三角函数的图像和性质(第一课时)
第1课时三角函数的图象和性质课件-2022-2023学年高一上学期数学苏教版(2019)必修第一册
5. 函数 f(x)=4sinπ3-2x的单调减区间是______-__kπ_-__1_π2_,__-__k_π_+__51_π2__(k_∈__Z_)_____. 【解析】 令 t=π3-2x,它为减函数.当 y=sint 单调递增时,t∈-π2+2kπ,π2+2kπ, k∈Z,所以令-π2+2kπ≤π3-2x≤π2+2kπ,k∈Z,解得-1π2-kπ≤x≤51π2-kπ,k∈Z,故 原函数的单调减区间为-1π2-kπ,51π2-kπ(k∈Z).
(多选)对于函数 f(x)=12(sin x+cos x)-12|sin x-cos x|,下列说法中正确的是 ( BD )
A. f(x)的值域为[-1,1] B. 当且仅当 x=2kπ+π4(k∈Z)时,函数 f(x)取得最大值 C. 函数 f(x)的最小正周期是 π D. 当且仅当 x∈2kπ,2kπ+π2(k∈Z)时,f(x)>0
【解析】对于函数 f(x)=sin6x+π4,令 x=-2π4,可得 f(x)=0,故函数 f(x)的图象关 于点-2π4,0对称,故 A 正确;令 x=-π8,可得 f(x)=-1,是最小值,故函数 f(x)的图 象关于直线 x=-π8对称,故 B 正确;将函数 f(x)=sin6x+π4的图象沿 x 轴向右平移2π4个 单位长度,可得函数 y=sin6x-6·2π4+π4=sin 6x 的图象,故 C 正确;当 x∈2π4,72π4时, 6x+π4∈π2,2π,此时 f(x)不单调,故 D 错误.
3. (多选)下列函数中,最小正周期为 π 的有( ABD )
A. y=sin2x+π2 C. y=tan2x
B. y=cos2x+π2 D. y=|sinx+cosx|
【解析】 由于函数 y=sin2x+π2=cos2x,最小正周期为 π,故 A 正确;由于函数
三角函数图像和性质教学设计
教学设计学校:沙雅县第二中学年级:高中电话:内容:高中数学必修四第一章1.4三角函数的图像性质第一课时三角函数的图像与性质(一)本节课教材是人教版必修四第四课(1.4)<<三角函数图像与性质>>,可将其划分为三小节来设计,即:<<正弦函数、余弦函数图像>>、<<正弦函数、余弦函数性质>>、<<正切函数的性质与图象>>。
一、教学内容分析本节课是学生学习了函数的定义、图象和性质,掌握了研究函数的一般思路,并对三角函数的基本知识比较熟悉的情况下,进一步利用函数图象来研究三角函数的有关性质,为学生以后利用数形结合的方式来解决有关三角函数方面的知识做铺垫,同时,可以对高中阶段系统研究指数函数、对数函数、导函数等做铺垫,进一步巩固和深化三角函数的概念和性质等知识,融会贯通前面所学的函数的基本性质,使学生得到较系统的掌握函数知识和研究函数的方法,掌握运用三角函数图像来解决有关问题。
二、教学目标分析1、知识与技能:( 1).能画出y=sin x, y=c os x的图像,了解三角函数的周期性;(2).借助图像理解正弦函数、余弦函数在[0,2π](如单调性、最大和最小值、图像与x轴交点及奇偶性等);2、过程与方法:培养学生应用所学知识解决问题的能力,独立思考能力,规范解题的标准。
3、情感态度与价值观:培养学生全面的分析问题和认真的学习态度,渗透辩证唯物主义思想。
三、学情分析教学背景本课是高一年级必修四的一堂数学基础课程,本节课主要学习通过图像来研究三角函数的有关性质。
在通过简谐运动的现象,得到正弦或余弦函数图像。
在运用五点法作出它们的图像,让学生分小组讨论,总结和概括它们的性质,后期会用同样方法来研究正切图像和它的相关性质。
学生背景:高一学生已具备一定的教学知识和学习能力,所教的班是重点班,对于知识的归纳总结也有一定的能力,对于新问题,有主动思考问题、探索问题的信习和勇气,因此,本课遵循“以教师为主导,学生为主体”,“数学教学是数学活动的教学”等教学思想,把提问题作为教学出发点,指导尝试,总结反思。
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
3、三角函数的图像和性质(第一课时)
第三节、三角函数的图像和性质(第一课时)一、基础知识 1、三角函数的图像和性质 x y sin =x y cos = x y tan =图像定义域值域增区间减区间奇偶性周期性对称轴对称中心2、的五个关键点,在⎥⎦⎤⎢⎣⎡=20sin πx y ( ),( ),( ),( ),( ),( ) 的五个关键点,在⎥⎦⎤⎢⎣⎡=20cos πx y ( ),( ),( ),( ),( ),( ) 3、______,___,_______)00)(sin(初相相位,频率,振幅为期为表示一个振动量,则周,>>+=ωϕωA x A y1、三角函数图像及其之间的关系图像变换而来的样由的图像,并说明它是怎、做出例x y x y sin 1)62sin(21=++-=π练习:的周期性的图像,并研究、作出函数的图像、作出函数出该函数的周期的图像,并根据图像求、作出函数)(1sin 