中考数学直角三角形的边角关系(大题培优 易错 难题)含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学直角三角形的边角关系(大题培优易错难题)含答案
一、直角三角形的边角关系
1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).
【答案】.
【解析】
试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.
试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,
∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,
∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,
∴BC=.故该船与B港口之间的距离CB的长为海里.
考点:解直角三角形的应用-方向角问题.
2.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线.
(2)若BC=2,sin∠BCP=,求点B到AC的距离.
(3)在第(2)的条件下,求△ACP的周长.
【答案】(1)证明见解析(2)4(3)20
【解析】
试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;
(2)利用锐角三角函数,即勾股定理即可.
试题解析:(1)∵∠ABC=∠ACB,
∴AB=AC,
∵AC为⊙O的直径,
∴∠ANC=90°,
∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,
∵∠CAB=2∠BCP,
∴∠BCP=∠CAN,
∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,
∵点D在⊙O上,
∴直线CP是⊙O的切线;
(2)如图,作BF⊥AC
∵AB=AC,∠ANC=90°,
∴CN=CB=,
∵∠BCP=∠CAN,sin∠BCP=,
∴sin∠CAN=,

∴AC=5,
∴AB=AC=5,
设AF=x,则CF=5﹣x,
在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,
在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,
∴25﹣x2=2O﹣(5﹣x)2,
∴x=3,
∴BF2=25﹣32=16,
∴BF=4,
即点B到AC的距离为4.
考点:切线的判定
3.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,
∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:
(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.
(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.
(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.
【答案】(1)∠BME=15°;
(2BC=4;
(3)h≤2时,S=﹣h2+4h+8,
当h≥2时,S=18﹣3h.
【解析】
试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;
(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;
(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于
点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.
试题解析:解:(1)如图2,
∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).
∴OA=OB,
∴∠OAB=45°,
∵∠CDE=90°,CD=4,DE=4,
∴∠OCE=60°,
∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,
∴∠BME=∠CMA=15°;
如图3,
∵∠CDE=90°,CD=4,DE=4,
∴∠OBC=∠DEC=30°,
∵OB=6,
∴BC=4;
(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,
∵CD=4,DE=4,AC=h,AN=NM,
∴CN=4﹣FM,AN=MN=4+h﹣FM,
∵△CMN∽△CED,
∴,
∴,
解得FM=4﹣,
∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,
S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.
考点:1、三角形的外角定理;2、相似;3、解直角三角形
4.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.
(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;
(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.
②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时
tan∠DBF'的值,如果不能,请说明理由.
【答案】(1)证明见解析;(2)①证明见解析;②1
2
3
【解析】
【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;
(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;
②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.
【详解】(1)由翻折可知:∠DFP=∠DFQ,
∵PF∥BC,
∴∠DFP=∠ADF , ∴∠DFQ=∠ADF , ∴△DEF 是等腰三角形;
(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,
∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,
由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴
'
'
DC DP DB DF = , ∴△DP'C ∽△DF'B ;
②当∠F′DB=90°时,如图所示, ∵DF′=DF=1
2
BD , ∴
'1
2
DF BD =, ∴tan ∠DBF′=
'1
2
DF BD =;
当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,
∵DF′=DF=1
2
BD , ∴∠DBF′=30°,
∴tan ∠3
【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.
5.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点
F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin
31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)
【答案】2.5m.
【解析】
试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得
AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.
试题解析:解:设DF=,在Rt△DFC中,∠CDF=,
∴CF=tan·DF=,
又∵CB=4,
∴BF=4-,
∵AB=6,DE=1,BM= DF=,
∴AN=5-,EN=DM=BF=4-,
在Rt△ANE中,∠EAB=,EN=4-,AN=5-,
tan==0.60,
解得=2.5,
答:DM和BC的水平距离BM为2.5米.
考点:解直角三角形.
6.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与
PD,PD交AB于点G.
(1)求证:△PAC∽△PDF;
(2)若AB=5,,求PD的长;
(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)
【答案】(1)证明见解析;(2);(3).
【解析】
试题分析:(1)应用圆周角定理证明∠APD=∠FPC,得到∠APC=∠FPD,又由∠PAC=∠PDC,即可证明结论.
(2)由AC=2BC,设,应用勾股定理即可求得BC,AC的长,则由AC=2BC得
,由△ACE∽△ABC可求得AE,CE的长,由可知△APB是等腰直角三角形,从而可求得PA的长,由△AEF是等腰直角三角形求得EF=AE=4,从而求得DF的长,
由(1)△PAC∽△PDF得,即可求得PD的长.
(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得
,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.
试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.
∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.
又∵∠PAC=∠PDC,∴△PAC∽△PDF.
(2)连接BP,设,∵∠ACB=90°,AB=5,
∴.∴.
∵△ACE∽△ABC,∴,即. ∴.
∵AB⊥CD,∴.
如图,连接BP,
∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.
∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.
由(1)△PAC∽△PDF得,即.
∴PD的长为.
(3)如图,连接BP,BD,AD,
∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.
∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.
∵,∴.
∵△AGP∽△DGB,∴.
∵△AGD∽△PGB,∴.
∴,即.
∵,∴.
∴与之间的函数关系式为.
考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.
7.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为
D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s).
(1)当t为何值时,点G刚好落在线段AD上?
(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围.
(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,
△CPD是等腰三角形?
【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s.
【解析】
试题分析:(1)求出ED的距离即可求出相对应的时间t.
(2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积.
(3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值.
试题解析:∵∠BAC=90°,∠B=60°,BC=16cm
∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm.
(1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm
∴t=s=3s.
(2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上,
则∠HMB=90°,∠B=60°,MH=1
∴BM=cm.∴t=s.
当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上,
设MN=xcm,则GH=DH=x,AH=x,
∵AD=AH+DH=x+x=x=4,
∴x=3.
当≤t≤4时,S MNGN=1cm2.
当4<t≤6时,S MNGH=(t﹣3)2cm2
∴S关于t的函数关系式为:.
(3)分两种情况:
①∵当DP=PC时,易知此时N点为DC的中点,∴MN=6cm
∴EN=3cm+6cm=9cm.∴t=9s
故当t=9s的时候,△CPD为等腰三角形;
②当DC=PC时,DC=PC=12cm
∴NC=6cm
∴EN=16cm﹣1cm﹣6cm=(15﹣6)cm
∴t=(15﹣6)s
故当t=(15﹣6)s时,△CPD为等腰三角形.
综上所述,当t=9s或t=(15﹣6)s时,△CPD为等腰三角形.
考点:1.双动点问题;2.锐角三角函数定义;3.特殊角的三角函数值;4.正方形的性质;5.由实际问题列函数关系式;6.等腰三角形的性质;7.分类思想的应用.
8.如图,某校数学兴趣小组为测量校园主教学楼AB的高度,由于教学楼底部不能直接到达,故兴趣小组在平地上选择一点C,用测角器测得主教学楼顶端A的仰角为30°,再向主教学楼的方向前进24米,到达点E处(C,E,B三点在同一直线上),又测得主教学楼顶端A的仰角为60°,已知测角器CD的高度为1.6米,请计算主教学楼AB的高
度.(3≈1.73,结果精确到0.1米)
【答案】22.4m
【解析】
【分析】
首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造等量关系,进而求解.
【详解】
解:在Rt△AFG中,tan∠AFG3,
∴FG =
tan 3
AG AFG =∠,
在Rt △ACG 中,tan ∠ACG =AG
CG
, ∴CG =
tan AG
ACG ∠=3AG .
又∵CG ﹣FG =24m ,
即3AG ﹣3
=24m , ∴AG =123m , ∴AB =123+1.6≈22.4m .
9.如图,在△ABC 中,∠A=90°,∠ABC=30°,AC=3,动点D 从点A 出发,在AB 边上以每秒1个单位的速度向点B 运动,连结CD ,作点A 关于直线CD 的对称点E ,设点D 运动时间为t (s ).
(1)若△BDE 是以BE 为底的等腰三角形,求t 的值; (2)若△BDE 为直角三角形,求t 的值; (3)当S △BCE ≤
9
2
时,所有满足条件的t 的取值范围 (所有数据请保留准确值,参考数据:tan15°=23 【答案】(133
;(23秒或3秒;(3)6﹣3 【解析】 【分析】
(1)如图1,先由勾股定理求得AB 的长,根据点A 、E 关于直线CD 的对称,得CD 垂直平分AE ,根据线段垂直平分线的性质得:AD=DE ,所以AD=DE=BD ,由3,可得t 的值;
(2)分两种情况:
①当∠DEB=90°时,如图2,连接AE,根据t的值;
②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,
②当△BCE在BC的上方时,
分别计算当高为3时对应的t的值即可得结论.
【详解】
解:(1)如图1,连接AE,
由题意得:AD=t,
∵∠CAB=90°,∠CBA=30°,
∴BC=2AC=6,

