中考数学数学平行四边形的专项培优练习题(含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学数学平行四边形的专项培优练习题(含答案
一、选择题
1.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )
A .5
B .7
C .8
D .132
2.正方形ABCD ,CEFG 按如图放置,点B ,C ,E 在同一条直线上,点P 在BC 边上,PA PF =,且APF 90∠=︒,连接AF 交CD 于点M ,有下列结论:EC BP =①;BAP GFP ∠∠=②;2221AB CE AF 2+=
③;APF ABCD CEFG S S 2S +=正方形正方形④.其中
正确的是( )
A .①②③
B .①③④
C .①②④
D .①②③④
3.如图,在正方形ABCD 中,点E ,F 分别在BC 和CD 上,过点A 作GA AE ⊥,CD 的延长线交AG 于点G ,BE DF EF +=,若30DAF ∠=︒,则BAE ∠的度数为( )
A.15°B.20°C.25°D.30°
4.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()
A.24 B.36 C.72 D.144
5.已知四边形ABCD中,对角线BD被AC平分,那么再加上下述中的条件()可以得到结论: “四边形ABCD是平行四边形”.
A.AB=CD B.∠BAD=∠BCD C.∠ABC=∠ADC D.AC= BD
6.下列命题中,真命题的个数有()
①对角线相等的四边形是矩形;
②三条边相等的四边形是菱形;
③一组对边平行且相等的四边形是平行四边形.
A.3个B.2个C.1个D.0个
7.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()
A .2
B .2
C .1.5
D .3
8.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP=EF ;②△APD 一定是等腰三角形;③AP ⊥EF ;
④22
PD=EF .其中正确结论的番号是( )
A .①③④
B .①②③
C .①③
D .①②④
9.如图,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边AB 延AE 折叠刀AF ,延长EF 交DC 于G ,连接AG ,现在有如下结论:①∠EAG=45°;②GC=CF ;③FC ∥AG ;④S △GFC =14.4;其中结论正确的个数是( )
A .1
B .2
C .3
D .4
10.如图,在平行四边形ABCD 中,AE 平分BAD ∠,交BC 于点E 且AB AE =,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①ABC EAD △≌△;②ABE △是等边三角形;③BF AD =;④BEF ABC S S =△△;⑤CEF ABE S S =△△;其中正确的有( )
A .2个
B .3个
C .4个
D .5个
二、填空题
11.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A′B 所在直线于点F ,连接A′E .当△A′EF 为直角三角形时,AB 的长为_____.
12.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则
2020C =______.
13.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.
14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.
15.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.
16.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).
17.如图,正方形ABCD 的边长为4,点E 为AD 的延长线上一点,且DE =DC ,点P 为边AD 上一动点,且PC ⊥PG ,PG =PC ,点F 为EG 的中点.当点P 从D 点运动到A 点时,则CF 的最小值为___________
18.如图,四边形ABCP 是边长为4的正方形,点E 在边CP 上,PE =1;作EF ∥BC ,分别交AC 、AB 于点G 、F ,M 、N 分别是AG 、BE 的中点,则MN 的长是_________.
19.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.
20.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC
=,EC m BC
=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.
三、解答题
21.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .
(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.
(2)设()01AB m m AD
=<<,且点F 恰好落在CE 上. ①求证:CF DE =. ②若AE n AD
=,用等式表示m n ,的关系. 22.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.
(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .
(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.
(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.
23.如图,四边形OABC中,BC∥AO,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x 轴于点P,连结AC交NP于Q,连结MQ.
(1)当t为何值时,四边形BNMP为平行四边形?
(2)设四边形BNPA的面积为y,求y与t之间的函数关系式.
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
24.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED 的延长线交线段OA于点H,连结CH、CG.
(1)求证:CG平分∠DCB;
(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;(3)连结BD、DA、AE、EB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.
25.已知正方形ABCD.
(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.
①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.
②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.
(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.
26.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .
图1 图2
(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .
①求证:BF AB DF =+.
②若3AD AB =,试探索线段DF 与FC 的数量关系.
27.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.
(1)直接写出AQH 的面积(用含t 的代数式表示).
(2)当点M 落在BC 边上时,求t 的值.
(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).
28.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52.
(1)如图1,求证:DG =BE ;
(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .
①连结BH ,BG ,求BH BG
的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.
29.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .
(1)如图,当点E 在线段BC 上时,∠BDF=α.
①按要求补全图形;
②∠EBF =______________(用含α的式子表示);
③判断线段 BF ,CF ,DF 之间的数量关系,并证明.
(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.
30.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,
(1)如图1,求证:△AMC ≌△AND ;
(2)如图1,若3,求AE 的长;
(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,
连接1AF 、1BC ,点G 是1BC 的中点,连接AG
,试探索
1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则343CH AB ==4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.
【详解】 解:作CH AB ⊥于H ,如图,
菱形ABCD 的边8AB =,60B ∠=,
ABC ∆∴为等边三角形,
343CH AB ∴==,4AH BH ==, 3PB =,
1HP ∴=,
在Rt CHP ∆中,32(43)17CP =+=,
梯形APQD 沿直线PQ 折叠,A 的对应点'A ,
∴点'A 在以点P 为圆心,PA 为半径的弧上,
∴当点'A 在PC 上时,'CA 的值最小,
APQ CPQ ∴∠=∠,
而//CD AB ,
APQ CQP ∴∠=∠,
CQP CPQ ∴∠=∠,
7CQ CP ∴==.
故选:B .
【点睛】
考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.
2.D
解析:D
【分析】
①由同角的余角相等可证出EPF BAP ≅,由此即可得出EF BP =,再根据正方形的性质即可得出①成立;②根据平行线的性质可得出GFP EPF ∠=∠,再由EPF BAP ∠=∠即可得出②成立;③在Rt ABP ∆中,利用勾股定理即可得出③成立;④结合③即可得出④成立.
【详解】
解:①90EPF APB ∠+∠=︒,90APB BAP ∠+∠=︒,
EPF BAP ∴∠=∠,
在EPF ∆和BAP ∆中,
EPF BAP FEP PBA PA PF ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
()EPF BAP AAS ∴∆≅∆,
EF BP ∴=,
四边形CEFG 为正方形,
EC EF BP ∴==,即①成立;
②//FG EC ,
GFP EPF ∴∠=∠,
又EPF BAP ∠=∠,
BAP GFP ∴∠=∠,即②成立;
③由①可知EC BP =,
在Rt ABP ∆中,222AB BP AP +=,
PA PF =,且90APF ∠=︒,
APF ∴∆为等腰直角三角形,
22222AF AP FP AP ∴=+=,
22222212
AB BP AB CE AP AF ∴+=+==,即③成立; ④由③可知:222AB CE AP +=,
2APF ABCD CGFE S S S ∆∴+=正方形正方形,即④成立.
故成立的结论有①②③④.
故选:D .
【点睛】
本题考查了正方形的性质、全等三角形的判定及性质、平行线的性质以及勾股定理,解题的关键是逐条分析五条结论是否正确.本题属于中档题,难度不大,解决该题型题目时,通过证明三角形全等以及利用勾股定理等来验证题中各结论是否成立是关键.
3.A
解析:A
【分析】
根据已知条件先证明△ABE ≌△ADG ,得到AE=AG ,再证明△AEF ≌△AGF ,得到
EAF GAF ∠=∠,根据30DAF ∠=︒,设BAE ∠=x,利用GA AE ⊥得到方程求出x 即可求解.