2)(3sin tan 12cos 112x f y x x f x xy x y =+=⋅=-=2、根据图像确定函数解析式k x A y ++=)sin(ϕω示,则函数表达式()的部分函数图像如图所、函数例)2,0)(sin(1πϕωϕω<>+=x A yA 、)48sin(4ππ+-=x y B 、)48sin(4ππ-=x y C 、)48sin(4ππ--=x y D 、)48sin(4ππ+=x y练习: ____B )sin(1示,试写出函数表达式的部分函数图像如图所、函数++=ϕωx A y3、三角函数图像的应用[][]求这两个根的和的范围求实数实数根,上有且仅有两个不同的在区间的方程、关于例的范围点,则有且仅有两个不同的交的图像和直线,、函数例)2()1(2,00cos 3sin 2____2,0sin 2sin )(1a a x x x k k y x x x x f ππ=++=∈+=[]_____0,21cos N 0,21sin 4,0212sin 3=⋂⎭⎬⎫⎩⎨⎧≤≤≤=⎭⎬⎫⎩⎨⎧≤≤≥=∈≥N M M x x x ,则,、若集合例的集合且的、求例πθθθπθθθπ的实数解个数、求方程例的实数解的个数、求方程例x x x x cos 26cos 52==4、三角函数图像的周期)63sin(2)3)(4121sin()2(2cos 11π-=+==x y x y x y )(、求下列函数周期例x x y x y x y x y x y 2cos 12cos 151)63cos(2)4()63cos(2)3()4121sin(4)2(sin 12++-=+-=-=+==)()(、求下列函数周期例ππ[][]的解析式,,求当时,若当是周期函数证明:对称的图像关于上的偶函数,且是定义在、已知函数例的值为则时,当,的最小正周期为数,若既是偶函数又是周期函上的函数、定义在例的值求为周期的偶函数,且是以、例)(2,61)(2,2)2()()1(2)()(5_____)35(,sin )(2,0)()(4)617(,1)3(2)(32x f x x x f x x f x x f y R x f f x x f x x f x f R f f x f --∈+-=-∈===⎥⎦⎤⎢⎣⎡∈-=ππππππ5、三角函数的定义域x x y x x x y x y x x y tan log 2)4()82cos(1tan )1sin 2lg()3(1sin 1log )2(cos lg 36)1(12122++=+--+-=-=+-=π、求下列函数的定义域例6、三角函数的奇偶性)1sin lg(sin )4(cos sin 1cos sin 1sin cos 1cos sin 1)3)(sin(cos )2)(cos()1(12++=-+++⨯++-+==+=x y xx x x x x x x y x y x x y π性、判断下列函数的奇偶例练习:______0)sin()4(1cos cos 1)3(sin 1cos )2(cos sin )1(等于上的偶函数则)是(若函数ϕπϕϕR x y x x y xx y x x y ≤≤+=-+-=-==7、三角函数的单调性)4sin()4(1cos 2cos 2)3)(43cos(log )2)(21sin(3)1(1221πππ+-=--=+=+-=x y x x y x y x y 间、求下列函数的单调区例的取值范围单减,则在,函数、已知例ωπππωω),2()4sin()(02+=>x x f () A 、⎥⎦⎤⎢⎣⎡4521, B 、⎥⎦⎤⎢⎣⎡4321, C 、⎥⎦⎤ ⎝⎛210, D 、(]20,的取值范围单增,求在,函数练习、已知ωππωω⎥⎦⎤⎢⎣⎡-=>4,3sin 2)(0x x f)83sin(cos )83sin(sin )4(160cos 194sin )3)(20)(cos(sin )sin(cos )2(47cos 101sin ,23cos )1(300πππ与与与,、比较函数各组的大小例<<-x x x练习:____2sin cos )2,0(1的大小关系为与,试比较,且,、已知πβαβαπβα+>∈ 2、C B A C B A ABC cos cos cos ______sin sin sin ++++中,则有在锐角三角形8、三角函数的对称性____2)20(cos 24____3)0(cos 3382cos 2sin 2)32sin(21围成的封闭图形面积为的图像与直线、函数例轴围成的图形面积为及的图像与直线、函数例的值对称,求的图像关于直线、如果函数例的对称中心、求函数例=≤≤=-=≤≤==+=-=y x x y y y x x y a x x a x y x y ππππ。
第4讲 第一课时 三角函数的图象与性质(一)
C.23
D.13
答案:C
14
三角函数的图象与性质(一)
《高考特训营》 ·数学 返 回
解析:函数 f(x)=sin ωx(ω>0)的最小正周期 T=2ωπ,相邻两条对称轴之 间的距离为ωπ ,于是得ωπ =32π,解得ω=23,所以ω=23,故选 C.
