3.3.2简单线性规划(第一课时)课件

合集下载

3.3.2简单的线性规划1

3.3.2简单的线性规划1

今需要A、 、 三种规格的成品分别为 三种规格的成品分别为15、 、 今需要 、B、C三种规格的成品分别为 、18、27 块,用数学关系式和图形表示上述要求,如何使所 用数学关系式和图形表示上述要求, 用钢板张数最少? 用钢板张数最少?
例6:一个化肥厂生产甲、乙两种混合肥料,生产 车皮甲种 :一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种 肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥 肥料的主要原料是磷酸盐 、硝酸盐 ;生产 车皮乙种肥 料需要的主要原料是磷酸盐1t、硝酸盐15t。 料需要的主要原料是磷酸盐 、硝酸盐 。现库存磷酸盐 10t、硝酸盐 ,在此基础上生产这两种混合肥料。列出满 、硝酸盐66t,在此基础上生产这两种混合肥料。 足生产条件的数学关系式,并画出相应的平面区域。 足生产条件的数学关系式,并画出相应的平面区域。若生产 一车皮甲种肥料,产生的利润为10000元;生产一车皮乙肥 一车皮甲种肥料,产生的利润为 元 产生的利润为5000元,那么非别生产甲乙肥料各多好车 料,产生的利润为 元 能够产生最大利润? 皮,能够产生最大利润?
分析: 分析:将已知数据列成表格
食物/kg 碳水化合物/kg 蛋白质/kg 脂肪/kg
A B
0.105 0.105
0.07 0.14
0.14 0.07
三种规格, 例5: 要将两种大小不同的钢板截成 、B、C三种规格, : 要将两种大小不同的钢板截成A、 、 三种规格 每张钢板可同时截得三种规格的小钢板的块数如下表示: 每张钢板可同时截得三种规格的小钢板的块数如下表示: 规格 钢型 第一种钢板 第二种钢板 A规格 规格 2 1 B规格 规格 1 2 C规格 规格 1 3
• 通过不等式(组)的平面区域,我们可以 知道不等式的可能取值范围。那么在不等 式平面区域中,那个值是最有意义的取值 呢,比如对于资源的利用,人力调配,生 产安排等等,都需要我们有一个最优的处 理办法

3.3.2 简单的线性规划问题 课件

3.3.2 简单的线性规划问题 课件
3.3.2
简单的线性规划问题
线性规划问题的有关概念: 1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .
2.目标函数:欲达到最大值或最小值所涉及的变量x、y的解
析式,
线性目标函数是x、y的
一次
解析式.
条 件
3.线性规划问题:求线性目标函数在
线性约束
由约束条件画出可行域(如图6所示 ),为矩形 ABCD(包
括边界).点C的坐标为(3,1),z最大时,即平移y=-ax时使直线在
y轴上的截距最大, ∴-a<kCD,即-a<-1,∴a>1.
[答案]
a>1
[评析 ]
这是一道线性规划的逆向思维问题.解答此类问题
必须要明确线性目标函数的最值一般在可行域的顶点或边界取得, 运用数形结合的思想方法求解.
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
解析:如图3所示.
作出可行域,作直
线 l0: x+ y= 0,平移 l0, 当 l0 过点 A(2,0) 时, z 有最 小值2,无最大值. 答案:B
x-y+5≥0, [例 2] 设 x,y 满足条件x+y≥0, x≤3.
(1)求 u=x2+y2 的最大值与最小值; y (2)求 v= 的最大值与最小值. x-5
(1)求目标函数 z=2x+3y 的最小值与最大值; (2)求目标函数 z=3x-y 的最小值与最大值;

简单的线性规划第一课时课件

简单的线性规划第一课时课件
3.会从实际情景中抽象出一些简单的线性规划问
题,并加以解决.(难点)
第4页,共49页。
第5页,共49页。
二元一次不等式(组)表示平面区域的步骤: (1)“直线定界”.作直线Ax+By+C=0; (2)“特殊点定域”.利用特殊点代入,确定不等式表示
的区域是直线的哪一侧;
(3)用阴影表示平面区域.注意判断是否画成实线.
第35页,共49页。
小结:本题是整数线性规划问题,整数线性规划问
题的可行域是由满足不等式组的整点(横、纵坐标 均为整数的点)组成的集合,所求的最优解必 须是整数解.
第36页,共49页。
在可行域内找出最优线性规划整数解问题的一般方法:
1.若区域“顶点”处恰好为整点,那么它就是最优解;
(在包括边界的情况下)
3x + 2y ≤1200
xx
+ 2y ≥0