【详解】
在正方形ABCD 中,AB=AD,90ABE ADG BAD ∠=∠=∠=︒
∵GA AE ⊥
∴90EAD DAG ∠+∠=︒
又90EAD BAE ∠+∠=︒
∴DAG BAE ∠∠=
∴△ABE ≌△ADG (ASA )
∴AE=AG ,BE=DG,
∵BE DF EF +=
∴BE DF DG DF EF +=+=
∴EF=GF
∴△AEF ≌△AGF (SSS )
∴EAF GAF ∠=∠
∵30DAF ∠=︒,设BAE ∠=x,
∴EAF GAF ∠=∠=x+30°
∵GA AE ⊥
∴90EAF GAF ∠+∠=︒
故x+30°+ x+30°=90°
解得x=15°
故选A .
【点睛】
此题主要考查全等三角形的判定与性质,解题的关键是熟知正方形的性质及全等三角形的判定定理.
4.C
解析:C
【分析】
根据菱形的对角线互相垂直平分可得AC ⊥BD ,AO =OC ,EO =OF ,再求出BO =OD ,证明四边形ABCD 是菱形,根据菱形的四条边都相等求出边长AE ,根据菱形的对角线互相平分求出OE ,然后利用勾股定理列式求出AO ,再求出AC ,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.
【详解】
解:如图,连接AC 交BD 于点O ,
∵四边形AECF 是菱形,
∴AC ⊥BD ,AO =OC ,EO =OF ,
又∵点E 、F 为线段BD 的两个三等分点,
∴BE =FD ,
∴BO =OD ,
∵AO =OC ,
∴四边形ABCD 为平行四边形,
∵AC ⊥BD ,
∴四边形ABCD为菱形;
∵四边形AECF为菱形,且周长为20,
∴AE=5,
∵BD=24,点E、F为线段BD的两个三等分点,
∴EF=8,OE=1
2
EF=
1
2
×8=4,
由勾股定理得,AO=22
AE OE
-=22
54
-=3,∴AC=2AO=2×3=6,
∴S四边形ABCD=1
2
BD•AC=
1
2
×24×6=72;
故选:C.
【点睛】
本题考查了菱形的判定与性质,主要利用了菱形的对角线互相垂直平分的性质,勾股定理以及利用菱形对角线求面积的方法,熟记菱形的性质与判定方法是解题的关键.
5.B
解析:B
【分析】
设BD与AC交于O点,已知条件为BO=DO,∠AOB=∠COD,结合选项条件应证出能判断平行四边形的条件,或举出反例证明不成立.
【详解】
解:A、BO=DO,∠AOB=∠COD, AB=CD不能证出四边形ABCD是平行四边形, 反例如图,
故本选项错误;
B、如图,在直线AC上任取一点C´,使OA=OC´,
∵BO=DO,∴四边形ABC´D是平行四边形,
∴AD∥BC´,AB∥C´D,
∴∠BC´A=∠C´AD, ∠AC´D=∠BAC´,
∴∠BC´A+∠AC´D=∠C´AD+∠BAC´,
即∠BC´D=∠BAD,
∵∠BAD=∠BCD
∴∠BC ´D=∠BCD,
∴点C 与点C ´重合,
∴四边形ABCD 是平行四边形.
故本选项正确;
C 、当BO=DO,∠ABC=∠ADC 不能证出四边形ABC
D 是平行四边形, 反例如图,
故本选项错误;
D 、当BO=DO,AC=BD, 不能证出四边形ABCD 是平行四边形, 反例如图,
故本选项错误.
故选:B.
【点睛】
本题考查平行四边形的判定,根据已知条件证出判定平行四边形的条件及举出反例图形是解答此题的关键.
6.C
解析:C
【分析】
正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.
【详解】
①对角线相等且互相平分的四边形是矩形,故该项错误;
②四条边相等的四边形是菱形,故该项错误;
③一组对边平行且相等的四边形是平行四边形,故该项正确;
故选:C .
【点睛】
此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键.
