解析几何部分公式、方法
解析几何结论大全
解析几何结论大全
解析几何结论大全是一个非常广泛的主题,涵盖了许多方面。
以下是一些常见的解析几何结论:
1. 两点之间的距离公式:$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
2. 直线方程:点斜式 $y-y_1=m(x-x_1)$,斜截式 $y=mx+b$,两点式$y=\frac{y_2-y_1}{x_2-x_1}x+y_1$
3. 圆的方程:$(x-a)^2+(y-b)^2=r^2$,圆心 $(a,b)$,半径 $r$
4. 圆与圆的位置关系:相交、相切、相离
5. 圆锥曲线的标准方程:椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ 或 $\frac{y^2}{a^2}-
\frac{x^2}{b^2}=1$,抛物线 $y^2=2px$ 或 $x^2=2py$
6. 圆锥曲线的焦点、准线、离心率等性质
7. 空间向量的加法、数乘、向量的模
8. 向量的数量积、向量积、向量的混合积
9. 向量的坐标表示:$(a,b,c)$,向量的模 $\sqrt{a^2+b^2+c^2}$
10. 空间直角坐标系中的点 $(x,y,z)$ 与其相邻三个坐标面围成的单位体积为$\frac{1}{6}$。
以上只是解析几何的一部分结论,还有许多其他结论和定理,可以根据需要进行查阅和学习。
高中数学解析几何总结(非常全)
高中数学解析几何第一局部:直线一、直线的倾斜角与斜率1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。
(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k〔1〕.倾斜角为︒90的直线没有斜率。
〔2〕.每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率〔直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否那么会产生漏解。
〔3〕设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 那么当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程 1.点斜式:直线上一点P 〔x 0,y 0〕及直线的斜率k 〔倾斜角α〕求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:假设直线在y 轴上的截距〔直线与y 轴焦点的纵坐标〕为b ,斜率为k ,那么直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距〞这一概念,它具有方向性,有正负之分,与“距离〞有区别。
3.两点式:假设直线经过),(11y x 和),(22y x 两点,且〔2121,y y x x ≠≠那么直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
4截距式:假设直线在x 轴,y 轴上的截距分别是a ,b 〔0,0≠≠b a 〕那么直线方程:1=+bya x ; 注意:1〕.截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
(完整版)高中数学解析几何公式大全
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
解析几何的基础知识
解析几何的基础知识解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和关系。
通过引入坐标系,解析几何将几何问题转化为代数问题,从而使得几何问题的研究更加简洁和精确。
本文将介绍解析几何的基础知识,包括平面直角坐标系、点的坐标、直线的方程和距离公式等内容。
一、平面直角坐标系平面直角坐标系是解析几何的基础,它由两条相互垂直的坐标轴组成。
通常我们用x轴和y轴表示,x轴水平向右延伸,y轴垂直向上延伸。
坐标轴的交点称为原点,用O表示。
平面直角坐标系将平面划分为四个象限,分别记作第一象限、第二象限、第三象限和第四象限。
二、点的坐标在平面直角坐标系中,每个点都可以用一个有序数对表示,称为点的坐标。
设点P的坐标为(x, y),其中x表示点P在x轴上的投影长度,y表示点P在y轴上的投影长度。
例如,点A的坐标为(2, 3),表示点A在x轴上的投影长度为2,在y轴上的投影长度为3。
三、直线的方程在解析几何中,直线可以用方程表示。
一般来说,直线的方程有两种形式:一般式和斜截式。
1. 一般式方程一般式方程的形式为Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0。
例如,直线L的一般式方程为2x + 3y - 6 = 0。
2. 斜截式方程斜截式方程的形式为y = kx + b,其中k为直线的斜率,b为直线在y轴上的截距。
斜率表示直线的倾斜程度,斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜。
例如,直线L的斜截式方程为y = 2x + 3。
四、距离公式在解析几何中,我们经常需要计算两点之间的距离。
设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B之间的距离可以用以下公式表示:d = √((x2 - x1)^2 + (y2 - y1)^2)其中d表示点A和点B之间的距离。
例如,点A的坐标为(2, 3),点B的坐标为(5, 7),则点A和点B之间的距离为d = √((5 - 2)^2 + (7 - 3)^2) = √(3^2 +4^2) = √(9 + 16) = √25 = 5。
几何问题的解析几何解法
几何问题的解析几何解法几何问题是数学中一类常见的问题类型,而解析几何则是解决这类问题的一种有效方法。
解析几何通过运用代数和几何的相互联系,以坐标系为基础,利用代数符号和方程式来研究几何图形的性质和变换。
本文将介绍几何问题的解析几何解法,并提供一些实例来加深理解。
一、直线的解析几何解法直线是几何中最基本的元素之一,通过坐标系的引入,我们可以用解析几何的方法来研究直线的性质和特点。
对于已知两点A(x₁, y₁)和B(x₂, y₂),要确定这两点之间的直线方程,可以使用以下公式:\[\frac{{y-y₁}}{{x-x₁}} = \frac{{y₂-y₁}}{{x₂-x₁}}\]这个公式称为点斜式,其中斜率为 \(\frac{{y₂-y₁}}{{x₂-x₁}}\)。