800

y ≥ 0
第10页,共49页。
于是问题转化为,在x,y满足条件②的情况下,求式 子30x+40y的最大值. 画出不等式组②表示的平面区域OABC(阴影部分)
l2:x+2y-800=0 l1:3x+2y-1200=0
第11页,共49页。
第18页,共49页。
第19页,共49页。
解:(1)作出可行域(如 图阴影 y
部分).
4
l :2x 3y 0
A
2
o
y 4 B
D4x 3 y 12
x C
4x 3y 36
令 z 0 ,作直线 l : 2x 3y 0 . x 3
当把直线 l 向下平移时,所对应的 z 2x 3y 的函数值随之减小,所以,

3.3.2简单线性规划(1_2)--上课用

3.3.2简单线性规划(1_2)--上课用
2、画出Z=2x+y对应的 方程0=2x+y的图像
y-x=0
5
4、 根据0=2x+y平移到 区域的最后一个点时有 最大(小)值
3、根据b的正负值判断向上向下 平移时Z的增减性, 1 O
1 A(2,-1)
5
x
y+1=0
B(-1,-1)
-1
x+y-1=0
x - y 0 1 、 画出x y - 1 0区域 y y 1 0
使 式中,的x、y满足约束条件:
3 z z y x , 为直线3x 5 y z 0 5 5 5 的纵截距
5 x 3 y 15 y x 1 x 5 y 3
5x+3y=15 y y=x+1
5
B(3/2,5/2)
1
X-5y=3 x
O
-1
1
5
A(-2,-1)
B.z=5x+3y D.z=3x+5y
答案:A
第31页
高考题练习:
x y≥2, 1.(2009 浙江)若实数x, y满足不等式组 2 x y≤4, x y≥0, 则2x 3y的最小值是 ________ .
答案:4
第32页
解析:作出可行域如下图. 作直线l:2x+3y=0,平移l,当l过点A(2,0)时,2x+3y有最小值4.
D.5
z=5×1+0=5.
答案:D
第34页
则z x 2y的最大值为
A.4 答案:B B.3 C.2
y≤1, 3.(2010 全国Ⅰ若变量 ) x、y满足约束条件 x y≥0, x y 2≤0,

3.3.2简单的线性规划问题(1).ppt1

3.3.2简单的线性规划问题(1).ppt1
3.3.2简单的线性规划问题(1)
y
o
x
1.课题导入
在现实生产、生活中,经常会遇到资源利用、人力调配、 生产安排等问题。 1、下面我们就来看有关与生产安排的一个问题:
某工厂用A、B两种配件生产甲、乙两种产品,每 生产一件甲产品使用4个A配件耗时1h,每生产一件乙 产品使用4个B配件耗时2h,该厂每天最多可从配件厂 获得16个A配件和12个B配件,按每天工作8h计算,该 厂所有可能的日生产安排是什么? 按甲、乙两种产品分别生产x、y件,由 已知条件可得二元一次不等式组
5 x+3 y 1 5 1 y x+ x-5 y 3
1.解:作出平面区域
y
A
o x C
y x x+y 1 y - 1
z=2x+y
B
作出直线y=-2x+z的 图像,可知z要求最大值, 即直线经过C点时。 求得C点坐标为(2,-1), 则Zmax=2x+y=3
把z=2x+3y变形为
由上图可以看出,当实现直线x=4与直线x+2y-8=0的交点M z 14 (4,2)时,截距的值最大 ,最大值为 , 3 3
这时 2x+3y=14. 所以,每天生产甲产品 4 件,乙产品 2 件时, 工厂可获得最大利润14万元。
二、基本概念
Hale Waihona Puke 一组关于变量x、y的一次不等式,称为线性约束 条件。 把求最大值或求最小值的的函数称为目标函数,因 为它是关于变量x、y的一次解析式,又称线性目标函数。 在线性约束条件下求线性目标函数的最大值或最小值 y 问题,统称为线性规划问题。 4 可行域 最优解 满足线性约束的解
3
(x,y)叫做可行解。 由所有可行解组成 可行解 的集合叫做可行域。