7.D
解析:D
【分析】
设BC x =,先根据矩形的性质可得90,B AD BC ∠=︒=,再根据折叠的性质可得
,,90OA AD x OC BC x COE B ====∠=∠=︒,从而可得OA OC =,又根据菱形的性质可得AE CE =,然后根据三角形全等的判定定理与性质可得90AOE COE ∠=∠=︒,从而可得点,,A O C 共线,由此可得2AC x =,最后在Rt ABC 中,利用勾股定理即可得.
【详解】
设BC x =,
四边形ABCD 是矩形,
90,B AD BC x ∴∠=︒==,
由折叠的性质得:,,90OA AD x OC BC x COE B ====∠=∠=︒,
OA OC x ∴==,
四边形AECF 是菱形,
AE CE ∴=,
在AOE △和COE 中,OA OC AE CE OE OE =⎧⎪=⎨⎪=⎩
,
()AOE COE SSS ∴≅,
90AOE COE ∴∠=∠=︒,即180AOE COE ∠+∠=︒,
∴点,,A O C 共线,
2AC OA OC x ∴=+=,
在Rt ABC 中,222AB BC AC +=,即2223(2)x x +=,
解得x =
x =
即BC =
故选:D . 【点睛】
本题考查了矩形与菱形的性质、折叠的性质、三角形全等的判定定理与性质、勾股定理等知识点,利用三角形全等的判定定理与性质证出90AOE COE ∠=∠=︒,从而得出点,,A O C 共线是解题关键.
8.C
解析:C
【分析】
过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE 后即可证明①AP=EF ;在此基础上,根据正方形的对角线平分对角的性质,在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2
,求得
2
DP EC =,即可得到答案. 【详解】
证明:过P 作PG ⊥AB 于点G ,
∵点P是正方形ABCD的对角线BD上一点,
∴GP=EP,
在△GPB中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP,
同理,得PE=BE,
∵AB=BC=GF,
∴AG=AB-GB,FP=GF-GP=AB-GB,
∴AG=PF,
∴△AGP≌△FPE,
∴AP=EF;故①正确;
延长AP到EF上于一点H,
∴∠PAG=∠PFH,
∵∠APG=∠FPH,
∴∠PHF=∠PGA=90°,
即AP⊥EF;故③正确;
∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故②错误.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴
2
2
DP EC
,故④错误.
∴正确的选项是①③;
故选:C.
【点睛】
本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.
9.C
解析:C
【分析】
选项①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.选项②错误.可以证明
DG=GC=FG,显然△GFC不是等边三角形,可得结论.选项③正确.证明CF⊥DF,AG⊥DF 即可.选项④正确.证明FG:EG=3:5,求出△ECG的面积即可.
【详解】
解:如图,连接DF.
∵四边形ABCD是正方形,
∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,
由折叠可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,
∵∠AFG=∠ADG=90°,AG=AG,AD=AF,
∴Rt△AGD≌Rt△AGF(HL),
∴∠GAF=∠GAD,
∴∠EAG=∠EAF+∠GAF=1
2
(∠BAF+∠DAF)=45°,故①正确,
设GD=GF=x,
在Rt△ECG中,∵EG2=EC2+CG2,
∴(4+x)2=82+(12-x)2,
∴x=6,
∵CD=BC=BE+EC=12,
∴DG=CG=6,
∴FG=GC,
易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,
∴∠DFC=90°,
∴CF⊥DF,
∵AD=AF,GD=GF,
∴AG⊥DF,
∴CF∥AG,故③正确,
∵S△ECG=1
2
×6×8=24,FG:FE=6:4=3:2,
∴FG:EG=3:5,
∴S△GFC=3
5
×24=
72
5
=14.4,故④正确,
故选:C .
【点睛】
本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
10.B
解析:B
【分析】
由平行四边形的性质和角平分线的定义得出∠BAE =∠BEA ,得出AB =BE =AE ,得出②正确;由△ABE 是等边三角形得出∠ABE =∠EAD =60°,由SAS 证明△ABC ≌△EAD ,得出①正确;由S △AEC =S △DEC ,S △ABE =S △CEF 得出⑤正确;③和④不正确.