通过这个方程,我们可以得到直线的斜率、截距等重要信息,从而进一步理解和分析直线的特性。
二、圆的解析几何解法圆是另一类常见的几何图形,在解析几何中也有相应的解法。
已知圆心为C(a, b),半径为r的圆,其方程可以表示为:\[(x-a)^2 + (y-b)^2 = r^2\]在解析几何中,我们可以根据圆心和半径的信息,推导出关于圆的性质和变换的一系列公式。
例如,通过对圆心的平移、旋转和缩放等操作,我们可以得到新的圆的方程和特征。
这些解析几何的方法在实际问题中具有广泛的应用,例如在计算机图形学和物理学领域。
三、多边形的解析几何解法多边形是由多条线段组成的几何图形,其解析几何解法也是基于坐标系的引入和运用。
对于一个n边形,我们可以通过提取顶点的坐标,组成一个由点组成的集合。
通过连接这些顶点,我们可以得到多边形的边界。
进一步,我们可以运用向量加法、平移以及旋转等解析几何的方法来研究多边形的性质和变换。
除了以上提到的几何图形,解析几何还可以用于研究曲线、立体图形等问题。
通过引入坐标系,用代数的方法来解决几何问题,解析几何在数学领域扮演着重要的角色。
解析几何的出现极大地促进了几何学和代数学的发展。
解析几何公式大全
解析几何中的基本公式1、两点间距离:若 A (x 1,y 1), B (X 2,y 2),则 AB=J(X 2 — X i )2+(y 2 — yj 22、平行线间距离:若 l 1 : AX By C^ 0, 12 : AX By C 0注意点:X ,y 对应项系数应相等。
则P到—S BJ4、直线与圆锥曲线相交的弦长公式: 丿y一 kX + bJ z (x ,y) =0消y : ax 2∙ bx ∙ c = 0 ,务必注意 厶∙0. 若l 与曲线交于A (x 1, y 1), B (X 2 ,y 2) 贝 V : AB = (1一k 2)(x2=xj 25、若A (X 1,y 1), B (X 2,y 2) , P (X , y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为入,X I HL X 2 1 ■ W 丁2 1 ■X 2 -Xy 2 一 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 二很三(0,二)则:CI - C 2..A 2 B 23、点到直线的距离:P(X , y ), l: AXByC=O,特别地:变形后:X-X ly 一 y 1'=1时,P 为AB 中点且X 1 X 22 y 「y 22或适用范围:k ι, k 2都存在且k ιk 2= — 1 ,若I i 与12的夹角为R 则tan ,=k1^k 2, —(0,上]1 + k 1k 22IIJmnJnJ注意:(1) ∣1到∣2的角,指从∣1按逆时针方向旋转到∣2所成的角,范围(0,二)∣1到∣2的夹角:指 丨1、∣2相交所成的锐角或直角.(2)∣1 _12时,夹角、到角 =—。
tan _1 + k k― 28、直线的倾斜角:'与斜率k的关系a)每一条直线都有倾斜角-,但不一定有斜率。
(2)斜率存在时为 y - y = k (x — X ) y - y 1 _ X - X 1 y ? 一 y 1 χ2 F其中I 交X 轴于(a,0),交y 轴于(0,b)当直线I 在坐标轴上,距相等时应分: (1) 截距=0 设y=kxb)若直线存在斜率k ,而倾斜角为:■,则k=tan :•。
数学解析几何二级结论公式
数学解析几何二级结论公式一、椭圆部分。
1. 焦半径公式。
- 对于椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),设F_1,F_2为左右焦点,P(x,y)为椭圆上一点。
- 当P在椭圆上时,| PF_1|=a + ex,| PF_2|=a - ex(其中e=(c)/(a),c=√(a^2)-b^{2})。
- 对于椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1(a>b>0),设F_1,F_2为上下焦点,P(x,y)为椭圆上一点。
- | PF_1|=a+ey,| PF_2|=a - ey(其中e=(c)/(a),c=√(a^2)-b^{2})。
2. 椭圆的切线方程。
- 过椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{x_0x}{a^2}+frac{y_0y}{b^2} = 1。
- 过椭圆frac{y^2}{a^2}+frac{x^2}{b^2} = 1上一点P(x_0,y_0)的切线方程为frac{y_0y}{a^2}+frac{x_0x}{b^2} = 1。
3. 中点弦结论(点差法)- 设椭圆frac{x^2}{a^2}+frac{y^2}{b^2} = 1(a>b>0),弦AB的中点为M(x_0,y_0)。
- 设A(x_1,y_1),B(x_2,y_2),将A、B两点代入椭圆方程相减得:k_AB=-frac{b^2x_0}{a^2y_0}(k_AB为弦AB的斜率)。
二、双曲线部分。
1. 焦半径公式。
- 对于双曲线frac{x^2}{a^2}-frac{y^2}{b^2} = 1,设F_1,F_2为左右焦点,P(x,y)为双曲线上一点。
- 当P在双曲线右支上时,| PF_1|=ex + a,| PF_2|=ex - a(其中e=(c)/(a),c=√(a^2)+b^{2})。
解析几何公式大全
解析几何中的基本公式1、两点间距离:若A(x 1,y 1),B(x 2,y 2),则AB2、平行线间距离:若l 1:Ax By C 1 0,则:d(x 2 x 1)2 (y 2 y 1)2l 2:Ax By C 2 0C 1 C 2A B 22注意点:x ,y 对应项系数应相等。
3、点到直线的距离:P(x ,y ),l :Ax By C 0则P 到l 的距离为:dAx By CA B 224、直线与圆锥曲线相交的弦长公式:2 y kx b F(x,y) 0消y :ax bx c 0,务必注意 0.若l 与曲线交于A (x 1,y 1),B (x 2,y 2)则:AB(1 k 2)(x 2 x 1)25、若A (x 1,y 1),B (x 2,y 2),P (x ,y )。
P 在直线AB 上,且P 分有向线段AB 所成的比为 ,x 1 x 2x 1 x 2x x 1 2则,特别地: =1时,P 为AB 中点且y y y y 22 y 1 y 1 1 2变形后:x x 1y y 1或 x 2 x y 2 y6、若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为 , (0, )适用范围:k 1,k 2都存在且k 1k 2 -1 ,tank 2 k 11 k 1k 2若l 1与l 2的夹角为 ,则tank 1 k 2, (0,]21 k 1k 2注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围(0, )l 1到l 2的夹角:指l 1、l 2相交所成的锐角或直角。