15
三角函数的图象与性质(一)
《高考特训营》 ·数学 返 回
2.若函数y=cos(x+φ)为奇函数,则最小的正数φ=________. 答案:π
2 解析:因为函数 y=cos(x+φ)为奇函数,所以φ=π2+kπ,k∈Z,又φ>0, 即π2+kπ>0,k∈Z,所以当 k=0 时,φ取得最小值π2.
202三4届角函数的图象与性质(一)
《高考特《训高营考》特·训数营学》 ·返数回学
第一课时 三角函数的图象与性质(一)
1 1
三角函数的图象与性质(一)
《高考特训营》 ·数学 返 回
课程标准解读
命题方向
1.能画出 y=sin x,y=cos x,y=tan x 1.三角函数的定义
的图象,了解三角函数的周期性.
在_[-__π_2_+__2_k_π__,__π_2_+___
_2_k_π_]_(k_∈__Z__) 上是递增函 数,在_[π_2_+__2_k_π__,__3_π2__+_ _2_k_π_]_(k_∈__Z__) 上是递减函数
在[2kπ-π,2kπ] (k∈Z)上是递增函 数,在[2kπ,2kπ +π] (k∈Z)上是
域
2.理解正弦函数、余弦函数在区间[0,2π] 2.三角函数的值域
上的性质(如单调性、最大值和最小值、 图象与 x 轴的交点等),理解正切函数在
三角函数的图象与性质
-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)
三角函数的图像和性质教学课件
图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。
三角函数解三角形三角函数的图象与性质课件文ppt
对于任意角x,正弦函数sin(x)的值是角的对边与斜边的比,记为sin(x)=y/r,其中r是斜边长。
三角函数的正弦曲线ห้องสมุดไป่ตู้绘制
要点一
确定正弦函数的定义 域
正弦函数的定义域是所有实数,但在 绘制图像时通常只取一部分。
要点二
确定正弦函数的值域
正弦函数在[-π/2,π/2]区间内的值域 是[-1,1],在其他区间类比得到。
$\tan x \in \mathbf{R}$。
三角函数的正切曲线的绘制
利用单位圆中的正切线进行绘制。 将正切线按照相同的比例映射到单位圆上。 通过旋转单位圆得到正切曲线。
三角函数的变化趋势
01
在区间$(k\pi - \frac{\pi}{2}, k\pi), k \in \mathbf{Z}$上,$\tan x$单调递增。
04
解三角形的应用
解三角形的定义
定义1
在三角形ABC中,角A、B、C的对边分别为a、b、c,若已知角A、B、C和边a、 b、c中,至少有一个,则解三角形就是求角A、B、C和边a、b、c的数学过程。
定义2
解三角形也叫解直角三角形,是三角形中角和边关系的一种应用,包括解直角三 角形和斜三角形。
解三角形的方法
常见题型解析
三角函数的化简和求值
01
02
利用三角函数基本关系式进行化简和求值
利用三角函数图象求值域、最值等
03
04
解三角形问题的求解
利用正弦定理、余弦定理等求解三角形中的 边、角、高
05
06
利用解三角形的方法解决实际问题
THANKS
谢谢您的观看
解三角形的应用举例
应用1
三角函数的图象和性质-PPT课件
3
2
2
x
14
y
(3
2
)
1
-1
2
-2
y=2sinx, x[0, 2
]
3
2
2 x
15
10
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
11
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
y=cosx x [0, 2 ]
3
2
x
2
y=-cosx
●
3
y
●
1
●
0
2
-1
●
3
●
2
x
2
●
练习:用“五点画图法”画出正弦函数
y=sinx x∈ [0, 2 ]的图象
4
一、余弦函数y=cosx(xR)的图象
sin(
x+
2
)= cosx
y
y=sinx的图象
1
2 0 3 2 3
2 -1 2
2
4 5
y=cosx的图象
6 x
5
余弦函数的“五点画图法”
x [0, 2
]
12
小结:
正弦函数、余弦函数图象的五点法
练习:(1)画出函数y=-sinx x∈ [0,2π]
(2)画出函数y=1+cosx x∈ [0,2π] (3)画出函数y=2sinx x∈ [0,2π]
三角函数的图像与性质ppt课件
51
3.正、余弦函数有无数个单调区间和无 数个最值点,简单复合函数的性质应转 化为基本函数处理.