【详解】
解:∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD =BC ,
∴∠EAD =∠AEB ,
又∵AE 平分∠BAD ,
∴∠BAE =∠DAE ,
∴∠BAE =∠BEA ,
∴AB =BE ,
∵AB =AE ,
∴△ABE 是等边三角形;②正确;
∴∠ABE =∠EAD =60°,
在△ABC 和△EAD 中,
AB AE ABE EAD BC AD =⎧⎪∠=∠⎨⎪=⎩
,
∴△ABC ≌△EAD (SAS );①正确;
∵△FCD 与△ABC 等底(AB =CD )等高(AB 与CD 间的距离相等),
∴S △FCD =S △ABC ,
又∵△AEC 与△DEC 同底等高,
∴S △AEC =S △DEC ,
∴S △ABE =S △CEF ;⑤正确.
若AD 与BF 相等,则BF =BC ,
题中未限定这一条件,
∴③不一定正确;
若S △BEF =S △ACD ;则S △BEF =S △ABC ,
则AB =BF ,
∴BF =BE ,题中未限定这一条件,
正确的有①②⑤.
故选:B.
【点睛】
此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质、三角形的面积关系;此题比较复杂,注意将每个问题仔细分析.
二、填空题
11.43或4
【解析】
分析:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;
②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.
详解:当△A′EF为直角三角形时,存在两种情况:
①当∠A'EF=90°时,如图1,
.
∵△A′BC与△ABC关于BC所在直线对称,
∴A'C=AC=4,∠ACB=∠A'CB,
∵点D,E分别为AC,BC的中点,
∴D、E是△ABC的中位线,
∴DE∥AB,
∴∠CDE=∠MAN=90°,
∴∠CDE=∠A'EF,
∴AC∥A'E,
∴∠ACB=∠A'EC,
∴∠A'CB=∠A'EC,
∴A'C=A'E=4,
Rt△A'CB中,∵E是斜边BC的中点,
∴BC=2A'E=8,
由勾股定理得:AB2=BC2-AC2,
∴AB=2284=43-;
②当∠A'FE=90°时,如图2,
.
∵∠ADF=∠A=∠DFB=90°,
∴∠ABF=90°,
∵△A′BC 与△ABC 关于BC 所在直线对称,
∴∠ABC=∠CBA'=45°,
∴△ABC 是等腰直角三角形,
∴AB=AC=4;.
综上所述,AB 的长为34; 故答案为3 4.
点睛:本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.
12.20181
2
【分析】
根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .
【详解】
∵点E 是BC 的中点,ED ∥AB ,EF ∥AC ∴DE 、EF 是△ABC 的中位线 ∵等边△ABC 的边长为1
∴AD=DE=EF=AF =
12 则1C =1422
⨯= 同理可求得:2C =1,3C =12
发现规律:规律为依次缩小为原来的
12 ∴2020C =20181
2
故答案为:
201812.
【点睛】 本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.
13【分析】
先根据菱形的性质可得OC 垂直平分BD ,从而可得=DP BP ,再根据两点之间线段最短可得EP BP +的最小值为DE ,然后利用等边三角形的判定与性质求出点D 的坐标,最后利用两点之间的距离公式即可得.
【详解】
如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B ,
OB ∴=
四边形ABCD 是菱形,
OC ∴垂直平分BD ,OB OD ==
点P 是对角线OC 上的点,
DP BP ∴=,
EP BP EP DP ∴+=+,
由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,
BOD ∴是等边三角形, DA OB ⊥,
1
2
OA OB ∴==3AD ===,
D ∴,
又(0,1)E -,
DE ∴==
即EP BP +
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据
+的最小值为DE是解题关键.
两点之间线段最短得出EP BP
14.8或12
【分析】
根据平行四边形的性质得到BC=AD=5,∠BAE=∠DEA,∠ABF=∠BFC,根据角平分线的性质得到DE=AD=5,CF=BC=5,即可求出答案.
