浅谈有机化学反应中的活性中间体
有机反应活性中间体
HOAc OBs
-OBs
OAc
+
+
+
2.碳负离子
碳负离子通常带有负电荷,也是有机化学中一类重 要的活性中间体,一般为共价键异裂后中心碳原子带 有负电荷的离子,实际常常是失去质子后所形成的共 轭碱。
C
H
:B
C:- + BH+
(1)碳负离子的结构
..
C
sp3杂化 棱锥型
109°28′
C
90°
sp2杂化 平面三角型
R
R
2R
均裂的难易主要取决于共价键的强度,即键的离解能。 自由基反应中常以过氧化物或偶氮化合物作为引发剂: 过氧化苯甲酰(BPO)、偶氮二异丁腈(AIBN),主要由 于其分子中含有较弱的键,容易均裂而产生自由基。
O C O O
O C
80-100oC
O C O.
. + O
CH3 CH3 C CN N N CH3 C CH3 CN
H3C H3C
C
CH3
sp2 - sp3 σbond
特点: 碳正离子带正电荷的碳是sp2杂化,与其它原
子结合构成三个σ 键在同一平面上,同时还 有一个空的p轨道,垂直于这个平面。
(CH3)3C F + SbF5 + (CH3)3C SbF6
1962年,Olah 把叔丁基氟溶于过量的超强酸介质SbF5中, 用1H-NMR检测到叔丁基正离子的存在。
CH2 C O h 或170 C CH2 + CO
CH2
N2
h 或 CH2 + N2
三卤代乙酸盐加热也可以制得卤代卡宾:
CCl3COOAg
CCl2 + CO2 + AgCl
有机化学常见活性中间体详解
有机化学常见活性中间体详解
高中化学常见官能团有:羟基(-oh)、羧基(-cooh)、醚键(-c-o-c-)、醛基(-coh)、羰基(c=o)等。
官能团,是决定有机化合物的化学性质的原子或原子团。
1、羟基(oxhydryl)是一种常见的极性基团,化学式为-oh。
羟基与水有某些相似的性质,羟基是典型的极性基团,与水可形成氢键,在无机化合物水溶液中以带负电荷的离子形式存在(oh-),称为氢氧根。
羟基主要分为醇羟基,酚羟基等。
2、羧基(carboxy),就是有机化学中的基本官能团,由一个碳原子、两个氧原子和一个氢原子共同组成,化学式为-cooh。
分子中具备羧基的化合物称作羧酸。
3、醚是醇或酚的羟基中的氢被烃基取代的产物,通式为r-o-r',r和r’可以相同,也可以不同。
相同者称为简单醚或者叫对称醚;不同者称为混合醚。
如果r、r'分别是一个有机基团两端的碳原子则称为环醚,如环氧乙烷等。
多数醚在常温下为无色液体,有香味,沸点低,比水轻,性质稳定。
醚类一般具有麻醉作用,如乙醚是临床常用的吸入麻醉剂。
4、羰基中的一个共价键跟氢原子相连而共同组成的一价原子团,叫作醛基,醛基结构简式就是-cho,醛基就是亲水基团,因此存有醛基的有机物(例如乙醛等)存有一定的水溶性。
5、羰基(carbonyl group)是由碳和氧两种原子通过双键连接而成的有机官能团
(c=o),是醛、酮、羧酸、羧酸衍生物等官能团的组成部分。
在有机反应中,羰基可以发生亲核加成反应,还原反应等,醛或者酮的羰基还可以发生氧化反应。
活性中间体及在有机合成中的应用
碳负离子
总结词
具有负电荷的碳原子,是亲核试剂,稳定性受电子效应影响。
详细描述
碳负离子是亲核反应中的关键活性中间体,通常由富电子的碳原子与带负电荷的基团结合形成。由于 负电荷的集中,碳负离子具有稳定性,其稳定性同样受电子效应影响。在有机合成中,碳负离子可以 作为中间体,参与多种反应,如取代、加成和消除等。
活性中间体的稳定性问题
总结词
稳定性问题是活性中间体面临的主要挑战之一,因为它们通常具有较高的反应活性,容 易发生副反应或自分解。
详细描述
在有机合成中,活性中间体的稳定性对其应用至关重要。由于活性中间体的高反应性, 它们在合成过程中往往容易发生副反应或自分解,导致产物的纯度和收率降低。为了解 决这一问题,研究者们通常采取一系列策略,如优化反应条件、使用稳定剂或保护基等,
多步骤合成
活性中间体在多步骤合成中起到关键作用,通过 一系列的反应步骤实现复杂有机分子的合成。
串联反应
利用活性中间体的性质,将多个反应串联起来, 一步完成多个化学键的生成,简化合成过程。
组合化学
利用活性中间体在组合化学中的反应,实现大量 不同有机分子的快速合成和筛选。
04
活性中间体在有机合成中的 挑战与解决方案
05
未来展望
新型活性中间体的开发
探索新型的活性中间体
随着科学技术的不断发展,将会有更多新型的活性中间体 被发现和开发出来,这些新型的活性中间体将会在有机合 成中发挥更加重要的作用。
深入研究活性中间体的性质
为了更好地利用活性中间体,需要对其性质进行更加深入 的研究,包括其稳定性、反应性、选择性等方面的研究。
以增加活性中间体的稳定性。
活性中间体的选择性控制
要点一
有机化学中的反应中间体和活化能
有机化学中的反应中间体和活化能有机化学是研究碳及其化合物的科学,其中反应机理和反应中间体的研究对于理解有机化学反应的本质和发展有重要意义。
在有机化学反应中,中间体是指在化学反应中形成和消失的反应物和产物之间的中间物质。
活化能则是指化学反应发生所需的最小能量。
一、反应中间体反应中间体是在化学反应中暂时形成的物质,它具有较长的寿命,存在于反应物转化为产物的过程中。
反应中间体的形成和消失通常是化学反应的一个关键步骤,它们对于反应速率和产物选择性起着决定性的影响。