3.3.2简单的线性规划(1)

3.3.2简单的线性规划(1)
o x
结 论 : 形 如2 x y t ( t 0) 的直线与 2 x y 0平 行.
y
C
5
A:(5.00, 2.00) B: (1.00, 1.00) C:(1.00, 4.40) x-4y+3=0
A
2.作出下列不 等式组所表示 的平面区域
B
O
1 5
3x+5y-25=0
x=1
x
线性规划
线性规划:求线性目标函数在线性约束条件下的 最大值或最小值的问题,统称为线性规划问题. 可行解 :满足线性 约束条件的解(x,y) 叫可行解; 可行域 :由所有可行 解组成的集合叫做可 行域; 最优解:使目标函数取得 最大或最小值的可行解叫 线性规划问题的最优解。
(1,1)
2x+y=3
2x+y=12
x
3x+5y-25=0
直线L越往右平移,t 随之增大. 以经过点A(5,2)的直 线所对应的t值最大; 经过点B(1,1)的直线 所对应的t值最小.
2x y 0
Z max 2 5 2 12, Z min 2 1 1 3
线性 Z=2x+y称为目标函数,(因这 里目标函数为关于x,y的一 规划 次式,又称为线性目标函数 问题:
达到最小值。 可使 l 0平移过A点时, l 1
A
达到最大值。 解方程组可求得A(5,2) 22 C (1, ) 5
3x+5y-25=0
-1 O
3
4
5
6
7
x
-1 注意:直线取最大截距 l 0 l2 时,等价于 1 z 2 取得最大值,则z取 22 39 z 1 2 得最小值 min

3.3.2hao简单线性规划(第1课时)_课件

3.3.2hao简单线性规划(第1课时)_课件

五、课堂作业
P86 练习2 P93 A组4 B组 3
(3)求:通过解方程组求出最优解; (4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.
三、在哪个顶点取得不仅与B的符号有关,而且 还与直线 Z=Ax+By的斜率有关.
四、本课小结
本节主要学习了线性约束下如何求目 标函数的最值问题; 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健; 线性目标函数的最值一般都是在可行 域的顶点或边界取得; 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定 要弄清楚.
二、概念学习
1.线性约束条件
x 2 y 8, 4 x 16, 4 y 12, x 0, y 0.
象这样关于x,y二元一次不等式组 的约束条件称为线性约束条件.
2.线性目标函数 3.线性规划
Z=2x+3y称为目标函数,(因这里目标函数 为关于x,y的一次式,又称为线性目标函数). 在线性约束下求线性目标函数的最值问题, 统称为线性规划.
x
问题:求利润2x+3y的最大值. 若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少?
2 z 2 把z =2x +3y变形为y =- x + ,这是斜率为- , 3 3 3 z z 在y轴上的截距为 的直线(x 0时,y = ), 3 3 当点P在可允 z 的最值 求 求 z的最值. 许的取值范 3 围内
4
N(2,3)
x
3
0
4
1 x4 2 1 z y x 3 3 y