【详解】
在ABCD中,AB∥CD,BC=AD=5,
∴∠BAE=∠DEA,∠ABF=∠BFC,
∠的平分线交CD于点E,
∵BAD
∴∠BAE=∠DAE,
∴∠DAE=∠DEA,
∴DE=AD=5,
同理:CF=BC=5,
∴AB=CD=DE+CF-EF=5+5-2=8或AB=DE+CF+EF=5+5+2=12,
故答案为:8或12.
【点睛】
此题考查平行四边形的性质,角平分线的性质,等腰三角形的等角对等边的判定,解题中注意分类思想的运用,避免漏解.
15.2
【分析】
连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计
【详解】
解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,
∵O 是正方形DBCE 的对称中心,
∴BO=CO ,∠BOC=90°,
∵FO ⊥AO ,
∴∠AOF=90°,
∴∠BOC=∠AOF ,
即∠AOC+∠BOA=∠FBO+∠BOA ,
∴∠AOC=∠FBO ,
∵∠BAC=90°,
∴在四边形ABOC 中,∠ACO+∠ABO=180°,
∵∠FBO+∠ABO=180°,
∴∠ACO=∠FBO ,
在△AOC 和△FOB 中,
AOC FOB AO FO
ACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AOC ≌△FOB (ASA ),
∴AO=FO ,FB=FC=6,
∴AF=8+6=14,∠FAO=∠OFA=45°,
∴AO=AF×cos45°=14×
22=2 故答案为2.
【点睛】
本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.
16.②③
【分析】
根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.
解:在菱形ABCD 中,AC ⊥BD ,
∴在Rt △AFP 中,AF 一定大于AP ,故①错误;
∵四边形ABCD 是菱形,
∴AD ∥BC ,
∴∠ABE+∠BAE+∠EAD=180°,
设∠BAE=x°,
则∠EAD=2x°,∠ABE=180°-x°-2x°,
∵AB=AE ,∠BAE=x°,
∴∠ABE=∠AEB=180°-x°-2x°,
由三角形内角和定理得:x+180-x-2x+180-x-2x=180,
解得:x=36,
即∠BAE=36°,
∠BAE=180°-36°-2×36°=70°,
∵四边形ABCD 是菱形,
∴∠BAD=∠CBD=12
∠ABE=36°, ∴∠BFE=∠ABD+∠BAE=36°+36°=72°,
∴∠BEF=180°-36°-72°=72°,
∴BE=BF=AF .故③正确
∵∠AFD=∠BFE=72°,∠EAD=2x°=72°
∴∠AFD=∠EAD
∴AD=FD
又∵AD=AB=AE
∴AE=FD ,故②正确
∴正确的有②③
故答案为:②③
【点睛】
本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE 的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.
17.【分析】
由正方形ABCD 的边长为4,得出AB=BC=4,∠B=90°,得出AC=P 与D 重合时,PC=ED=PA ,即G 与A 重合,则EG 的中点为D ,即F 与D 重合,当点P 从D 点运动到A 点时,则点F 运动的路径为DF ,由D 是AE 的中点,F 是EG 的中点,得出DF 是△EAG 的中位线,证得∠FDA=45°,则F 为正方形ABCD 的对角线的交点,CF ⊥DF ,此时CF 最
小,此时CF=
12AG= 【详解】
∵正方形ABCD的边长为4,
∴AB=BC=4,∠B=90°,
∴AC=2,
当P与D重合时,PC=ED=PA,即G与A重合,
∴EG的中点为D,即F与D重合,
当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,
∴DF是△EAG的中位线,
∴DF∥AG,
∵∠CAG=90°,∠CAB=45°,
∴∠BAG=45°,
∴∠EAG=135°,
∴∠EDF=135°,
∴∠FDA=45°,
∴F为正方形ABCD的对角线的交点,CF⊥DF,
此时CF最小,
此时CF=1
2
AG=22
故答案为:2
【点睛】
本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.