(2)l 1 l 2时,夹角、到角=。
2(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。
7、(1)倾斜角 , (0, );(2)a ,b 夹角 , [0, ];(3)直线l 与平面 的夹角 , [0, 2];(4)l 1与l 2的夹角为 , [0,2],其中l 1//l 2时夹角 =0;(5)二面角 , (0, ];(6)l 1到l 2的角 , (0, )8、直线的倾斜角 与斜率k 的关系a)每一条直线都有倾斜角 ,但不一定有斜率。
解析几何公式大全
解析几何公式大全几何学是研究图形和空间的性质、变换和计量的一门学科。
在几何学中,有许多重要的公式用于解决各种几何问题。
这些公式涵盖了面积、体积、周长等几何属性的计算方法。
接下来,我们将解析一些几何公式,介绍它们的推导、应用和实际意义。
一、平面图形的公式:1.面积公式:-矩形(正方形)的面积公式:面积=长×宽(面积=边长×边长)-三角形的面积公式:面积=1/2×底×高-梯形的面积公式:面积=1/2×(上底+下底)×高-平行四边形的面积公式:面积=底×高2.周长公式:-矩形(正方形)的周长公式:周长=2×(长+宽)(周长=4×边长)-三角形的周长公式:周长=边1+边2+边3-梯形的周长公式:周长=上底+下底+边1+边2-平行四边形的周长公式:周长=2×(边1+边2)3.直角三角形的公式:-勾股定理:c²=a²+b²(其中c表示斜边的长度,a和b表示两条直角边的长度)- 正弦定理:a/sinA = b/sinB = c/sinC(其中 a、b、c 分别表示三角形的边长,A、B、C 分别表示对应角的度数)- 余弦定理:c² = a² + b² - 2abcosC(其中 a、b、c 分别表示三角形的边长,C 表示夹在 a 和 b 之间的角度)二、立体图形的公式:1.体积公式:-立方体的体积公式:体积=长×宽×高(体积=边长³)-圆柱体的体积公式:体积=圆的面积×高(体积=πr²h)-锥体的体积公式:体积=1/3×圆的面积×高(体积=1/3×πr²h)-球体的体积公式:体积=4/3×πr³2.表面积公式:-立方体的表面积公式:表面积=6×面的面积(表面积=6×边长²)- 圆柱体的表面积公式:表面积= 2 × 圆的面积 + 侧面积(表面积= 2πr² + 2πrh)- 锥体的表面积公式:表面积 = 圆的面积 + 侧面积(表面积 =πr² + πrl)-球体的表面积公式:表面积=4×πr²以上公式是几何学中常用的一些公式,它们在解决各种几何问题时非常有用。
平面 解析几何公式
平面解析几何公式 1、 直线的斜率坐标公式:2121y y x x -- 2、直线方程点斜式:00(x x )y y k -=- 斜截式:y kx b =+ 两点式:112121y y x x y y x x --=-- (1212,x x y y ≠≠) 截距式:1x y ab+=一般式:0ax by c ++= (,a b 不同时为0) 3、两点之间的距离公式:A (11,x y )B (22,x y )两点的距离公式:4点到直线的距离公式:点P (00,x y )到直线0ax by c ++=的距离为:d =5、两平行直线的距离公式:直线1L :10Ax By C ++= 直线2L :20Ax By C ++=的距离公式为:d =6、圆的标准方程:222(x a)(y b)r -+-=圆心是:(a,b)o ,半径是:r 7圆的一般方程:220x y Dx Ey C ++++=圆心是:(,)22D E o --,半径是:r =8、椭圆的标准方程焦点在x 轴上的标准方程:22221x y a b+= (a b 0)>> 焦点坐标:12(a,0),(a,0)F F -准线方程:2a x c=±焦点在y 轴上的标准方程:22221y x a b+= (a b 0)>> 焦点坐标:12(0,b),(0,b)F F -准线方程:2a y c=±a,b,c 三者之间的关系:222a b c =+离心率:c e a=两准线之间的距离:22a d c =焦点到相应的准线的距离:2b d c=9、双曲线的标准方程:焦点在x 轴上的标准方程:22221x y a b-= (a 0,b 0)>>焦点坐标:12(a,0),(a,0)F F -准线方程:2a x c=±焦点在y 轴上的标准方程:22221y x a b-= (a 0,b 0)>>焦点坐标:12(0,b),(0,b)F F -准线方程:2a y c=±a,b,c 三者之间的关系:222c a b =+离心率:c e a=两准线之间的距离:22a d c =焦点到相应的准线的距离:2b d c=10、抛物线的标准方程:(1)焦点在x 轴的正半轴时:22y px = (0p >)焦点坐标:(,0)2p F 准线方程:x 2p=-(2)焦点在x 轴的负半轴时:22y px =- (0p >)焦点坐标:(,0)2p F -准线方程:x 2p=(3)焦点在y 轴的正半轴时:22x py = (0p >)焦点坐标:(0,)2p F 准线方程:2py =-(4)焦点在y 轴的负半轴时:22x py =- (0p >)焦点坐标:(0,)2p F -准线方程:2p y =。
解析几何的相关公式
一、倾斜角和斜率:1.倾斜角的范围: .2.已知倾斜角α求斜率 ⎧=⎨⎩k ;已知斜率k 求倾斜角⎧=⎨⎩α.1.00(,)P x y 到直线l :220,0ax by c a b ++=+≠的距离为 . 2.直线221122:0,:0,0l ax by c l ax by c a b ++=++=+≠间的距离为 .注:在研究多点到直线的距离的问题时,通常要分点在直线的 或 两类.3.弦长公式:若直线y kx b =+(倾斜角为α)被曲线截得弦AB ,其中1122(,),(,)A x y B x y ,则弦长d ====四.两直线的夹角公式:1.两直线的夹角范围 .2.2222111122221122:0,:0,0,0l a x b y c l a x b y c a b a b ++=++=+≠+≠对应斜率分别为12,k k ,夹角为θ,则有cos θ=或者tan θ=.五.两条直线的位置关系:2222111122221122:0,:0,0,0l a x b y c l a x b y c a b a b ++=++=+≠+≠,则1l 与2l 分别满足下列情况时,相应地求系数满足的条件:①相交 ;②平行 ;③重合 ;④垂直 ; 六.