高考数学必修五 第三章 3.3.2 第1课时线性规划的有关概念及图解法

高考数学必修五 第三章 3.3.2 第1课时线性规划的有关概念及图解法

3.3.2 简单的线性规划问题第1课时 线性规划的有关概念及图解法学习目标 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题.引例 已知x ,y 满足条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0.①该不等式组所表示的平面区域如图阴影部分所示,求2x +3y ②的最大值.以此为例,尝试通过下列问题理解有关概念. 知识点一 线性约束条件及目标函数1.在上述问题中,不等式组①是一组对变量x ,y 的约束条件,这组约束条件都是关于x ,y 的一次不等式,故又称线性约束条件.2.在上述问题中,②是要研究的目标,称为目标函数.因为它是关于变量x ,y 的一次解析式,这样的目标函数称为线性目标函数. 知识点二 线性规划问题一般地,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题. 知识点三 可行解、可行域和最优解满足线性约束条件的解(x ,y )叫做可行解.由所有可行解组成的集合叫做可行域.其中,使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解.在上述问题的图中,阴影部分叫可行域,阴影区域中的每一个点对应的坐标都是一个可行解,其中能使②式取最大值的可行解称为最优解.1.可行域内每一个点都满足约束条件.(√)2.可行解有无限多个,最优解只有一个.(×)3.不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.(×)类型一 最优解问题命题角度1 问题存在唯一最优解例1 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≤8,4x ≤16,4y ≤12,x ≥0,y ≥0,该不等式组所表示的平面区域如图阴影部分所示,求2x +3y 的最大值.考点 线性目标最优解 题点 求线性目标函数的最值解 设区域内任一点P (x ,y ),z =2x +3y , 则y =-23x +z3,这是斜率为-23,在y 轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.反思与感悟 图解法是解决线性规划问题的有效方法,基本步骤(1)确定线性约束条件,线性目标函数; (2)作图——画出可行域;(3)平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 跟踪训练1 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围. 考点 线性目标最优解 题点 求线性目标函数的最值解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图阴影部分所示)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一组平行直线.-13z 是直线在y 轴上的截距, 当直线截距最大时,z 的值最小, 由图可知,当直线z =2x -3y 经过可行域上的点A 时,截距最大, 即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1,x +y =5,得A 点坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小, 即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3,x +y =1,得B 点坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是[-5,7]. 命题角度2 问题的最优解有多个例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.考点 线性规划中的参数问题 题点 无数个最优解问题解 约束条件所表示的平面区域如图(阴影部分),由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0,y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0,y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.反思与感悟 当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.跟踪训练2 给出平面可行域(如图阴影部分所示),若使目标函数z =ax +y 取最大值的最优解有无穷多个,则a 等于( )A.14B.35C.4D.53考点 线性规划中的参数问题 题点 无数个最优解问题 答案 B解析 由题意知,当直线y =-ax +z 与直线AC 重合时,最优解有无穷多个,则-a =5-21-6=-35,即a =35,故选B.类型二 生活中的线性规划问题例3 营养专家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪.1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg? 将已知数据列成下表:考点 实际生活中的线性规划问题 题点 线性规划在实际问题中的应用解 设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,则⎩⎪⎨⎪⎧ 0.105x +0.105y ≥0.075,0.07x +0.14y ≥0.06,0.14x +0.07y ≥0.06,x ≥0,y ≥0,即⎩⎪⎨⎪⎧7x +7y ≥5,7x +14y ≥6,14x +7y ≥6,x ≥0,y ≥0.目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,如图阴影部分所示,把目标函数z =28x +21y 变形为y =-43x +z21,它表示斜率为-43,且随z 变化的一族平行直线,z21是直线在y 轴上的截距,当截距最小时,z 的值最小.由图可知,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6,得M 点的坐标为⎝⎛⎭⎫17,47. 所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 17 kg ,食物B 47 kg.反思与感悟 (1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb 越小,z 就越大.(2)求解的最优解,和目标函数与边界函数的斜率大小有关.跟踪训练3 某厂拟用集装箱托运甲、乙两种货物,集装箱的体积、重量、可获利润和托运能力等限制数据列在下表中,那么为了获得最大利润,甲、乙两种货物应各托运的箱数为________.考点 生活实际中的线性规划问题题点 线性规划在实际问题中的应用 答案 4,1解析 设甲、乙两种货物应各托运的箱数为x ,y ,则⎩⎪⎨⎪⎧5x +4y ≤24,2x +5y ≤13,x ≥0,x ∈N ,y ≥0,y ∈N .目标函数z =20x +10y ,画出可行域如图阴影部分所示.由⎩⎪⎨⎪⎧2x +5y =13,5x +4y =24,得A (4,1). 易知当直线z =20x +10y 平移经过点A 时,z 取得最大值,即甲、乙两种货物应各托运的箱数分别为4和1时,可获得最大利润.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A.-52B.0C.53D.52考点 线性目标最优解 题点 求线性目标函数的最值答案 C解析 画出可行域如图阴影部分(含边界)所示.设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A.6B.7C.8D.23 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A.-3B.3C.-1D.1 考点 线性规划中的参数问题 题点 无数个最优解问题答案 A解析 -1a =2-14-1=13,∴a =-3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C.[-1,6]D.⎣⎡⎦⎤-6,32 考点 线性目标最优解 题点 求目标函数的取值范围 答案 A解析 作出不等式表示的平面区域,如图阴影部分(含边界)所示,由z =3x -y ,可得y =3x -z ,则-z 为直线y =3x -z 在y 轴上的截距,截距越大,z 越小,结合图形可知,当直线y =3x -z 平移到B 时,z 最小,平移到C 时,z 最大,可得B ⎝⎛⎭⎫12,3,z min =-32,C (2,0),z max =6,∴-32≤z ≤6. 5.给出平面区域如图阴影部分所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为________.考点 线性规划中的参数问题 题点 无数个最优解问题 答案 35解析 将z =ax +y 变形,得y =-ax +z .当它与直线AC 重合时,z 取最大值的点有无穷多个. ∵k AC =-35,∴-a =-35,即a =35.1.