∵点A、E关于直线CD的对称,
∴CD垂直平分AE,
∴AD=DE,
∵△BDE是以BE为底的等腰三角形,
∴DE=BD,
∴AD=BD,
∴t=AD=

2
(2)△BDE为直角三角形时,分两种情况:
①当∠DEB=90°时,如图2,连接AE,
∵CD垂直平分AE,
∴AD=DE=t,
∵∠B=30°,
∴BD=2DE=2t,


②当∠EDB=90°时,如图3,
连接CE,
∵CD垂直平分AE,
∴CE=CA=3,
∵∠CAD=∠EDB=90°,
∴AC∥ED,
∴∠CAG=∠GED,
∵AG=EG,∠CGA=∠EGD,
∴△AGC≌△EGD,
∴AC=DE,
∵AC∥ED,
∴四边形CAED是平行四边形,
∴AD=CE=3,即t=3;
综上所述,△BDE为直角三角形时,t的值为3秒或3秒;
(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,
①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,
此时S△BCE=1
2
AE•BH=
1
2
×3×3=
9
2

易得△ACG≌△HBG,
∴CG=BG,
∴∠ABC=∠BCG=30°,
∴∠ACE=60°﹣30°=30°,
∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,
∴∠ACD=∠DCE=15°,
tan∠ACD=tan15°=t
3
=2﹣3,
∴t=6﹣33,
由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,
此时S△BCE=1
2
CE•DE=
1
2
×3×3=
9
2
,此时t=3,
综上所述,当S△BCE≤9
2
时,t的取值范围是6﹣33≤t≤3.
【点睛】
本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.
10.已知抛物线y=﹣1
6
x2﹣
2
3
x+2与x轴交于点A,B两点,交y轴于C点,抛物线的对
称轴与x轴交于H点,分别以OC、OA为边作矩形AECO.
(1)求直线AC的解析式;
(2)如图,P为直线AC上方抛物线上的任意一点,在对称轴上有一动点M,当四边形AOCP 面积最大时,求|PM﹣OM|的值.
(3)如图,将△AOC沿直线AC翻折得△ACD,再将△ACD沿着直线AC平移得△A'C′D'.使得点A′、C'在直线AC上,是否存在这样的点D′,使得△A′ED′为直角三角形?若存在,请求出点D′的坐标;若不存在,请说明理由.
【答案】(1) y=1
3
x+2;(2) 点M坐标为(﹣2,
5
3
)时,四边形AOCP的面积最大,此时
|PM﹣OM|61 (3)存在,D′坐标为:(0,4)或(﹣6,2)或(
3
5

19
5
).
【解析】
【分析】
(1)令x=0,则y=2,令y=0,则x=2或﹣6,求出点A、B、C坐标,即可求解;(2)连接OP交对称轴于点M,此时,|PM﹣OM|有最大值,即可求解;
(3)存在;分①A′D′⊥A′E;②A′D′⊥ED′;③ED′⊥A′E三种情况利用勾股定理列方程求解即可.
【详解】
(1)令x=0,则y=2,令y=0,则x=2或﹣6,∴A(﹣6,0)、B(2,0)、C(0,
2),函数对称轴为:x=﹣2,顶点坐标为(﹣2,8
3
),C点坐标为(0,2),则过点C
的直线表达式为:y=kx+2,将点A坐标代入上式,解得:k
1
3
=,则:直线AC的表达式
为:y
1
3
=x+2;
(2)如图,过点P作x轴的垂线交AC于点H.
四边形AOCP面积=△AOC的面积+△ACP的面积,四边形AOCP面积最大时,只需要△ACP
的面积最大即可,设点P坐标为(m,
1
6
-m2
2
3
-m+2),则点G坐标为(m,
1
3
m+2),
S△ACP
1
2
=PG•OA
1
2
=•(
1
6
-m2
2
3
-m+2
1
3
-m﹣2)•6
1
2
=-m2﹣3m,当m=﹣3时,上式
取得最大值,则点P坐标为(﹣3,5
2
).连接OP交对称轴于点M,此时,|PM﹣OM|有
最大值,直线OP的表达式为:y
5
6
=-x,当x=﹣2时,y
5
3
=,即:点M坐标为(﹣2,
5 3),|PM﹣OM|的最大值为:2222
555
(32)()2()
233
-++--+=61.
(3)存在.
∵AE=CD,∠AEC=∠ADC=90°,∠EMA=∠DMC,∴△EAM≌△DCM(AAS),∴EM=DM,AM=MC,设:EM=a,则:MC=6﹣a.在Rt△DCM中,由勾股定理得:MC2=
DC 2+MD 2,即:(6﹣a )2=22+a 2,解得:a 83=,则:MC 103
=,过点D 作x 轴的垂线交x 轴于点N ,交EC 于点H .在Rt △DMC 中,12DH •MC 12=MD •DC ,即:DH 108
33