对称问题:1.点00(,)A x y 关于点(,)P m n 对称的点的坐标为 ;2.直线0ax by c ++=关于点(,)P m n 对称的直线方程为 ;3.曲线(,)0f x y =关于点(,)P m n 对称的曲线方程为 ;4.点00(,)A x y 关于直线2y x =-+对称的点的坐标为 ;5.直线0ax by c ++=关于直线3y x =-对称的直线方程为 ;6.曲线(,)0f x y =关于直线4y x =--对称的曲线方程为 ; 七.直线系方程:1.直线(1)(3)(11)0m x m y m --+--=恒过定点 .2.方程30x y n +-=表示两条平行线,则实数n 的取值范围是 . 八.曲线与方程:1.已知曲线C 的方程不是(,)0f x y =,则下列选项正确的是( )A .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠;B .方程(,)0f x y =至少有一组解为坐标的点00(,)P x y 不在曲线C 上;C .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠,且方程(,)0f x y =至少有一组解为坐标的点11(,)Q x y 不在曲线C 上;D .曲线C 上至少存在一点00(,)P x y ,使得00(,)0f x y ≠,或者方程(,)0f x y =至少有一组解为坐标的点11(,)Q x y 不在曲线C 上.2.“以方程(,)0f x y =的解为坐标的点都在曲线C 上”是“曲线C 的方程为(,)f x y0=”的 条件?3.方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件 ?4.24D F =是曲线220x y Dx Ey F ++++=与x 轴相切的 条件? 5.若点(,)P m n 在圆222x y R +=上,则过此点的圆的切线方程为 .6.(,)P m n 是圆222x y R +=外一点,过此点向圆引切线,切点分别为,A B ,则过,A B 两点的直线方程为 .7.圆221111:0C x y d x e y f ++++=与圆222222:0C x y d x e y f ++++=相交,则过两圆交点的直线方程为 .8.若圆221111:0C x y d x e y f ++++=与圆222222:0C x y d x e y f ++++=的半径相等,则两圆的对称轴方程为 .9.圆222x y R +=的参数方程:x y =⎧⎨=⎩练习1:圆心在原点,半径为1的圆交x 轴的正半轴于A 点,,P Q 分别是圆上的两个动点,它们同时从A 点出发,沿圆作匀速圆周运动,点P 绕逆时针方向每秒钟转3π,点Q 绕顺时针方向每秒钟转6π.(1)当,P Q 第一次相距最远时,求,P Q 的坐标;(2)当它们出发后第五次相遇,试求相遇时该点的位置.练习2:设实数,x y 满足221x y +=,(1)求13y x +-的取值范围;(2)求2x y -的取值范围;九.椭圆、双曲线、抛物线1.①到定点距离等于定值的点的轨迹是 ? ②到定直线距离等于定值的点的轨迹是 ? ③到两条平行直线距离相等的点的轨迹是 ? ④到两条相交直线距离相等的点的轨迹是 ? ⑤到两个定点距离之和等于定值的点的轨迹是 ? ⑥到两个定点距离之差的绝对值等于定值的点的轨迹是 ? ⑦到定点的距离等于到定直线的距离的点的轨迹是 ?2.12,F F 为椭圆22221x y a b +=的焦点,P 为椭圆上的点,且有12F PF θ∠=,则12PF F S ∆= .3.12,F F 为双曲线22221x y a b -=的焦点,P 为椭圆上的点,且有12F PF θ∠=,则12PF F S ∆= .4.12,F F 分别为椭圆22221x y a b+=的左右焦点,P 为椭圆上的点,记12F PF θ∠=,当θ达到最大值时,点P 的坐标为 .5.椭圆22221x y a b +=与双曲线22221x y m n-=共焦点,P 为二者在第一象限的交点,12,F F 分别为它们的左右焦点,用,b n 表示①12cos F PF ∠=②12sin F PF ∠=③12PF F S ∆=. 6.对直线,0y kx m m =+≠与双曲线22221x y a b-=来说,若||b k a >,那么直线与双曲线有三种可能①② ③ ;若||b k a =,则直线与双曲线 ;若||bk a<,则直线必然 .7.若直线与抛物线22,0y px p =>只有一个公共点,则有 .8.过抛物线22,0y px p =>的焦点F 作倾斜角为θ的直线交抛物线于,A B 两点,线段AB 的中点为M点,,,A M B 在准线2px =-上的射影分别为111,,A M B . ①11A FB ∠= ②1AM B ∠= ③ 三点共线④||AB =9.抛物线22,0y px p =>上两点,A B 满足90AOB ∠=,则直线AB 恒过定点 . 10.研究曲线上的点到直线的最短距离时,通常利用 的方法.。
高中数学中的解析几何知识点总结
高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,它研究了几何图形在坐标系中的性质和变换规律。
在高中数学学习中,解析几何是一个重要的内容模块。
本文将对高中数学中的解析几何知识点做一总结。
一、直线的方程1.点斜式方程:已知直线上一点P(x1, y1)及其斜率k的情况下,直线的方程可以写为y-y1=k(x-x1)。
2.两点式方程:已知直线上两点P(x1, y1)和Q(x2, y2)的情况下,直线的方程可以写为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
3.斜截式方程:已知直线与y轴的交点为截距b,斜率为k的情况下,直线的方程可以写为y=kx+b。
二、平面坐标系1.点的坐标:平面坐标系中,一个点的位置可以由其横坐标x和纵坐标y确定。
2.距离公式:平面上两个点的距离可以通过距离公式d=sqrt((x2-x1)²+(y2-y1)²)计算得出。
3.中点公式:平面上两个点的中点坐标可以通过中点公式M((x1+x2)/2, (y1+y2)/2)计算得出。
三、直线的性质1.平行与垂直:两条直线平行的条件是它们的斜率相等,两条直线垂直的条件是它们的斜率的乘积为-1。
2.直线的倾斜角:直线与x轴的倾斜角可以通过斜率的反正切得到。
3.直线的截距:直线与坐标轴的交点称为截距,x轴截距即为直线与x轴的交点的横坐标,y轴截距即为直线与y轴的交点的纵坐标。