用图解法解决简单的线性规划问题的基本步骤(1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.一、选择题1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域内,则2x -y 的最小值为( ) A.-6 B.-2 C.0 D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分(含边界)所示,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6. 2.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.715考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 画出可行域如图阴影部分(含边界)所示,令z =x +y ,则y =-x +z .当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0,得A (4,5),∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A.-7B.-4C.1D.2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 可行域如图阴影部分(含边界)所示,令z =0,得直线l 0:y -2x =0,平移直线l 0知, 当直线l 0过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0,得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( )A.3,-11B.-3,-11C.11,-3D.11,3考点 线性目标最优解 题点 求线性目标函数的最值 答案 A解析 作出可行域如图阴影部分(含边界)所示,由图可知z =3x -4y 经过点A 时,z 有最小值,经过点B 时,z 有最大值.易求得A (3,5),B (5,3).∴z max =3×5-4×3=3,z min =3×3-4×5=-11. 5.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( )A.14B.12C.1D.2 考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出不等式组表示的可行域,如图阴影部分(含边界)所示.易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B.6.已知⎩⎪⎨⎪⎧x ≥1,x -y +1≥0,2x -y -2≤0,若z =ax +y 的最小值是2,则a 的值为( )A.1B.2C.3D.4考点 线性规划中的参数问题 题点 线性规划中的参数问题 答案 B解析 作出可行域,如图中阴影部分所示,又z =ax +y 的最小值为2,若a >-2,则(1,0)为最优解,解得a =2;若a ≤-2,则(3,4)为最优解,解得a =-23,舍去,故a =2.7.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y确定.若M (x ,y )为D 上的动点,点A的坐标为(2,1),则z =OM →·OA →的最大值为( ) A.3 B.4 C.3 2 D.4 2 考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分(含边界)所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,当目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.8.已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( ) A.-1 B.3 C.7 D.8 考点 线性目标最优解 题点 求线性目标函数的最值 答案 C解析 作出线段AB ,如图所示,作直线2x -y =0并将其向下平移至直线过点B (4,1)时,2x -y 取最大值,为2×4-1=7. 二、填空题9.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________.(答案用区间表示) 考点 线性目标最优解 题点 求线性目标函数的最值 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分(含边界)所示. 在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值, z min =2×3-3×1=3;当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值, z max =2×1+3×2=8. 所以z ∈[3,8].10.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,z =2x -y 的最小值是________.考点 线性目标最优解 题点 求线性目标函数的最值 答案 -7解析 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界.三条直线中x +3y =12与3x +y =12交于点A (3,3), x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一族与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.11.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,则所需租赁费最少为________元. 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用 答案 2 300解析 设需租赁甲种设备x 台,乙种设备y 台,则⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,x ∈N ,y ∈N .目标函数为z =200x +300y .作出其可行域(图略),易知当x =4,y =5时,z =200x +300y 有最小值2 300. 三、解答题12.设x ,y 满足⎩⎪⎨⎪⎧2x +y ≥4,x -y ≥-1,x -2y ≤2,求z =x +y 的取值范围.考点 线性目标最优解 题点 求线性目标函数的最值解 作出约束条件表示的可行域,如图所示,z =x +y 表示直线y =-x +z 过可行域时,在y 轴上的截距,当目标函数平移至过可行域内的A 点时,z 有最小值.联立⎩⎪⎨⎪⎧2x +y =4,x -2y =2,解得A (2,0).z min =2,z 无最大值.∴x +y ∈[2,+∞).13.某运输公司接受了向抗洪救灾地区每天送至少180 t 支援物资的任务.该公司有8辆载重为6 t 的A 型卡车与4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次;每辆卡车每天往返的成本费A 型为320元,B 型为504元.请为公司安排一下,应如何调配车辆,才能使公司所花的成本费最低? 考点 生活实际中的线性规划问题 题点 线性规划在实际问题中的应用解 设需A 型、B 型卡车分别为x 辆和y 辆.列表分析数据.由表可知x ,y 满足线性约束条件⎩⎪⎨⎪⎧x +y ≤10,24x +30y ≥180,0≤x ≤8,0≤y ≤4,x ,y ∈N ,且目标函数z =320x +504y .作出可行域,如图阴影部分(含边界)所示.可知当直线z =320x +504y 过A (7.5,0)时,z 最小,但A (7.5,0)不是整点,继续向上平移直线z =320x +504y ,可知点(8,0)是最优解.这时z min =320×8+504×0=2 560(元),即用8辆A 型车,成本费最低.所以公司每天调出A 型卡车8辆时,花费成本最低. 四、探究与拓展14.若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A.355B. 2C.322 D. 5考点 线性目标最优解 题点 求线性目标函数的最值 答案 B解析 画出不等式组所表示的平面区域如图(阴影部分)所示,由⎩⎪⎨⎪⎧ x -2y +3=0,x +y -3=0,得A (1,2), 由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得B (2,1).由题意可知当斜率为1的两条直线分别过点A 和点B 时,阴影部分夹在这两条直线之间,且与这两条直线有公共点,所以这两条直线为满足条件的距离最小的一对直线,即|AB |=(1-2)2+(2-1)2= 2.故选B.15.已知变量x ,y 满足的约束条件为⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0.若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,求a 的取值范围.考点 线性规划中的参数问题 题点 线性规划中的参数问题 解 依据约束条件,画出可行域.∵直线x +2y -3=0的斜率k 1=-12,目标函数z =ax +y (a >0)对应直线的斜率k 2=-a , 若符合题意,则需k 1>k 2.即-12>-a ,得a >12.。