1.1 离子中间体离子中间体是指在有机化学反应中形成的带电离子物种。
常见的离子中间体包括碳正离子(碳正离子是在电子亲合力强的试剂作用下形成的,比如亲电取代反应)、碳负离子(碳负离子是在电子捐赠试剂作用下形成的,比如酸催化的亲核取代反应)和自由基离子(自由基离子是在自由基反应中形成的,比如自由基加成和自由基取代反应)。
1.2 中心化学键中间体中心化学键中间体是指在有机化学反应中两个化学键断裂和/或形成的过程中形成的共价中间体。
常见的中心化学键中间体包括碳-碳单键中间体(比如亲电加成反应,碳-碳双键断裂形成碳-碳单键中间体)、碳-碳双键中间体(比如亲电取代反应,碳-碳单键断裂形成碳-碳双键中间体)和碳-氢键中间体(比如氧化反应,氧化剂作用下碳-氢键断裂形成碳-氢键中间体)。
二、活化能活化能是指在化学反应中,反应物由其能量较低的状态转变为能量较高的过渡态所需要的最小能量。
它是影响化学反应速率的重要因素。
活化能较低的反应通常具有较快的反应速率,而活化能较高的反应则速率较慢。
在有机化学中,活化能的大小取决于反应的步骤和反应物之间的相互作用。
活化能的降低可以通过催化剂的添加或者调节反应条件来实现。
催化剂可以通过提供合适的反应路径、降低过渡态的能量或者提供其他交互作用来降低活化能,从而加速化学反应的进行。
三、应用和意义对于有机化学研究者和实践者来说,深入理解和掌握反应中间体和活化能的概念和特点具有重要的意义。
有机催化反应的活性中间体研究
有机催化反应的活性中间体研究有机催化反应是一种重要的有机合成方法,可以高效、选择性地构建有机分子的键合。
而在催化反应的过程中,活性中间体的研究是至关重要的,它们可以通过稳定的方式催化反应,加速和导向反应的进行。
本文将探讨有机催化反应中的活性中间体研究,并介绍一些典型的活性中间体。
活性中间体是指化学反应中的中间产物,其反应活性高于起始物和产物。
这些中间体可以通过稳定的方式存在于反应体系中,从而充当催化剂的角色,参与并促进反应的进行。
对活性中间体的研究可以揭示反应机理的细节,有助于理解反应的速率、选择性和底物适用范围等方面的问题。
在有机催化反应中,活性中间体的研究主要集中在两个方面:1)活性中间体的合成和表征;2)活性中间体的反应机理。
为了合成活性中间体,研究人员通常采用先进的有机合成技术,通过设计合适的前体分子和反应条件,合成出目标中间体。
在合成过程中,需要考虑合成反应的温度、溶剂选择、催化剂的选择等多个因素,以确保中间体的高产率和高纯度。
合成后,研究人员可以通过核磁共振、质谱等多种技术手段对中间体进行表征,确定其结构和性质。
在反应机理的研究中,研究人员通常通过理论计算和实验验证的方法来解析活性中间体的形成和转化。
理论计算可以通过计算化学方法(如密度泛函理论)模拟中间体的构型和能量,从而推断其形成机制。
实验验证可以通过反应体系中有机合成步骤的定位同位素标记和同位素交换等方法,确定活性中间体的反应路径和转化过程。
以活性烯烃为例,其官能团的空间构型对活性中间体的形成和反应至关重要。
研究人员可以通过合成不同官能团的烯烃前体,并进行反应选择性研究,来揭示活性中间体的种类和反应路径。
此外,环状中间体的形成机理也是一个研究热点。
通过环闭合反应的研究,研究人员可以揭示环中间体的活性和稳定性,并探索它们在催化反应中的作用。
活性中间体的研究不仅对于理解有机催化反应机理具有重要意义,也可以为合成方法的改进和新反应的开发提供指导。
有机化学中的活性中间体
O PhC=CHCH3 C5H11Br
Br OCH3 NaNH2 Br OCH3
OC5H11 PhC=CHCH3
OCH3
NH2
OCH3
NH2
OCH3
NaNH2
NH3
5.2负碳离子
5.2.2 结构和稳定性
CH3 D
+
+
D
CH3
CH3
69%
4.5%
15.4%
5.2 负碳离子
当中心碳原子和>C=O、-CN等相连时,孤电子对和π键的
共轭,同时二者也是强吸电子基团,使负电荷得到很好的 分散,更稳定。如:
O R O R R O CN Cl3C CCl3
(2) S 成分含量的影响:
碳负离子电子对所占据的轨道含S成分越多,越稳定。
..
Li Cl Li
1, CO2 2, H2O HO2C
桥头碳卤代的卤代烷很难发生取代反应,因为SN1历程,要有 平面结构的正碳离子形成; SN2历程,亲核试剂要背后进攻。
5.2 负碳离子
已经制备出负碳离子的固体产物,其X-衍射测定结
果表明碳负离子不是平面结构,而 是接近与SP3杂化的锥形结构。
N CN CN
子的稳定性。在碱存在下:
k1 k-1
k1 k-1
C
H + B:
C
+ BH
Ka =
5.2 负碳离子
一般情况下,烃的酸性很弱,因而需要比一般滴定方 法要复杂的技术来测定。 测定方法: A、竞争方法:使用两个酸性烃和它们的金属盐之间建立 起来的平衡来测定:
第六章 有机反应活性中间体
RC
CR'
RX + R'2CuLi
R-R' + R'Cu + LiX
23
(3)羧基化和脱羧反应
羧化:
O O
RMgI+ O
C
O
H
OMgI
R
R
OH
O
O
CH3Li + O C O
物质量的比 1 : 1
H
OLi
H3C
R
OH
脱羧:
CH3COONa
-CO2 NaOH 400℃
CH3 + CO2 H+ CH4
当羧基的邻位 有拉电子基时, 可以在较低温 度下脱羧.