四、圆的方程1.标准形式方程:圆的标准方程可以写为(x-a)²+(y-b)²=r²,其中(a, b)为圆心的坐标,r为半径。
2.一般形式方程:圆的一般形式方程可以写为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
五、直线与圆的位置关系1.相切:当直线与圆只有一个交点,且此交点处的切线斜率存在时,直线与圆相切。
2.相离:当直线与圆没有交点时,直线与圆相离。
3.相交:当直线与圆有两个交点时,直线与圆相交。
数学公式大汇总解析几何公式总结
数学公式大汇总解析几何公式总结数学公式大汇总:解析几何公式总结随着数学的发展,解析几何作为数学的一个重要分支,涉及到许多重要的概念、定理和公式。
解析几何的公式总结对于学习和应用解析几何来说至关重要。
本文将对一些常见的解析几何公式进行详细解析和总结,以便读者更好地掌握和运用。
1. 点与直线的关系公式在解析几何中,点与直线是最基本的要素之一。
我们需要了解如下公式:1.1 点到直线的距离公式对于直线Ax + By + C = 0和点(a,b),点P到直线的距离为d,可以根据以下公式进行计算:d = |Ax + By + C| / √(A² + B²)1.2 点到直线的垂直距离公式若点(a,b)到直线Ax + By + C = 0的距离为d,且直线的法向量为N = (A,B),则点P到直线的垂直距离为d',可以计算如下:d' = |Ax + By + C| / ||N||其中,||N||表示向量N的长度。
2. 直线之间的关系公式在解析几何中,我们也需要了解不同直线之间的关系。
2.1 直线之间的夹角公式对于直线L1:A1x + B1y + C1 = 0和直线L2:A2x + B2y + C2 = 0,两直线间的夹角可以通过以下公式计算:cosθ = (A1A2 + B1B2) / √((A1² + B1²)(A2² + B2²))其中,θ表示两直线的夹角。
2.2 直线之间的平行关系公式直线L1:A1x + B1y + C1 = 0和直线L2:A2x + B2y + C2 = 0平行的条件是:A1/A2 = B1/B2 ≠ C1/C23. 圆的公式圆是解析几何中的另一个重要要素。
我们需要了解以下公式:3.1 圆的标准方程对于以(h,k)为圆心,半径为r的圆,其标准方程为:(x - h)² + (y - k)² = r²3.2 圆与直线的关系公式若直线L:Ax + By + C = 0与圆C:(x - h)² + (y - k)² = r²相交于点P(x1, y1),可以根据以下公式计算点P的坐标:x1 = (B(Bh - Ag) ± A(Br² - Ch)) / (A² + B²)y1 = (-A(Bh - Ag) ± B(Ar² - Ch)) / (A² + B²)4. 角度公式在解析几何中,角度也是一个重要的概念。
高中数学解析几何总结(非常全)
高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。
2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。
1)倾斜角为90度的直线没有斜率。
2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。
当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。
二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。
需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。
特别地,斜率存在且经过坐标原点的直线方程为y=kx。
需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
需要注意的是,不能表示与x轴和y轴垂直的直线。
4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。
5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。
反之,任何一个二元一次方程都表示一条直线。
首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。
解析几何公式大全
解析几何公式大全一份付出一分耕耘圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式: (1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k yy -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -==3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210x y a b a b+=>> ()222210y xa b a b+=>> 第一定义 到两定点21F F 、的距离之和等于常数2a , 即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围 a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 222.双曲线焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a , 即21||||2MF MF a -=(2102||a F F <<)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=> 范围 或x a ≤-x a ≥,y R ∈y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 实轴的长2a = 虚轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 222122()F F c c a b ==+离心率 22222221(1)c c a b b e e a a a a+====+>准线方程 2a x c=±2a y c=±渐近线方 程b y x a=±a y x b=±焦半径0,0()M x y M 在右支1020MF ex aMF ex a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 在左支1020MF ex a MF ex a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:M 