作业:P40-41练习:1,2,3,5,6.
52
1.4.3 正切函数的图象与性质
. sin(x 2k ) sin x (k Z )
思考2:设f(x)=sinx,则sin(x 2k ) sin x 可以怎样表示?其数学意义如何?
26
思考3:为了突出函数的这个特性,我们 把函数f(x)=sinx称为周期函数,2kπ为 这个函数的周期.一般地,如何定义周期 函数?
对 于 函 数 f(x) , 如 果 存 在 一 个 非 零常数T,使得当x取定义域内的每一 个值时,都有f(x+T)=f(x), 那么函数 f(x)就叫做周期函数,非零常数T就叫 做这个函数的周期.
y 1
O
π
-1
2π x
10
知识探究(二):余弦函数的图象
思考1:观察函数y=x2与y=(x+1)2 的图 象,你能发现这两个函数的图象有什么 内在联系吗?
y
-1
o
x
11
思 考 2 : 一 般 地 , 函 数 y=f(x + a)(a>0) 的图象是由函数y=f(x)的图象经过怎样 的变换而得到的?
27
思考4:周期函数的周期是否惟一?正弦 函数的周期有哪些?
思考5:如果在周期函数f(x)的所有周期 中存在一个最小的正数, 则这个最小正 数叫做f(x)的最小正周期.那么, 正弦函 数的最小正周期是多少?为什么?
28
思考6:就周期性而言,对正弦函数有 什么结论?对余弦函数呢?
三角函数三角函数的图象与性质课件
《三角函数三角函数的图象与性质课件pptx》2023-10-26•引言•三角函数的概念与性质•三角函数的图象表示目录•三角函数的应用•习题解答•总结与展望01引言三角函数是数学中的基础科目,对于高中生来说,掌握好三角函数的知识可以为后续的高等数学学习打下基础。
在本课程中,我们将从定义、图象、性质和应用等方面全面介绍三角函数的知识。
课程背景介绍课程目标熟悉三角函数的图象和变化趋势。
让学生掌握三角函数的定义、公式和基本性质。
培养学生的数学思维和逻辑推理能力。
能够灵活运用三角函数解决实际问题。
课程大纲•第一部分:三角函数的定义与公式•正弦函数、余弦函数和正切函数的定义与基本公式。
•角度与弧度的转换。
•第二部分:三角函数的图象与性质•正弦函数、余弦函数和正切函数的图象与性质。
•三角函数的周期性、最值和对称性。
•第三部分:三角函数的应用•利用三角函数解决实际问题,如物理、工程、计算机等领域的问题。
•三角函数在复数、极坐标系中的应用。
02三角函数的概念与性质1 2 3$y = \sin x$,表示单位圆上点的纵坐标。
正弦函数$y = \cos x$,表示单位圆上点的横坐标。
余弦函数$y = \tan x$,表示单位圆上点的纵坐标与横坐标的比值。
正切函数奇偶性正弦函数和正切函数为奇函数,余弦函数为偶函数。
值域正弦函数和余弦函数的值域为$\lbrack -1,1\rbrack$,正切函数的值域为全体实数。
周期性正弦函数、余弦函数和正切函数都具有周期性,最小正周期为$2\pi$。
定义域正弦函数和余弦函数的定义域为全体实数,正切函数的定义域为不等于$\frac{k\pi}{2} + \pi$的全体实数。
正弦函数的周期性$y = \sin x$的周期为$2\pi$,即$\sin(x + 2k\pi) = \sin x(k \in \mathbf{Z})$。
三角函数的周期性余弦函数的周期性$y = \cos x$的周期为$2\pi$,即$\cos(x + 2k\pi) = \cos x(k \in \mathbf{Z})$。
人教A版高中数学必修一课件《三角函数的图象与性质》三角函数(第一课时正弦函数、余弦函数的图象)
观察图象可知,在[0,2π]上,当π6<x≤π3或23π≤x<56π时,不等式12<sin
x≤ 23成立,
所以12<sin x≤ 23的解集为
xπ6+2kπ<x≤π3+2kπ
或
23π+2kπ≤x<56π+2kπ,k∈Z
.