稳定的 自由基
O
( iii) 键的离解能 自由基是由共价键均裂产生的, 键 的离解能越大, 产生的自由基越不稳定,容易二聚生 成原来化合物。键的裂解能小的键如含有-O-O-, C-N=N-C 等弱键的化合物, 所产生的自由基比较 稳定。
30
常见自由基按稳定性排序:
(C6H5)3C > (C6H5)2CH > C6H5CH2 > CH2=C H CH2 > (CH3)3C > CH3 CHCH2CH3 >
- OH -
+ N2
(5)质子或其他带正电的原子团与不饱和键加成。
+ R+ (CH 3)3C=CH 2 + H+
CH 3
R (CH 3)3C+-CH 3 CH3CH-CH 2CH3
13
+ H+
6. 碳正离子的反应
1. 与带有电子的亲核体结合:取代反应(SN1) R+ + Nu- RNu
有机反应活性中间体
1) 2)
CO2 H3O+
COOH C6H13CH CH3
此实验结果说明2-辛基锂离解出锥 构型的碳负离子(角锥体可以翻转). 在-700C末达平衡,与CO2反应尚有 20%的构型保持. 00C时一对角锥体碳负离子已达 到平衡,再与CO2作用,故生成的是外 消 旋体。
NH 2 NaNO 2 HCl
H H Ph3CSbF6 SbF6
N2+
+
+
N2
4) 在超酸中制备C正离子溶液
比100%的H2SO4的酸性更强的酸-超酸 (Super acid)
常见的超酸 与100%H2SO4的酸性比较 HSO3F (氟磺酸)无色透明的发烟液体,有 强烈的刺激性气味,1000倍 HSO3F - SbF5 (魔酸) 103倍 HF-SbF5 1016倍
σ- p超共轭效应:
轨道交盖在这里
H
空的 p 轨道
C H H
C
烯丙型碳正离子:
CH2 CH CH2 CH2 CH CH2
p-π共轭
电子离域
共轭体系的数目越多,碳正离子越稳定:
3
C+
>
2
CH+
>
CH2+
当共轭体系上连有取代基时,供电子基团使碳正离子 稳定性增加;吸电子基团使其稳定性减弱:
CH3 CH2
(二)正碳离子的生成:
1) 直接离子化
RX
Ph CH Cl Ph
H
R
通过化学键的异裂 X 而产生。
Ph2CH
Cl
R OH
ROH2
BF3
有机活性中间体-苯炔
实验结果表明: (1)重排产品中引入的基团在脱掉的原子的邻位; (2)重排产品是从邻位脱掉原子(重氢)形成的。因而这些 反应是通过一个对称的中间体苯炔进行的。
环加成反应(Diels-Alder反应)
苯炔是具有高度反应活性的中间体,它的反应不受生成方法的影响, 即不论苯炔的来源如何,和同一作用物反应形成的产品是相同的。 苯炔的反应总是涉及到对“三键”的加成,从而在产品中恢复其芳香性。 苯块的反应可以是极性的。也可以是协同的环加成。
关于苯炔的结构,倾向性的意见为:
除了脱掉两个相邻的氢原子以外,苯环上基本没被扰乱。 在相邻的sp2杂化轨道之间必然有重叠,这样形成一个很弱 的键,这种情况和观察到的活泼性是一致的,红外光谱也 表明苯炔应具有这样的结构。
苯炔的反应
苯炔(或去氢苯)是从苯消除两个邻位取代基得到的具有高度反应活性的中间体。 芳香亲核取代反应过去存在着许多难以解释的现象。如用强碱处理芳香卤代物, 在某些情况下不仅形成正常的取代产品。而且同时也得到异构的化合物,其中 新的取代基在原来连接卤素的碳原子的体主要有: 碳正离子、碳负离子、自由基、 碳正离子、碳负离子、自由基、卡宾 碳烯)、乃春(氮烯)和苯炔等。 )、乃春 (碳烯)、乃春(氮烯)和苯炔等。
影响活性中间体稳定性的因素
诱导效应 共轭效应 空间效应 芳香性及其结构
苯炔的结构
苯炔的结构式可表示为:
有机反应活性中间体—苯炔
简介及意义
– 简介:所谓“活性中间体”就是指具有一定的反应活性 简介:所谓“活性中间体” 或不稳定性的中间体。 或不稳定性的中间体。有机反应的活性中间体不同于中 间过渡状态,它是真实存在的,且不少的活性中间体目 间过渡状态,它是真实存在的, 前已经被人们通过物理或化学的方法检测到或分离出 例如1900年Gowmberg首次发现的三苯甲基自由基 来.例如1900年Gowmberg首次发现的三苯甲基自由基 ((C6H5 )3一C·)就是一种中间体。 就是一种中间体。 就是一种中间体 – 意义:有机化学反应类型很多,反应过程也复杂。根据 意义:有机化学反应类型很多,反应过程也复杂。 过渡状态理论, 过渡状态理论,有机反应中反应物分子一般是通过一个 或几个能量最高的过渡状态形成产物,或者是经过某些 或几个能量最高的过渡状态形成产物, 中间体形成产物的。因此, 中间体形成产物的。因此,讨论反应活性中间体的稳定 性对研究有机化学反应的活性具有十分重要意义。 性对研究有机化学反应的活性具有十分重要意义。
化学反应中的活性中间体研究
化学反应中的活性中间体研究在化学反应中,活性中间体是一种存在时间较短的化合物。
它们通常是反应物和产物之间的中间体,过渡状态或反应的不稳定良好。
因此,研究活性中间体是非常重要的,它能帮助理解反应机理,预测产物,设计更有效的反应条件。
在本文中,我们将讨论活性中间体的概念和研究方法。