18.5
【分析】
先判断四边形BCEF的形状,再连接FM FC
、,利用正方形的性质得出AFG是等腰直
角三角形,再利用直角三角形的性质得出
1
2
MN FC
=即可.
【详解】
∵四边形ABCP是边长为4的正方形,//
EF BC,∴四边形BCEF是矩形,
∵1
PE=,
连接FM FC 、,如图所示:
∵四边形ABCP 是正方形,
∴=45BAC ∠ ,AFG 是等腰直角三角形,
∵M 是AG 的中点,即有AM MG = ,
∴FM AG ⊥,FMC 是直角三角形,
又∵N 是FC 中点,12MN FC =
, ∵225FC BF BC =+=
∴ 2.5MN =,
故答案为:2.5 .
【点睛】
本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.
19.207
【分析】
根据折叠的性质可得出DC=DE 、CP=EP ,由“AAS”可证△OEF ≌△OBP ,可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=5-x 、BF=PC=3-x ,进而可得出AF=2+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,即可得AF 的长.
【详解】
解:∵将△CDP 沿DP 折叠,点C 落在点E 处,
∴DC =DE =5,CP =EP .
在△OEF 和△OBP 中,
90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩
, ∴△OEF ≌△OBP (AAS ),
∴OE =OB ,EF =BP .
设EF =x ,则BP =x ,DF =DE -EF =5-x ,
又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,
∴AF =AB -BF =2+x .
在Rt △DAF 中,AF 2+AD 2=DF 2,
∴(2+x )2+32=(5-x )2,
∴x =67
∴AF =2+
67=207 故答案为:
207
【点睛】 本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
20.7
【分析】
①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得
11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和
1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=
+四边形即可得出答案.
【详解】 四边形ABCD 是平行四边形
//,AD BC AD BC ∴=
,,AF EC n m BC BC
m n === AF EC ∴=
AD AF BC EC ∴-=-,即DF BE =
∴四边形AECF 、四边形BEDF 都是平行四边形
//,//AE CF BF DE ∴
∴四边形EGFH 是平行四边形
综上,图中共有4个平行四边形
如图,连接EF
1,,AF EC n m BC B n C
m ==+= AF EC BC AD ∴+==
AF DF AD +=
EC DF ∴=
AF BE ∴=
∴四边形ABEF 、四边形CDFE 都是平行四边形 11,44EFG ABEF EFH CDFE S S S S ∆∆∴=
= 28ABCD ABEF CDFE S S S =+=
1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=
+四边形 1()4ABEF CDFE S S =+
12874=⨯= 故答案为:4;7.
【点睛】
本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键.
三、解答题
21.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-
【分析】
(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;
(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;
②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.
【详解】
(1) 由折叠知BEF BEA ≅ ,
所以90BF BA BFE A =∠=∠=︒, .
若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,
与AB AD =矛盾,
所以点F 不会落在CE 上.
(2)①因为()01AB m m AD
=<<,则AB AD < ,
因为点F 落在CE 上,
所以90BFC BFE ∠=∠=︒ ,
所以BF BA CD == .
因为//AD BC ,
所以DEC FCB ∠=∠ ,
所以BCF CED ≅ ,
所以CF DE =.
②若AE n AD
=,则AE nAD =. 设1AD =,则AE n AB m ==,.
因为//AD BC ,
所以BEA EBC ∠=∠ .
因为BEF BEA ∠=∠ ,
所以EBC BEC ∠=∠ ,
所以1CE CB AD === .
在Rt CDE ∆中,11DE n CE CD m ===一,, ,
所以22211()n m -+= ,
所以²²20m n n =+-.
故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.
【点睛】
本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.
22.(1332);(2)存在,点D 的坐标为(0,3)或(231)或(0,-1);(3)OM=
3221 【分析】
(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;
(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角。