=⨯2,
则:DH 85=
,HC 65==,即:点D 的坐标为(61855
-,); 设:△ACD 沿着直线AC 平移了m 个单位,则:点A ′坐标(﹣6
D ′坐标为(618
55,-
++),而点E 坐标为(﹣6,2),则2''
A D =
22618
(6)()
55
-++=36,2'A E =222)+=24m +,2
'ED =22248(
(
55+=2128
5m +.若△A ′ED ′为直角三角形,分三种情况讨论:
①当2''
A D +
2'A E
=
2
'ED 时,36+2
4
m -
=21285m +,解得:m ,
此时D ′(618
55,-++)为(0,4); ②当2''
A D +
2'ED =2
'A E 时,36+2
128
5m +=2
4m +,解得:
m =
D ′(61855,-)为(-6,2);
③当2'A E +2'ED =2''A D 时,2
4
m +21285m +=36,解得:m =
或m
,此时D ′(61855,-+)为(-6,2)或(35-,195).
综上所述:D 坐标为:(0,4)或(﹣6,2)或(35-,19
5
). 【点睛】
本题考查了二次函数知识综合运用,涉及到一次函数、图形平移、解直角三角形等知识,其中(3)中图形是本题难点,其核心是确定平移后A ′、D ′的坐标,本题难度较大.
11.如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D (1)求证:PC 是⊙O 的切线; (2)求证:
PA AD
PC CD
=;
(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=3
5
,CF=5,求BE
的长.
【答案】(1)见解析;(2)BE=12.
【解析】
【分析】
(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到
∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到
CF=AF,在R t△AFD中,AF=5,sin∠FAD=3
5
,求得FD=3,AD=4,CD=8,在R t△OCD中,
设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为
⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=3
5,得到
BE
AB

3
5
,于是求得
结论.
【详解】
(1)证明:连接OC,
∵PC切⊙O于点C,∴OC⊥PC,
∴∠PCO=90°,
∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,
∴∠ABC+∠OAC=90°,∵OC=OA,
∴∠OCA=∠OAC,
∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,
∵AB⊥CG,
∴弧AC=弧AG,
∴∠ACF=∠ABC,
∵∠PCA=∠ABC,
∴∠ACF=∠CAF,
∴CF=AF,
∵CF=5,
∴AF=5,
∵AE∥PC,
∴∠FAD=∠P,
∵sin∠P=3
5

∴sin∠FAD=3
5

在R t△AFD中,AF=5,sin∠FAD=3
5

∴FD=3,AD=4,∴CD=8,
在R t△OCD中,设OC=r,
∴r2=(r﹣4)2+82,
∴r=10,
∴AB=2r=20,
∵AB为⊙O的直径,
∴∠AEB=90°,在R t△ABE中,
∵sin∠EAD=3
5,∴
3
5
BE
AB

∵AB=20,
∴BE=12.
【点睛】
本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.
12.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)
(1)如果∠A=30°,
①如图1,∠DCB等于多少度;
②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段
DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;
(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)
【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=
2DE•tanα.理由见解析.
【解析】
【分析】
(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;
②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,
(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.
【详解】
(1)①∵∠A=30°,∠ACB=90°,
∴∠B=60°,
∵AD=DB,
∴CD=AD=DB,
∴△CDB是等边三角形,
∴∠DCB=60°.
②如图1,结论:CP=BF.理由如下:
∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,
∴△CDB为等边三角形.
∴∠CDB=60°
∵线段DP绕点D逆时针旋转60°得到线段DF,
∵∠PDF=60°,DP=DF,
∴∠FDB =∠CDP ,
在△DCP 和△DBF 中
DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩

∴△DCP ≌△DBF ,
∴CP =BF.
(2)结论:BF ﹣BP =2DEtanα.
理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,
∴DC =DB =AD ,DE ∥AC ,
∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,
∴∠BDC =∠A+∠ACD =2α,
∵∠PDF =2α,
∴∠FDB =∠CDP =2α+∠PDB ,
∵线段DP 绕点D 逆时针旋转2α得到线段DF ,
∴DP =DF ,
在△DCP 和△DBF 中
DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩

∴△DCP ≌△DBF ,
∴CP =BF ,
而 CP =BC+BP ,
∴BF ﹣BP =BC ,
在Rt △CDE 中,∠DEC =90°,
∴tan ∠CDE =
CE DE
, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,
即BF ﹣BP =2DEtanα.
【点睛】
本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.。

相关文档
最新文档