1. 活性中间体的概念活性中间体可以通过两种方式理解。
一种是在化学反应中,产生的不稳定化合物。
这些化合物通过接受电子、质子或裂化键形成。
由于它们的不稳定性,它们会马上分解为其它化合物或与其它分子反应。
活性中间体包括,自由基、卡宾、反离子、三元分子等。
例如,在氧化还原反应中,存在一些不稳定基态的中间体,它们通过自由基反应创建出去电子的自由基,这些自由基则可以参与其他反应。
另一种理解活性中间体是在药物化学和生物化学的研究中使用的概念。
活性中间体可以是生物大分子操作的不稳定化合物,如DNA中的自由基、酰胺甲酰酶的反应中的酰化引发剂等。
不管是生物学还是化学,活性中间体的研究都非常重要。
它们的发现不仅有助于理解反应的化学机理和热力学,还可以为新药物研究和开发提供有价值的信息。
2. 活性中间体的研究方法研究活性中间体的方法有很多种类,但大多数方法都利用时间分辨技术。
这些技术包括研究光学、电化学、磁共振以及质谱学等。
研究光学技术,例如紫外吸收光谱与荧光光谱,可用于研究中间体的电子吸收光谱和荧光谱,并在物质的分子结构和反应动力学上提供了重要的信息。
电化学和磁共振可以检测活性中间体的氧化还原和磁性性质。
在电化学实验中,分别观察电流电势曲线或实验中伏安图对催化剂加入前后的反应进行评估。
磁共振技术则利用不同种类的电子和核自旋对活性中间体进行研究。
但对于大多数化学研究来说,活性中间体的研究最常用的方法,仍是质谱技术,尤其是中间体质谱技术。
中间体质谱技术是一种非常快速、准确的检测方法,可用于识别活性中间体的结构和它们与其它分子之间的反应。
中间体质谱技术的关键是如何产生所需的中间体。
化学反应的中间体
化学反应的中间体化学反应是物质之间转化的基本过程,而中间体则是指反应过程中生成但又不直接参与最终产物生成的物质。
中间体在化学反应中起着至关重要的作用,它们连接了反应的起始物质和最终生成物之间的转化路径,对反应速率和选择性起着决定性影响。
本文将介绍几个常见的化学反应中的中间体,并探讨它们在反应机制中的作用。
一、卤代烷的亲电取代反应卤代烷的亲电取代反应是有机化学中常见的反应类型,其中卤代烷充当了亲电试剂的角色。
在这类反应中,中间体的生成是必不可少的。
以卤代烷的亲电取代反应为例,我们来看看其中的中间体。
在由氯代甲烷与氢氧化钠反应生成甲醇的过程中,首先氯离子会被氢氧化钠攻击,生成CH3O-离子和Cl-离子。
CH3O-离子随后与CH3Cl 反应,形成CH3OH和Cl-离子,其中CH3O-离子就是化学反应的中间体。
二、氧化还原反应中的中间体氧化还原反应是电子在反应过程中的转移,一般涉及到氧化剂和还原剂的存在。
在这类反应中,中间体的生成和消耗是不可避免的。
让我们以氧化还原反应中的中间体为例,来了解中间体在反应中的作用。
在锌与硫酸反应生成硫化氢的过程中,首先锌会被硫酸中的氢离子氧化,形成Zn2+离子和氢气。
随后,硫酸中的硫离子与锌离子反应,生成硫化物离子,其中Zn2+离子就是化学反应中的中间体。
三、芳香烃的取代反应芳香烃的取代反应是有机化学中的重要反应类型,其中中间体的生成和消耗对于反应的进行和产物的选择性具有重要影响。
让我们以芳香烃的取代反应为例,来了解其中的中间体。
在溴代苯与溶液中的亲电试剂反应生成取代产物的过程中,首先溴离子被亲电试剂进攻,形成溴芳烃中间体和亲电试剂的衍生物。
溴芳烃中间体随后与其他试剂发生进一步的反应,最终生成取代产物。
四、催化反应中的中间体催化反应中的中间体是指在催化剂的作用下生成的反应中间体。
催化剂可以增加反应速率,降低反应能垒,促进反应进行。
让我们以催化反应中的中间体为例,来了解催化反应的特点。
高等有机化学 第二章 有机反应中的活性中间体
.
44
② 碱性条件下脱羧(C—C键异裂)
CN
碱
C 2H 5C COOH
C 6H 5
CN C 2H 5C
C 6H 5
29.04.2020
.
45
(2)负离子对不饱和键的加成
H C C H+O C H 3
C HC HO C H 3 H O C H 3
C H 2 C HO C H 3 + O C H 3
29.04.2020
.
37
5
4 3
SN2
6
1
OBs
exo- 2
54 3
1 6+2
SN1 +
endo-
+
OBs
而内型的几何形状不具备背面进攻的条件,即-
OBs基团阻碍了C-6对C-2的背面进攻,反应按
SN1历程进行,因此速度小,但内型化合物生
成C正离子后能迅速转变成同样的非经典的C正
离29.子04.20,20 因此产物相同。 .
29.04.2020
.
46
(3)来自金属有机化合物 RMgX、RLi、R2CuLi、RZnX
2 R M g XR 2 M g + M g X 2 R 2 M g M g X 2
OEt2 R Mg X
OEt2 R Mg R
OEt2 X Mg X
29.04.2020
OEt2
OEt2
.
OEt2
47
2. 碳负离子的结构 ~109°28′
环庚三烯正离子
环戊二烯正离子
有芳香性,特别稳定 反芳香性,很不稳定
29.04.2020
.