34
1.用三角函数的图象解sin x>a(或cos x>a)的方法 (1)作出y=a,y=sin x(或y=cos x)的图象. (2)确定sin x=a(或cos x=a)的x值. (3)确定sin x>a(或cos x>a)的解集. 2.利用三角函数线解sin x>a(或cos x>a)的方法 (1)找出使sin x=a(或cos x=a)的两个x值的终边所在的位置. (2)根据变化趋势,确定不等式的解集.
6
思考:y=cos x(x∈R)的图象可由 y=sin x(x∈R)的图象平移得到的原 因是什么?
提示:因为 cos x=sinx+π2,所以 y=sin x(x∈R)的图象向左平移π2个 单位可得 y=cos x(x∈R)的图象.
7
A [五个关键点的横坐标依次
1.用五点法画 y=3sin x, x∈[0,2π]的图象时,下列哪个点不是
[0,2π]上简图的步骤
(1)列表:
x
0
π 2
π
3π 2
2π
sin x (或cos x)
0(或1)
-1 1(或0) 0(或-1)
(或0)
0(或1)
b
A+b
b
-A+b
b
y
(或A+b) (或b) (或-A+b) (或b) (或A+b)
23
(2)描点:在平面直角坐标系中描出五个点(0,y1),π2,y2,(π, y3),32π,y4,(2π,y5),这里的yi(i=1,2,3,4,5)值是通过函数解析式计算 得到的.
三角函数的图像和性质(说课案)
三角函数的图像和性质(第一课时说课案) 下面我将从四个方面说明本节课的教学设计。
一、教材分析二、教学方法分析三、教学流程四、教学说明一、教材分析1、地位与作用:本节课是在学生掌握了单位圆中的正弦线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正、余弦函数性质的基础。
对函数图像清晰而准确的掌握也为学生在解题实践中提供了有力的工具。
2、学情分析:(1)知识与技能:学生已掌握了一些初等基本函数的图像和性质,并了解一些函数图像的画法。
(2)心理与生理:高一上学期的学生已经对高中数学体系中函数问题的处理方法和过程有了初步认识,且具有了较强的分析、判断、理解能力和一定层次上的交流沟通能力。
3、教学目标(1)知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点(零点、最高点、最低点)的本质即:图像中走向趋势发生变化的点。
(2)过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数单调、对称、“周而复始”等性质的认知更为深刻。
(3)情感态度与价值观:用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。
4、重、难点分析:(1)重点:用单位圆中的正弦线作正弦函数在]2,0[π的图象、“五点法”作图;(2)难点:如何由正弦函数在]2,0[π上的图象得到正弦函数在R上的图象;如何在正弦函数的图像上找出“五点”。
二、教学方法教学方法:演示法、示范教学法、启发式引导、互动式讨论、反馈式评价。
学习方法:观察发现、合作交流、归纳总结、反馈模仿。
教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。
三、教学流程1、复习、引入:复习内容有:描点作函数图像的一般步骤;弧度定义;正、余弦函数定义;正弦线、余弦线;诱导公式。
设置的目的是让学生再次回顾弧度的定义(强调弧度与实数一一对应的关系)与正弦线(实质是函数值),为利用正弦线作出正弦函数的图像做准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【课题】5.6三角函数的图像和性质(第一课时)
【教学目标】
知识目标:
(1) 理解正弦函数的图像和性质;
(2) 理解用“五点法”画正弦函数的简图的方法;
(3) 了解余弦函数的图像和性质.