3.3.2-简单的线性规划问题-课件

3.3.2-简单的线性规划问题-课件

[例4] 某人有楼房一幢,室内面积共180 m2,拟分隔成两类 房间作为旅游客房.大房间每间面积为18 m2,可住游客5名,每 名游客每天住宿费为40元;小房间每间15 m2,可住游客3名,每 名游客每天住宿费为50元;装修大房间每间需1000元,装修小房 间每间需600元.如果他只能筹款8000元用于装修,且游客能住满 客房,他应隔出大房间和小房间各多少间,才能获得最大收益?
x≥0
迁移变式 3 已知点 P(x,y)满足条件y≤x
(k
2x+y+k≤0
为常数),若 x+3y 的最大值为 8,则 k=________.
解:作出可行域如图 7 所示, 作直线 l0:x+3y=0, 平移 l0 知当 l0 过点 A 时,x+3y 最大, 由于 A 点坐标为(-3k,-3k). ∴-3k-k=8,从而 k=-6.
[例3] 已知变量x,y满足约束条件1≤x+y≤4,-2≤x-y≤2.若 目标函数z=ax+y(其中a>0)仅在点(3,1)处取得最大值,则a的取值 范围为________.
[分析] 由题目可获取以下主要信息: ①可行域已知; ②目标函数在(3,1)处取得最大值. 解答本题可利用逆向思维,数形结合求解.
解方程组-4x+4x+3y=3y=361. 2, 得 D 点坐标为(3,8) ∴zmax=2x+3y=30 当直线经过可行域上的点 B 时,截距3z最小,即 z 最 小.由已知得 B(-3,-4) ∴zmin=2x+3y=2×(-3)+3×(-4)=-18. (2)同理可求 zmax=40,zmin=-9.
3.3.2 简单的线性规划问题
线性规划问题的有关概念:
1.线性约束条件:不等式组是一组对变量x、y的约束条件, 这组约束条件都是关于x、y的 一次不等式 .