19
空间效应 碳正离子中心碳原子必须sp2杂化,才较稳定。 ①平面构型有利于电荷离域; ②空p轨道的两瓣在平面两侧均可溶剂化。
有机反应活性中间体
2 有机反应活性中间体有4种含碳原子的有机活性物种,它们一般只成2或3键,非常活泼,寿命很短,仅以中间体的形式存在并迅速转化为稳定的分子(其中也有些稳定的中间体可以分离出来)。
这4种活性中间体是碳正离子、碳负离子、自由基和碳烯(卡宾),其中只有碳负离子具8电子结构。
除上述4种含碳的活性中间体之外,还有一些其它原子也因为带有电荷或孤对电子而成为有机反应的活性中间体,其中最重要的是氮烯(乃春)。
2.1碳正离子提示:命名自1902年以来,这些物种一直被称为碳鎓离子(carbonium ions)。
由于“鎓”(-nium)通常指成键数高于中性原子的离子,所以,这一叫法并不合理。
1971年,Olah提出将碳鎓离子(carbonium ions)保留给成5键带正电荷的碳,而用碳正离子(carbocations)命名3配位的带正电荷的碳。
1987年,IUPAC接受了上述定义。
2.1.1形成与反应(1)形成碳正离子,不论其稳定与否,一般通过两种途径形成:①直接离子化,与碳原子相连的基团带着原来共用的一对电子离去:②质子或其它正电荷物种加到不饱和体系的一个原子上,从而在其相邻的碳原子上形成正电荷:由于碳正离子是短寿命的过渡物种,所以,不论它以何种方式产生,一般都不经分离直接继续反应。
(2)反应碳正离子反应形成稳定产物的两种主要方式恰恰是其两种主要形成方式的逆反应。
①碳正离子可以和拥有孤对电子的物种反应(路易斯酸碱的反应)这些拥有孤对电子的物种可以是羟基负离子、卤素离子或其它负离子,也可以是带有可共享的孤对电子的中性物种(此时产生的中间产物也会带有正电荷)。
②碳正离子可以从相邻的原子上脱去氢或其它正离子(消除反应)除生成稳定产物外,碳正离子还可以通过反应得到新的碳正离子。
③重排重排后的碳正离子较原碳正离子稳定,之后,新碳正离子可能按①或②生成稳定的产物。
④加成碳正离子可以加到双键上,在新位置上再形成一个正离子,而这个新的碳正离子还可以继续往双键上加成,这也是烯烃聚合的机理之一。
第二章 有机反应中的活性中间体详解
(3)溶剂化效应 溶剂化效应对碳正离子的稳定性影响比较严重,含有孤对电 子的极性质子溶剂能够很好的将碳正离子溶剂化,从而稳定 性增强。
常见的极性非质子溶剂: 四氢呋喃(THF),二甲亚砜(DMSO),丙酮,乙腈,二甲基甲酰胺 (DMF),二甲基乙酰胺(DMAC). 常见的质子性溶剂: 常与溶质分子以氢键缔合的溶剂,一般含有羟基、氨基或羧 基的化合物。如:水、乙醇、甲酸、乙酸、乙胺。
3.重排:烷基、芳基、氢或其他基团,带着它的一 对成键电子迁移到正离子中心碳原子上,使迁移的 起点碳原子上带正电荷。迁移的总结果是由比较不 稳定的碳正离子产生比较稳定的碳正离子。 举例:
Pinacol重排
邻二醇在酸催化下,经过碳正离子的重排成为酮
或醛的反应。
Wagner-Meerwein重排
醇羟基的β位上是个仲碳原子 或叔碳原子时,在酸催 化脱水中,常常会发生的重排反应。
pKDMSO
17.2
24.7
三、碳负离子的形成
• 1.R-H解离: • 一般在强碱作用下便可生成碳负离子。
2. 亲核加成反应
3. 生成金属炔化物或带负电荷的芳香化合物
4. 格式试剂(极性转化)
四、 碳负离子的反应类型
1.亲核取代反应:烷基化和酰基化
举例:
2. 缩合反应
克莱森(Claisen)酯缩合反应—乙酰乙酸乙酯的合成
CF3CH3
CH3CH3
(4) 共轭效应
>
O
O
O
O
(5) 芳香性
2-
2-
(6)溶剂化作用 碳负离子的溶剂化作用主要是形成氢键的影响,因此极性 非质子溶剂中更加活泼。而在质子性溶剂中往往形成氢键 而比较稳定。 C-H酸 O2NCH2NO2 CH3COCH2COCH3 CH3NO2 PhCOCH3 pKH2O 3.6 9 10.2 15.8
第四章有机反应活性中间体介绍
H 空的 p 轨道
CC H
H
Liaocheng University
Organic Advanced Chemistry
②共轭效应
CH2 CH CH2
CH
CH2
CH2
p-π共轭
共轭体系的数目越多,碳正离子越稳定
(CH2=CH)3C+ > (CH2=CH)2CH+ > CH2=CHCH2+
Ph3C+ > Ph2CH+ > PhCH2+
常见的活性中间体有:碳正离子、碳 离子、自由基、卡宾、乃春、苯炔等六种。
Liaocheng University
Organic Advanced Chemistry
一. 碳正离子 (Carbocations() 亲电反应中间体)
含义:带正电荷的三价碳原子的原子团。 最常见
特点:缺电子,∵带正电荷的碳有六个价电子。
Liaocheng University
C6H13CHCH 3 2BuLi I
C6H13CHCH 3 Li
1)CO2 2)H3O+
C6H13CHCH
3
COOH
-70℃时,60%构型保持;0 ℃时,外消旋化
2. 碳负离子稳定性
1)诱导效应
-I:分散负电荷,使碳负离子稳定;反之亦然
CH3- > MeCH2- > Me2CH- > Me3C-
Liaocheng University
Organic Advanced Chemistry