上支1020MF ey aMF ey a ⎧=+⎪⎨=-⎪⎩左焦:右焦:M 下支1020MF ey aMF ey a ⎧=--⎪⎨=-+⎪⎩左焦:右焦:焦点三角形面积 12212cot()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径:ab 22【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y ax b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201 由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式) (消 ) (消x y y y y k y y k y x x x x k x x k l ]4))[(11(||11]4))[(1(1212212212212212212-++=-+=-++=-+=3.抛物线图形五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y=kx+b与椭圆x2a2+y2b2=1 (a>b>0)的位置关系:直线与椭圆相交?⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b 2=1⇔没有实数解,即Δ<③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P +=。
高三数学(解析几何)
解析几何一、直线1、 直线的倾斜角:一条直线向上的方向与X 轴的正方向所成的最小正角。
2、 范围 0θπ≤<3、 直线的斜率:当倾斜角不是90时,倾斜角的正切值。
tan ()2k παα=≠4、 直线的斜率公式:设111(,)P x y ,222(,)P x y 12()x x ≠ 2121y y k x x -=-5、 直线的倾斜角和斜率关系:(如右图) 02πα≤<;0k >;单调增;2παπ<<,0k <;单调增6、 直线的方程(1)点斜式:11()y y k x x -=- ⑵、斜截式:y kx b =+ (3)两点式:112121y y x x y y x x --=-- ⑷、截距式:1x y a b += ⑸、一般式:220(0)Ax By C A B ++=+≠⑹、参数式: 11cos sin x x t y y t θθ=+⋅⎧⎨=+⋅⎩(t 为参数)参数t 几何意义:定点到动点的向量7、 直线的位置关系的判定(相交、平行、重合)1l :11y k x b =+;2l :22y k x b =+ 1111:0l A x B y C ++=,2222:0l A x B y C ++=平行:12k k =且12b b ≠111222A B C A B C =≠相交:12k k ≠1122A B A B ≠重合:12k k =且12b b =111222A B C A B C == 垂直:121k k ⋅=- 12120A A B B +=8、 到角及夹角(新课改后此部分已删掉)到角:直线1l 依逆时方向旋转到与2l 重合时所有转的角。
2121tan 1k k k k α-=+夹角:不大于直角的从1l 到2l 的角叫1l 与2l 所成的角,简称夹角。
2121tan 1k k k k α-=+9、 点到直线的距离(应用极为广泛)P (00,x y )到1:0l Ax By C ++=的距离d =平行线间距离:11:0l Ax By C ++= 22:0l Ax By C ++=d =10、简单线性规划(确定可行域,求最优解,建立数学模型)⑴、目标函数:要求在一定条件下求极大值或极小值问题的函数。
高中数学公式总结解析几何
高中数学公式总结解析几何解析几何是数学中的一个分支,研究的对象是平面和空间中的几何图形。
它以坐标系为基础,通过代数的方法来研究几何问题。
在高中数学中,解析几何是一个重要的内容,下面是高中数学解析几何的一些重要公式的总结。
1.一次函数的标准方程对于一次函数y = kx + b,其中k为斜率,b为截距。
可以得到它的标准方程为Ax + By + C = 0,其中A = -k,B = 1,C = -b。
通过标准方程可以求得直线的斜率、截距等信息。
2.直线的距离公式设直线方程为Ax+By+C=0,点P(x1,y1)到该直线的距离为d=,Ax1+By1+C,/√(A^2+B^2)。
3.直线的倾斜角的求解对于斜率为k的直线,其倾斜角θ满足tanθ = k。
4.直线的平行和垂直关系两条直线斜率分别为k1和k2,如果k1=k2,则两条直线平行;如果k1*k2=-1,则两条直线垂直。
5.圆的标准方程设圆的圆心为C(h,k),半径为r,则圆的标准方程为(x-h)^2+(y-k)^2=r^26.两点间的距离公式设两点A(x1,y1)和B(x2,y2),则两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)。
7.点到直线的距离公式设直线方程为Ax+By+C=0,点P(x0,y0)到该直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。
8.点在直线上的条件对于一条直线Ax+By+C=0,如果点P(x,y)满足该方程,则点P在直线上。
9.直线与圆的位置关系对于一条直线Ax+By+C=0和圆(x-h)^2+(y-k)^2=r^2,可以通过判别式D=,Ah+Bk+C,/√(A^2+B^2)来判断直线和圆的位置关系。
当D>r时,直线与圆相离;当D=r时,直线与圆相切;当D<r时,直线与圆相交。
10.两圆的位置关系对于两个圆(x-h1)^2+(y-k1)^2=r1^2和(x-h2)^2+(y-k2)^2=r2^2,可以通过判别式D=√((h1-h2)^2+(k1-k2)^2)来判断两个圆的位置关系。
高中解析几何知识归纳
高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。
以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。
2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。
3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。
4. 圆锥曲线:包括椭圆、双曲线和抛物线。
-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。
-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。
