a)is about 1.7:1(20.6:12.1)near the theoretical value 1.67:1of HA.In addition,the atomic ratio of K/Ti of region C in Fig.3(a)is about 2:7(13.3:46.5shown in Fig.3(c))which is closed to the theoretical value 2:6of K 2Ti 6O 13.Therefore,this result shows that K 2Ti 6O 13whisker in P15keeps a constant chemical composition and can absorb HA nano-whisker,indicating that K 2Ti 6O 13possesses good biocompatibility.It is known that the precipitation of Ca/P ions implies that the cultivated material may possess good biocompatibility or bioac-tivity,as Ca and P are generally regarded as important ions to form HA.In the present work,Ca ions is also precipitated in S13forming CaTiO 3while not HA,which is attributed to ion exchange.The detailed process is that K þin low PT is replaced by Ca 2þfrom SBF,with reactions as:K 2TiO 3þCa 2þ-CaTiO 3þ2K þð1ÞFig.1.XRD patterns of the potassium titanate before and after cultivating inSBF.Fig.2.Morphology of the PT samples.(a)P13,(b)P15,(c)S13and (d)S15.X.Wang et al./Materials Letters 135(2014)139–142140Fig.3.Microstructure of the potassium hexatitanate after cultivation in SBF.(a)TEM image showing a potassium hexatitanate whisker surrounded by hydroxyapatite whiskers,(b)EDS spectrum and the corresponding chemical composition of region B in (a)and (c)EDS results of the whisker C in(a).Fig.4.Morphologies of sample P13after cultivating in pure water for 12D.(a)Optical image with lower magni fication of 50Âfor P13,(b)after water cultivation (c)SEM image of some particles in (b).X.Wang et al./Materials Letters 135(2014)139–142141K2Ti4O9þCa2þ-CaTi4O9þ2Kþð2ÞCaTi4O9þ2Ca2þ-3CaTiO3þTi4þð3ÞIn the process represented by Eqs.(1)–(3),aqueous environ-ment may play an important role for the formation of CaTiO3in low PTs due to the presence of a large amount of Ca2þin SBF.It is known that low PT possesses considerable amount of Kþorganiz-ing layered channels favorable for ion-exchange.If there are no adequate free Ca2þsupplying for ion-exchange,low PT cannot transform to CaTiO3.As verification,P13is immersed in pure water for12 D.It shows that the macro morphology of sample P13 changed from irregular particle shape shown in Fig.4(a)to short strip shape shown in Fig.4(b).In fact,this short strip is composed by some bundles of whiskers as shown in Fig.4(c),implying that the low PT in P13has transformed into high PT whisker. Interestingly,the transformation to high PT shown in Fig.4is suppressed in SBF,suggesting that ion environment is important for the behavior of PT.4.ConclusionThe molar ratio of titanium/potassium of potassium titanates is a key factor to control the behavior of potassium titanate(PT)in the simulated bodyfluid.Low PT may transform into calcium titanate due to its intrinsic characteristics of ion exchange in body fluid environment.However,high PT potassium hexatitanate is structurally stable and adsorbing needle-like hydroxyapatite in SBF.It is then demonstrated that potassium hexatitanate possesses excellent biocompatibility which is better than low potassium titanates.AcknowledgmentsThe project was aidedfinancially by Key Foundation Project of Hebei Province Applied and Fundamental Research(No.11965151D).References[1]Ryhänen J,Niemi E,Serlo W,NiemeläE,Sandvik P,Pernu H,et al.Biocompat-ibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures.J Biomed Mater Res A1997;35:451–7.[2]Okazaki Y,Gotoh parison of metal release from various metallicbiomaterials in vitro.Biomaterials2005;26:11–21.[3]Staiger MP,Pietak AM,Huadmai J,Dias G.Magnesium and its alloys asorthopedic biomaterials:a review.Biomaterials2006;27:1728–34.[4]Chou D-T,Wells D,Hong D,Lee B,Kuhn H,Kumta PN.Novel processing of Iron-Manganese alloy based biomaterials by inkjet3D printing.Acta Mater 2013;9:8593–603.[5]Hanawa T.In vivo metallic biomaterials and surface modification.Mater SciEng A1999;267:260–6.[6]Puleo D,Nanci A.Understanding and controlling the bone-implant interface.Biomaterials1999;20:2311–21.[7]Liu X,Chu PK,Ding C.Surface modification of titanium,titanium alloys,andrelated materials for biomedical applications.Mater Sci Eng R2004;47: 49–121.[8]Duarte LT,Biaggio SR,Rocha-Filho RC,Bocchi N.Surface characterization ofoxides grown on the Ti-13Nb-13Zr alloy and their corrosion protection.Corros Sci2013;72:35–40.[9]Silva-Bermudez P,Rodil S.An overview on protein adsorption on metal oxidecoatings for biomedical implants.Surf Coat Technol2013;233:147–58. [10]Chu PK,Chen J,Wang L,Huang N.Plasma-surface modification of biomaterials.Mater Sci Eng R2002;36:143–206.[11]Cui CX,Shen YT,Xu YJ,Li YC,Wang R,Wang X,et al.Fabrication and bio-compatibility of K2Ti6O13bio-ceramic coating on the surface of the titanium alloy TiAlxZrxÀ4SnxÀ3.5NbxÀ4.5.Rare Met Mater Eng2003;32:627–30. [12]Cui CX,Liu H,Li YC,Sun J,Wang R,Liu SJ,et al.Fabrication and biocompat-ibility of nano-TiO2/titanium alloys biomaterials.Mater Lett2005;59:3144–8.[13]Satoh K,Ohtsu N,Sato S,Wagatsuma K.Surface modification of Ti–6Al–4Valloy using an oxygen glow-discharge plasma to suppress the elution of toxic elements into physiological environment.Surf Coat Technol2013;232: 298–302.[14]Li YB,Li DX,Xu ZZ,Lin Q,Lan XH,Lu CH,et al.In vitro bioactivity of potassiumtitanate whiskers.Adv Mater Res2008;47:1351–4.[15]Li J,Zhang YC,Zhang M.Low temperature preparation and optical propertiesof K2Ti6O13.Mater Lett2012;79:136–8.[16]Yu D,Wu J,Zhou L,Xie D,Wu S.The dielectric and mechanical properties of apotassium-titanate-whisker-reinforced PP/PA pos Sci Technol 2000;60:499–508.[17]Qi Y,He Y,Cui C,Liu S,Wang H.Fabrication and biocompatibility in vitro ofpotassium titanate biological thinfilm/titanium alloy biological composite.Front Mater Sci2007;1:252–7.[18]Lu Z,Liu Y,Liu B,Liu M.Friction and wear behavior of hydroxyapatite basedcomposite ceramics reinforced withfibers.Mater Des2012;39:444–9.X.Wang et al./Materials Letters135(2014)139–142 142。

相关文档
最新文档