常见化合物的pKa值
化合物
CH4 CH2CH2
C6H6 PhCH3 Ph2CH2 CF3H CHCH CH3CN CH3COCH3 PhCOCH3
有机反应中的四种中间体
有机反应中的四种中间体关勇 (武汉大学 化学与分子科学学院 430072) 摘要:本文主要论述了有机反应过程中的四类中间体,即碳正离子,碳负离子,卡宾及苯炔的结构,性质以及在有机合成的作用。
碳正离子,碳负离子,卡宾及苯炔是有机化学反应中重要的活性中间体,它们的生成,结构,稳定性等对阐明反应历程及预测反应产物是十分重要的。
关键词:碳正离子,碳负离子,卡宾及苯炔 许多有机化学反应是由基元反应构成的复杂反应,这些反应过程中至少包含有一个活性中间体的生成。
这些活性中间体在反应过程中虽然寿命不长且较难分离,但它们非常活泼,在适当的条件和方法下可检测其存在的,有些甚至可分离。
研究它们的产生,结构及变化有助于解释反应历程,指导有机合成。
1碳正离子1.1碳正离子的结构绝大多数的碳正离子呈平面三角形,为C3V点群,C以sp2杂化轨道连接三个基因,但也有例外,如H2C=CH+,呈线形,有一个空的sp杂化轨道;C6H5+,其空轨道与π键垂直。
,三苯甲基碳正离子由于三个苯基的空间作用,不处于同一平面,苯环之间彼此互为54°角,呈螺旋桨形结构。
1.2碳正离子的稳定性1.2.1溶剂效应通常,大部分反应都是在溶剂中进行的,溶剂与碳正离子的相互作用可以影响碳正离子的生成速度和稳定性。
溶剂的极性能力越强,有利于碳正离子的生成。
1.2.2电子效应电子效应包括诱导效应和共轭应,其本质是使中心的原子的电云密度发生改变。
供电子基团越多,共电子能力越强,就越有利于正电荷的分散,碳正离子就越稳定;共轭基团越多,共轭链就越长,碳正离子就越稳定1.2.3空间效应当碳原子失电子变成碳正离子时,键角由109°28′变成120°,由sp3杂化状态的四面体变为sp2杂化状态的平面型,当中心碳原子连接的基团越多,越大,其张力也越大,生成碳正离子时,张力松弛也越大,稳定性也越大。
1.2.4芳香性效应若环状碳正离子芳香性,即具有4n+2非定域π电子的环状体系时,它属于稳定的碳正离子。
高等有机化学-第5章-活泼中间体1
2019/7/8
2
碳正离子的中心碳原子是缺电子的(价电子层仅有六个电 子),其成键形式可以采取下列两种情况:一是碳原子以 sp2杂化轨道和三个原子(团)成键,呈平面型结构,有一个空 的p轨道垂直于该平面;另一种是碳原子以sp3杂化轨道与其 它三个原子(团)成键,呈棱锥型结构,有一个空的sp3杂化轨 道。
空间效应: 碳正离子的中心碳原子处于sp2杂化状态的平面构型是
较稳定的,但是当空间因素使碳正离子不能具有平面构型 时,则其稳定性大为降低。如叔丁基氯能与乙醇-硝酸银 溶液迅速反应,但1-氯双环[2,2,1]庚烷(A)则不能与之反应。 因为(A)难以生成如(B)所示的正离子。
2019/7/8
7
另外,烯丙基正离子通常是稳定的,但是(C)所示正 离子很不稳定。因为非平面结构不能使电荷离域。
2019/7/8
15
(C6H5)3C+ +
H
H
(C6H5)3CH +
+
此外,自由基被高价铜离子氧化,也生成碳正离子。
R. + Cu 2+
R+ + Cu+
2019/7/8
16
四、碳正离子的反应
ห้องสมุดไป่ตู้
碳正离子一般是活性很高的中间体,可进一步发生多
种化学反应。它们是亲电物种,其反应一般是亲电试剂要 求的反应。
H
13
羰基化合物C=O双键的氧原子也可发生质子化形成碳 正离子。如酮在浓硫酸中产生如下的碳正离子:
R
C
R
O + H+
R
+
C
OH
R
卤素正离子可由卤素或取代卤素产生,例如:
有机反应中四种中间体
-N2 Ag2O
H2O
CH:
R
C
RCH2COOH
酰基卡宾变成的烯酮的重排叫 Wolff 重排,以此为基础制备高一级羧酸的方法叫 Arndt-Eistort 合成法 3.4.5 二聚反应 卡宾十分活泼,往往来不及相互聚合就一极和其它物质反应了。但在闪光分解或稍加热 的惰性条件下是可以得到二聚产物的。
CH3 CH3 CH3
-
-
。单线态卡宾的插入反应是协调的一步反应,而三线态卡宾
C
H+:CH2
C C H2
H
CH2 H
C
H+:CH 2
C· + H2 C·
H
C· + H 2C·
H
CH2 H
单线态卡宾比三线态卡宾活泼,所以它的选择性比三线态高。 3.4.3 加成反应 卡宾可以与不饱和键,如 C=C,C=N,C=P,N=N,C=C 等加成反应。烯烃双键电子密 度越高,反应活性越大。单线态卡宾加成反应是协调同的一频应,烯烃的立体化学在环加成 产物中保持不变。而三线态卡宾加成则是双自由基的两步 基的两步反应,它无论与顺或反式烯烃作用得到的是混合物。Simmons-smith 反应是有 立体特异性的顺式加成反应,先生成单线态卡宾,烯烃的构型因而保持不便。例:
(1)单分子亲核取代反应(Sn1); (2)芳烃的亲电取代反应;(3) 单分子消去反应 E1;(4)与烯 烃加成生成更大的碳正离子;(5)从烷烃上消去一个 H;(6)重排反应,如 Wagner-Meerwein 重排 Demyanov 重排,生成更稳定的碳离子。 1.5 碳正离子的应用 利用取代反应可以制备很多物质,而消去脱氢也是制备某些烯烃等的一种重要方法。阳 离子聚合可以制备很多有用的高分子材料,但起反应机理有待进一步研究。 2 碳负离子 碳负离子是存在的,尽管简单未被取代的碳负离子尚未离析。 2.1 碳负离子有孤对电子,中心碳原理以 SP 杂化,孤对电子占据了四面的一个顶点,因 为它呈角锥结构。形成烯醇化物而稳定的碳负离子是平面形的。 2.2 碳负离子的稳定性 2.2.1 未共享电子不饱键共轭,这种因素造成了碳负离子的烯丙式和芳式的稳定性。 2.2.2 S-特性效应:碳负离子的稳定性随着碳负离子 S 成分的增加而增加。 2.2.3 诱导效应导致稳定性 伯 C>仲 C>叔 C,而这一点与碳正离子正好相反。 2.2.4 芳香性效应:有芳香性的碳负离子更稳定。 2.2.5 溶剂化效应。 2.2.6 连有硫或磷原子稳定的碳负离子稳定性增大,其原因尚有争论。 2.2.7 共振效应:共振使碳负离子的负电荷更分散, 碳负离子更稳定。 2.3 碳负离子的产生
有机合成中的活性中间体合成及应用研究
有机合成中的活性中间体合成及应用研究活性中间体是有机合成中一类非常重要的中间化合物,具有较高的反应活性和可控性,并且在有机合成反应中起着关键的作用。
本文将介绍有机合成中的活性中间体的合成方法及其在化学领域的应用研究。
有机合成中的活性中间体合成方法多种多样,常见的有以下几种:首先是亲核性中间体的合成。
亲核性中间体是一类具有活泼的负电性亲核基团的中间体,例如负离子中间体、亲核取代中间体等。
合成亲核性中间体的方法主要有亲核取代反应、酸碱中和反应等。
亲核性中间体可以参与芳香和非芳香环上的求核反应,从而构建新的化学键。
其次是电子不足中间体的合成。
电子不足中间体通常具有较高的电阻性和较好的活性,可以参与各种求电子反应。
电子不足中间体的合成方法有烯烃电子不足中间体的合成,如烯烃酸化反应和氧化反应等。
此外,阴离子还原和亲电取代等方法也可合成电子不足中间体。
再次是自由基中间体的合成。
自由基中间体具有特殊的化学性质,广泛应用于自由基取代反应、引发聚合反应和自由基环化反应等。
自由基中间体的合成方法主要有热解反应、光解反应和自由基引发剂反应等。
其中,自由基引发剂方法是合成自由基中间体最常用的方法。
最后是碳正离子中间体的合成。
碳正离子中间体是一类电子不足的中间体,可以参与求电子反应和亲核反应。
碳正离子中间体的合成方法有酯酸的酯化反应、卤代烃的化学求电子反应等。
碳正离子中间体的稳定性较差,常通过立体位阻效应或加入配体等手段来增加其稳定性。
有机合成中的活性中间体在化学领域有着广泛的应用研究。
首先,活性中间体可用于有机分子的构建和功能化合物的合成。
活性中间体能提供化学键的构建位点,可通过选择性反应和控制反应条件,使得底物分子以特定的方式进行转化。
此外,活性中间体还可以被进一步修饰,合成出具有特定功能的有机小分子,如药物分子和功能性材料。
其次,活性中间体还在天然产物合成和药物合成中发挥着重要作用。
天然产物合成往往是有机合成中的挑战性课题之一,而活性中间体作为建立多样性结构的关键中间体,可用于合成复杂天然产物的核心骨架。
化学反应的中间体和过渡态
化学反应的中间体和过渡态化学反应中的中间体(reaction intermediates)和过渡态(transition states)是两个重要的概念,它们在化学反应中起着关键和特殊的作用。
本文将介绍中间体和过渡态的定义、性质以及在化学反应中的作用。
一、中间体中间体是指在化学反应中形成的、具有独立存在的、但不是反应的起始物质和最终生成物质的物质。
中间体在反应中发生转化,但并不是被观察到的最终产物。
中间体的存在可以通过实验和理论推导进行证实。
中间体的生成通常需要能量吸收或释放,因此在反应过程中可能会具有高能态或低能态。
中间体的稳定性和寿命可以因反应条件的不同而有所变化,有些中间体甚至可以通过特定的实验手段进行拦截和检测。
中间体的存在对于了解反应机理和优化反应条件非常重要。
通过研究中间体的结构和性质,可以揭示反应的细节步骤和反应路线,从而为合成新化合物或优化反应条件提供依据。
二、过渡态过渡态是指在化学反应中,反应物转变为产物过程中具有最高能量的状态。
过渡态是反应物和产物之间的一个连接状态,具有临界结构和高能能量。
它同时包含了反应物和产物的特征,且在反应进行中不会被稳定地生成,而是具有瞬态的特性。
过渡态的形成需要克服能垒,它具有不稳定性和短暂寿命。
因此,过渡态的观察和检测非常困难,通常只能通过理论计算和间接实验方法进行推测。
过渡态的结构和性质决定了反应的速率和选择性。
研究过渡态可以揭示反应的活化能、反应机理和反应动力学等重要信息,对于理解反应的本质和开发新的催化剂具有重要意义。
三、中间体和过渡态的作用中间体和过渡态在化学反应中发挥着重要的作用。
1. 中间体的作用:中间体是反应机理的重要组成部分,通过研究中间体的生成和转化,可以推测和验证反应路线和反应步骤。
中间体的结构和性质可以用于解释反应的选择性、产率和反应条件的影响。
中间体的检测和鉴定可以为新化合物的合成和反应条件优化提供依据。
2. 过渡态的作用:过渡态是反应速率决定步骤的重要中间状态,通过研究过渡态可以了解反应速率和动力学参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈有机化学反应中的活性中间体