-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。
二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。
2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。
3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。
4. 空间几何体:包括立方体、球、锥体、柱体等。
三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。
2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。
3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。
4. 直线与圆的位置关系:直线与圆相交、相切或相离。
5. 圆与圆的位置关系:圆与圆相交、相切或相离。
解析几何部分公式、方法
解析几何部分公式、方法、技巧《直线和圆的方程》(1)①与直线0Ax By C ++=平行的直线方程为:0()Ax By m m C ++=≠ 与直线y kx b =+平行的直线为:()y kx m m b =+≠ ②与直线0Ax By C ++=垂直的直线方程为:0Bx Ay m -+= 与直线(0)y kx b k =+≠垂直的直线为:1y x m k=-+ ③给定直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=: 若12//l l ⇔讨论12,B B ; 若12l l ⊥⇔ 12120A A B B +=; (2)过直线1111:0l A x B y C ++=与2222:0l A x B y C ++=的交点的直线方程为: 111222()0A x B y C A x B y C λ+++++=(当0λ=时表示1l ,但不表示2l ) (3)点00(,)A x y 关于直线0Ax By C ++=对称的点的坐标为(,)x y '',则: 000222Ax By C x x A A B ++'=-⋅+ 000222Ax By Cy y B A B++'=-⋅+ (填空题、选择题可用上面公式,解答题一定要写出下列过程:00000221x x y y A B C y y A x x B ''++⎧⋅+⋅+=⎪⎪⎨'-⎛⎫⎪⋅-=- ⎪'⎪-⎝⎭⎩ 即 ⎧⎨⎩中点在直线上斜率之积为-1 解得:x y '=⎧⎨'=⎩(4)1l 到2l 的角θ:21121221tan (,1)1k k k k k k k k θ-=⋅≠-+适用于存在且1l 与2l 的夹角θ:21121221tan (,1)1k k k k k k k k θ-=⋅≠-+适用于存在且(5)斜率为k 的直线与二次曲线相交于,A B 两点,且1122(,),(,)A x y B x y ,则有:21AB x =-=(此即弦长公式)【注】该公式在圆锥曲线上有着广泛的应用,但在抛物线的焦点弦问题上,最好能从焦半径公式入手简化计算量,另外用该公式时,求出值往往要用判别式验证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何部分公式、方法、技巧《直线和圆的方程》(1)①与直线0Ax By C ++=平行的直线方程为:0()Ax By m m C ++=≠ 与直线y kx b =+平行的直线为:()y kx m m b =+≠ ②与直线0Ax By C ++=垂直的直线方程为:0Bx Ay m -+= 与直线(0)y kx b k =+≠垂直的直线为:1y x m k=-+ ③给定直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=: 若12//l l ⇔讨论12,B B ; 若12l l ⊥⇔ 12120A A B B +=; (2)过直线1111:0l A x B y C ++=与2222:0l A x B y C ++=的交点的直线方程为: 111222()0A x B y C A x B y C λ+++++=(当0λ=时表示1l ,但不表示2l ) (3)点00(,)A x y 关于直线0Ax By C ++=对称的点的坐标为(,)x y '',则: 000222Ax By C x x A A B ++'=-⋅+ 000222Ax By Cy y B A B++'=-⋅+ (填空题、选择题可用上面公式,解答题一定要写出下列过程:00000221x x y y A B C y y A x x B ''++⎧⋅+⋅+=⎪⎪⎨'-⎛⎫⎪⋅-=- ⎪'⎪-⎝⎭⎩ 即 ⎧⎨⎩中点在直线上斜率之积为-1 解得:x y '=⎧⎨'=⎩(4)1l 到2l 的角θ:21121221tan (,1)1k k k k k k k k θ-=⋅≠-+适用于存在且1l 与2l 的夹角θ:21121221tan (,1)1k k k k k k k k θ-=⋅≠-+适用于存在且(5)斜率为k 的直线与二次曲线相交于,A B 两点,且1122(,),(,)A x y B x y ,则有:21AB x =-=(此即弦长公式)【注】该公式在圆锥曲线上有着广泛的应用,但在抛物线的焦点弦问题上,最好能从焦半径公式入手简化计算量,另外用该公式时,求出值往往要用判别式验证。
(6)①点00(,)P x y 到直线0Ax By C ++=的距离d =②两平行直线11:0l Ax By C ++=与22:0l Ax By C ++=的距离:d =(注意:应用该公式时一定要使得1l 与2l 的A ,B 一致)(7)① 求曲线1:(,)0C f x y =关于点00(,)x y 对称的曲线2C :在曲线2C 上任取一点(,)x y 关于00(,)x y 对称的点为00(2,2)x x y y --代入曲线1C 方程,即可得曲线2C 方程为:00(2,2)0f x x y y --=【注】上述方法也适用于曲线关于特殊直线的对称曲线的求法!(且极为好用!) ② 点关于特殊直线的对称点坐标的求法:(理解记忆)(,)(,)x a b a b ←−−−→-关于轴 (,)(,)y a b a b ←−−−→-关于轴(,)(,)y xa b b a =←−−−−→关于直线 (,)(,)y xa b b a =-←−−−−→--关于直线 (,)(,)x ma b b a =←−−−−→关于直线 (,)(,2)y na b a n b =←−−−−→-关于直线 ③ 给定点11100222(,),(,),(,)P x y P x y P x y ,若12PP PP =,则: 1201x x x λλ+=+ 1201y y y λλ+=+(8)① 过圆222x y r +=上一点00(,)P x y 的切线方程为:200x x y y r +=② 过圆222()()x a y b r -+-=上一点00(,)P x y 的切线方程:【求法】考虑切线方程:0y y =是否满足设方程为00()y y k x x -=-,再利用点到切线的距离等于半径列出方程求出k 即可!