《21.3 第1课时 传播问题与一元二次方程》教案、教学设计、导学案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.3 实际问题与一元二次方程
《第1课时传播问题与一元二次方程》教案
【教学目标】
1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.
2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.
【教学过程】
一、情境导入
某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?
二、合作探究
探究点:传播问题与一元二次方程
【类型一】疾病传染问题
有一人患了流感,经过两轮传染后共有64人患了流感.
(1)求每轮传染中平均一个人传染了多少个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.
解:(1)设每轮传染中平均一个人传染了x个
人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,
舍去).
答:每轮传染中平均一个人传染了7个人.
(2)7×64=448(人).
答:又将有448人被传染.
方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.
【类型二】分裂增长问题
月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?
解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x
=-9(舍去).
2
答:每个支干长出8个小分支.
三、板书设计
【教学反思】
教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.
《21.2.4 实际问题与一元二次方程》教学设计
21.2.4 实际问题与一元二次方程
《第1课时传播问题与一元二次方程》导学案
教学内容
由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.
重难点关键
1.重点:用“倍数关系”建立数学模型
2.难点与关键:用“倍数关系”建立数学模型
教学过程
一、复习引入
(学生活动)问题1:列一元一次方程解应用题的步骤?
①审题,②设出未知数. ③找等量关系. ④列方程,⑤解方程,⑥答.
二、探索新知
上面这道题大家都做得很好,这是一种利用一元一次方程的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.
(学生活动)探究1: 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
分析: 1第一轮传染第二轮传染后
解:设每轮传染中平均一个人传染了x个人,则第一轮后共有
人患了流感,第二轮后共有人患了流感.
列方程得 1+x+x(x+1)=121
x2+2x-120=0
解方程,得 x
1=-12, x
2
=10
根据问题的实际意义,x=10
答:每轮传染中平均一个人传染了10个人.
思考:按照这样的传染速度,三轮传染后有多少人患流感?
通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
四.巩固练习.
1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?
解:设每个支干长出x个小分支,
2.要组织一场篮球联赛, 每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛?。

相关文档
最新文档