王敏 2005110031 西北大学化学系化学专业
摘要:有机反应活性中间体在有机化学中占有极其重要的地位。
本文简要的介绍了基础有机化学反应中涉及到的几种反应活性中间体——碳正离子、碳负离子和自由基。
关键词:活性中间体,碳正离子,碳负离子,自由基
学习《有机化学》有一学期了,我个人觉得有机化学反应的机理非常有趣,现抽空将所学的有机化学反应机理里牵扯的一些活性中间体介绍给大家,希望能对大家以后的学习有所帮助。
研究反应机理时,需要用一组基元反应来解释反应过程。
要用几个基元反应才能描述整个反应过程的反应称为复杂反应,在这些反应中常经过一个或多个基元反应才能形成反应活性中间体,然后再经过一个或者几个基元反应达到最终产物。
在复杂反应中,沿着反应坐标常出现多个最高能垒,在每两个能垒之间有一个最低能垒,具有这种最低能垒的结构及称为反应活性中间体。
有机反应中的机理大多是分步进行的,在这些反应过程中常生成经典碳正离子、碳负离子、自由基等活性中间体。
下面就对以上几种活性中间体进行简单的描述。
1、 碳正离子
1.1、碳正离子的结构
碳正离子的中心碳原子为sp 2杂化,中心碳原子即与其相连的三个原子在同一平面内,在与平面垂直的方向,有一个空的p 轨道,如下图:
C 2
3
R 1
Nu
C 2
R R 1
Nu
SP 2平面结构
1.2、经典碳正离子是有机反应中的重要中间体。
S N 1亲核取代反应、双键亲电加成、芳香亲电取代反应等都能生成碳正离子中间体。
以下分几种情况对碳正离子的生成进行介绍。
1.
2.1、当取代中心为叔碳原子时,易于形成碳正离子,按S N 1机理进行反应。
例如反应:
CH 3
C Br CH 3
CH 3
NaOH H 2O
K CH 3
CH 3CH 3
C Br CH 3
C OH CH 3
CH 3NaBr
+ν=+
其反应机理为: Br
CH 3
C CH 3
CH 3Br C Br CH 3CH 3
CH 3CH 3
C CH 3CH 3OH CH 3C CH 3
CH 3
CH 3C CH 3
CH 3OH CH 3
C CH 3
CH 3OH 第一步
慢
过渡态1
中间体
+
第二步
+快
过渡态2
δδδδ
1.2.2、在双键与卤化氢的加成反应中必须先生成碳正离子中间体,才能生成重排产物,
例如对反应
:
CH 3
C CH 3
CH 3
CH CH 2HCl
CH 3
C CH 3
CH 3CHCH 3Cl CH 3
C Cl CH 3CH CH 3CH 3
+17%
83%
CH 3
C CH 3
CH 3
CH 3
C CH 3
CH 3
CH CH 3
Cl
CH 3C CH CH 3CH CH 3Cl CH 3
C Cl CH 3CH CH 3CH 383%
CH 3
C CH 3
CH 3CHCH 3Cl 17%
重排
主要产物为后者,这是因为反应过程中生成的仲碳正离子通过甲基的迁移,重排成了更稳定的叔碳正离子。
炔烃加成的中间体为烯基碳正离子。
对此我们会在以后的文章中给与介绍。
1.2.3、在单分子消除反应中,碳正离子作为活性中间体除了与溶剂结合生成取代产物外,还能够脱去质子,生成烯烃,例如:
CH 3
C CH 3
CH 3Br 慢
δCH 3
C CH 3CH 3
Br δCH 3
C CH 3CH 3
+
Br
过渡态1
中间体
第一步
CH2C
CH3
CH3
H
CH C
CH3
3
B
CH2C
CH3
CH3
快
过渡态2
第二步
1.2.4、对于苯环上的亲电取代反应,卤化反应,硝化反应,烃化反应中均形成了碳正离子作为亲电试剂来参与反应,比如硝化反应中:
HONO22H2SO4NO
2
H3 O2HSO4
N
O
O
NO2
H
NO2
H
NO2
H
NO2
2、碳负离子
碳负离子是在碱性条件下形成的中间体,比如E1CB消除反应:
CH3CH2CHCH3
F
25
25
CH3CHCHCH3
F
+CH3CH2CH
F
CH2
CH3CH CHCH3CH3CH2CH CH2
(主)
Hofmann烯
芳环上的亲核取代反应,其机理为加成——消去机理:
O O
Nu慢
L Nu
N+
O O
N+
O O
Nu
L
+
L
Nu N +
O
O
L
Nu
N +
O
O
L
Nu
N +
O
O
L
Nu
N +
O
O
加成—消去机理
3、自由基
自由基是一大类反应的活性中间体,它是一些含单电子不带电荷的物质。
现在涉及到的自由基链反应最典型的就是甲烷的氯化反应。
氯原子与甲烷分子相碰撞时,从甲烷夺取一个氢原子,生成氯化氢分子,则转变成了甲基自由基:
+H C l C l
+C H 4
C H 3
甲基自由基的化学活性很高,当他与一个氯分子碰撞时又夺取一个氯原子生成一氯甲烷和另一个氯原子:
C H 3
+
C l 2C H 3C l +C l
新生成的氯原子又继续与甲烷反应,又生成了甲基自由基,如此反复,直至生成稳定的分子。
以上是目前我们所学有机反应中的几种活性中间体,最常见的为碳正离子,但是碳负离子,苯炔中间体和自由基都是有机反应中非常重要的活性中间体,因此我们在学习有机化学复杂反应的同时就必须要对这些常见活性中间体的一些基本性质有所了解。
参考文献:
[1]《有机化学》 胡宏纹主编.高等教育出版社.2006;
[2]《有机反应活性中间体》 张景龄编著.华中师范大学.2004。