【与①类似结论】200()()()()x a x a y b y b r --+--=(9)①二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆220040A C B D E AF ⎧=≠⎪⇔=⎨⎪+->⎩②二元二次方程220x y Dx Ey F ++++=表示圆2240D E F ⇔+->其中圆心为(,)22D E--,半径为2r =(10)已知点00(,)P x y 在圆220x y Dx Ey F ++++=的外部,过P 作圆的切线,切点分别为A,B,则切线长PA PB ==(11)若直线0Ax By C ++=与圆222()()x a y b r -+-=r ≤(即圆心到直线的距离小于或等于半径!)(12)给定点00(,)P x y 和圆222()()x a y b r -+-=,则:点在圆内22200()()x a y b r ⇔-+-<; 点在圆上22200()()x a y b r ⇔-+-= 点在圆外22200()()x a y b r ⇔-+->【注】圆锥曲线有着类似的性质,比如给定椭圆22221x y a b +=:点在椭圆内2200221x y a b⇔+<; 点在椭圆上2200221x y a b ⇔+=;点在椭圆外2200221x y a b⇔+>;(13)判断直线与圆的位置关系,主要有两条路:① 通过圆心到直线的距离与半径的大小关系的比较加以判断;(首选)② 联立直线与圆的方程然后判断∆的符号加以判断;(二次曲线与直线位置判断通法) (14)圆系方程:①过直线0Ax By C ++=与圆220x y Dx Ey F ++++=的交点的圆系方程可设为:22()0x y Dx Ey F Ax By C λ+++++++=②过两圆221111:0C x y D x E y F ++++=与222222:0C x y D x E y F ++++=的交点的圆系方程为:2222111222()(1)()0x y D x E y F x y D x E y F λλ+++++-++++=【推广】过两曲线1:(,)0C f x y =与2:(,)0C g x y =的曲线系方程为: (,)(1)(,)0f x y g x y λλ+-=(15)过两圆221111:0C x y D x E y F ++++=与222222:0C x y D x E y F ++++=的交点的直线(公共弦)的方程为:121212()()()0D D x E E y F F -+-+-=《椭圆》(1)椭圆的一般式方程:221(0,0,)mx ny m n m n +=>>≠ (2)椭圆的面积公式S ab π=(3)① 椭圆的第一定义:12(2(2)PF PF a c +=>常数即)定点距离即 (其中12,F F 称为焦点,a 为长半轴长,c 为半焦距,P 为椭圆上任一点)② 椭圆第二定义:(01)PF e e d =<<(即()=∈到定点的距离常数(0,1)到定直线的距离) 其中F 为椭圆的焦点,d 为任意点P 到该焦点的相应准线的距离,e 为离心率。
【推论】过焦点1F 的直线与椭圆交于P Q 、两点,则2PQF ∆的周长为4a (3)椭圆标准方程中的基本量的计算公式:(离心率越大,椭圆越扁;)222a b c =+ c e a ==2221b e a =- 准线计算为2a c ±(4)椭圆焦半径公式:1F 为左焦点(下焦点) 2F 为右焦点(上焦点)10PF a ex =+(或0a ey +) 20PF a ex =-(或0a ey -) 【推论】椭圆上一点到焦点的距离的最大值为a c +,最小值为a c -(5)焦点在x 轴上的椭圆上不同三点112233(,),(,),(,)A x y B x y C x y ,则相应三条焦半径成等差数列⇔三点横坐标成等差数列,即2132x x x =+(6)①以椭圆上任一点P 的一条焦半径为直径作圆,此圆必与以椭圆长轴为直径的圆相切。
②以焦点弦为直径的圆必与相应准线相离。
(7)过焦点F 焦点弦PQ 的两端点P 、Q 在相应准线上的射影为,P Q '',则(0,)2P FQ π''∠∈ (只需证明0P F Q F ''⋅>即可!)(8)已知P 为椭圆上任一点,12F PF θ∠=,则122tan2F PF S b θ∆=(其中b 为短半轴长)【注】关于12F PF ∆,很多资料书称之为焦点三角形,试题经常给定该三角形的一些条件,求椭圆的离心率、面积、周长等;此时须记:因为它是出现在椭圆里的特殊三角形,所以在解题时能立马想到椭圆第一定义、余弦定理、正弦定理等知识。
(9)椭圆的通径(过焦点与长轴垂直的弦)端点的坐标是2(,)b c a±±《双曲线部分》(1)双曲线的一般式方程:221(0)mx ny mn +=<(2)① 双曲线2222(0)x y a b λλ-=≠与双曲线22221x y a b -=共渐近线为:0x ya b ±=② 渐近线为0x ya b±=的双曲线的方程可以写成2222(0)x y a b λλ-=≠(3)① 双曲线的第一定义:122)(2)PF PF a c -=<常数(即(其中12,F F 称为焦点,a 为实半轴长,c 为半焦距,P 为双曲线上任一点)【注意】若将定义中的绝对值去掉,则为双曲线一支;若将定义中的常数改为0,则为线段12F F 的中垂线;若将定义中的‘2c <’改为‘2c =’,则为两条射线;若将定义中的‘2c <’改为‘2c >’,则轨迹不存在;② 双曲线第二定义:(1)PF e e d =>(即()=∈∞到定点的距离常数(1,+)到定直线的距离) 其中F 为双曲线的焦点,d 为任意点P 到该焦点的相应准线的距离,e 为离心率。
【推论】过焦点1F 的直线与双曲线的一支交于P Q 、两点,若焦点弦PQ m =,则2PQF ∆的周长为42a m +(3)双曲线标准方程中的基本量的计算公式:(离心率越大开口越大;)222c a b =+ c e a ==2221b e a =+ 准线计算为2a c ±(4)双曲线焦半径公式:1F 为左焦点(下焦点) 2F 为右焦点(上焦点) 10PF a ex =+(或0a ey +) 20PF a ex =-(或0a ey -) 遵循“左加右减、长正短负”八字规则。