能力目标:
(1) 认识周期现象,以正弦函数、余弦函数为载体,理解周期函数;
(2) 会用“五点法”作出正弦函数、余弦函数的简图;
(3) 通过对照学习研究,使学生体验类比的方法,从而培养数学思维能力.
情感目标
培养学生的审美能力,作图能力,激发学习数学的兴趣,探究其他作图的方法.
【教学重点】
(1)正弦函数的图像及性质;
0,2π上的简图.
(2)用“五点法”作出函数y=sin x在[]
【教学难点】
周期性的理解.
【教学设计】
(1)结合生活实例,认识周期现象,介绍周期函数;
(2)利用诱导公式,认识正弦函数的周期;
(3)利用“描点法”及“周期性”作出正弦函数图像;
(4)观察图像认识有界函数,认识正弦函数的性质;
(5)观察类比得到余弦函数的性质.
【教学备品】
课件,实物投影仪,三角板,常规教具.
【课时安排】
1课时.(45分钟)
【教学过程】
一、揭示课题
5.6三角函数的图像和性质
二、创设情景兴趣导入
1、问题
观察钟表,如果当前的时间是2点,那么时针走过12个小时后,显示的时间是多少呢?
再经过12个小时后,显示的时间是多少呢?L L .
2、解决 每间隔12小时,当前时间2点重复出现.
3、推广 类似这样的周期现象还有哪些?
三动脑思考 探索新知
概念
对于函数()y f x =,如果存在一个不为零的常数T ,当x 取定义域D 内的每一个值时,都有x T D +∈,并且等式()()f x T f x +=成立,那么,函数()y f x =叫做周期函数,常数T 叫做这个函数的一个周期.
由于正弦函数的定义域是实数集R ,对α∈R ,恒有2π()k k α+∈∈R Z ,并且
sin(2π)=sin ()k k αα+∈Z ,因此正弦函数是周期函数,并且 2π,4π,
6π,L 及2π-,4π-,L 都是它的周期.
通常把周期中最小的正数叫做最小正周期,简称周期,仍用T 表示.今后我们所研究的函数周期,都是指最小正周期.因此,正弦函数的周期是2π.
四、构建问题 探寻解决
说明
由周期性的定义可知,在长度为2π的区间(如[]0,2π,[]2,0-π,[]2,4ππ)上,正弦函数的图像相同,可以通过平移[]0,2π上的图像得到.因此,重点研究正弦函数在一个周期内,即在[]0,2π上的图像.
1、问题 用“描点法”作函数x y sin =在[]0,2π上的图像.
2、解决
把区间[]0,2π分成12等份,并且分别求得函数x y sin =在各分点及区间端点的函数值,列表如下:(见教材)
以表中的y x ,值为坐标,描出点(,)x y ,用光滑曲线依次联结各点,得到[]sin 0,2y x =π在上的图像.(见教材)
3、推广
将函数sin y x =在[]0,2π上的图像向左或向右平移2π,4π,L ,就得到sin ,y x =∞+∞在(-)上的图像,这个图像叫做正弦曲线.(见教材)
五、动脑思考 探索新知
1、概念
正弦曲线夹在两条直线1y =-和1y =之间,即对任意的角x ,都有sin 1x …成立,函数的这种性质叫做有界性.
一般地,设函数)(x f y =在区间),(b a 上有定义,如果存在一个正数M ,对任意的
),(b a x ∈都有()f x M …,那么函数)(x f y =叫做区间),(b a 内的有界函数.如果这样的M 不存在,函数)(x f y =叫做区间),(b a 上的无界函数.
显然,正弦函数是R 内的有界函数.
2、归纳
正弦函数x y sin =的定义域是实数集R .具有下面的性质:
(1)是R 内的有界函数,其值域为 []1,1-.当2()2
x k k π=+π∈Z 时, 1max =y ;当2()x k k π=-+π∈2
Z 时,1min -=y . (2)是周期为2π的周期函数.
(3)是奇函数.
(4) 在每一个区间(2,222
k k ππ-+π+π)(k ∈Z )上都是增函数,其函数值由−1增大到1;在每一个区间3(2,222
k k ππ+π+π)(k ∈Z )上都是减函数,其函数值由1减小到−1. 六、知识巩固 教材练习5.6.2
七、归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么?
八、作业 学习与训练习题5.6;
板书设计
教学反思:。