线性规划第一节课件.ppt

线性规划第一节课件.ppt

Ⅳ那么题目所求的满足x+2y-3>0
的平面区域就是直线的右上方区域
在这里,我们选择检验的特殊点是坐标原点O
例题2:试确定集合{(x,y)│x-3y>0}表示
的平面区域。
y
在这道例题中,直线经 过了原点,那么我们还 用原点来检验吗?
X-3y=0
0
x
在这里,我们选择检验的特殊点是 坐标轴上的点(除原点)
点检验即可
? 思考:我们选择什么样的具 体点进行检验比较好呢?
例题1:试确定集合{(x,y)│x+2y-3>0}表 示的平面区域。
y
解:Ⅰ在平面直角坐标系中画出直线
x+2y-3=0
Ⅱ取特殊点O(0,0)进行检验 0+2×0-3=-3<0
Ⅲ所以O点所在的一侧平面区域
0
x
x+2y-3=0
内的点可以使得x+2y-3<0成立
引:一名刚参加工作的员工为自己制定的每月餐 费的最低标准是240元,又知其他费用最少需支出 180元,而每月可用来支配的资金为500元,则这位 新员工可以如何使用这些钱?
设餐费为x元,其他费用为y元,则
x+y≤500
x≥240
y≥180
如果将上述不等式组的一个解(x,y)看做平 面直角坐标系上的一个点,那么这个问题就转化为: 确定平面直角坐标系中不等式组的解集区域。
好难啊 ,我不 会,你 们会吗

1≤ x-y ≤2 2≤ x+y≤3
探讨题2:画出下面不等式表示的平面区域
(x+y)×(x-y)<0
回到我们这节课一开始提出的问题,你现在能 解答了吗?

作业 课本P108A组1、2、4

简单的线性规划问题(4课时)PPT课件

简单的线性规划问题(4课时)PPT课件

12 5
.
3
x-4y+3=0
B
2
1C
3x+5y-25=0
0 1 234567 X
13
y
例2 已知x、y满足: x
y
求z=2x+y的最大值. y
2x+y=0
最优解(3,3),
最大值9.
O
x y2 3x 6
y=x
M
x
y=3x-6
x+y=2
14
小结作业
1.在线性约束条件下求目标函数的最大 值或最小值,是一种数形结合的数学思 想,它将目标函数的最值问题转化为动 直线在y轴上的截距的最值问题来解决.
19
20
探究(一):营养配置问题 t
p
1 2
5730
【背景材料】营养学家指出,成人良好
的日常饮食应该至少提供0.075kg的碳
水化合物,0.06kg的蛋白质,0.06kg的
脂肪.已知1kg食物A含有0.105kg碳水化
合物,0.07kg蛋白质,0.14kg脂肪,花
费28元;而1kg食物B含有0.105kg碳水
(3)线性规划问题: 在线性约束条件下,求线性目标函数
的最大值或最小值问题,统称为线性规 划问题.
(4)可行解: 满足线性约束条件的解(x,y)叫
做可行解.
10
(5)可行域: 由所有可行解组成的集合叫做可行域.
(6)最优解: 使目标函数取得最大或最小值的可行
解叫做最优解.
11
理论迁移
例1 设z=2x-y,变量x、y满足下列条件
3.3.2 简单的线性规划问题
第一课时
1
问题提出
t
p
1 2

人教A版高中数学必修5精品课件3-3-2简单的线性规划问题

人教A版高中数学必修5精品课件3-3-2简单的线性规划问题
【思路分析】 这是一类流传很广的题目,其常见的错误 解法是由f(1)、f(2)的范围,去求a,c的范围,连续多次运用同向 不等式相加这一性质,导致范围扩大.实际上,可以看做关于 a、c的线性规划问题.
第30页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
【解析】 由-4≤f(1)≤-1,得-4≤a-c≤-1.
A.-7 C.-5
B.-6 D.-3
第18页
第三章 3.3 3.3.2 第一课时
高考调研
【解析】
新课标A版 ·数学 ·必修5
第19页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
如图所示,约束条件所表示的区域为图中的阴影部分,而
目标函数可化为y=
2 3
x-
z 3
,先画出l0:y=
高考调研
新课标A版 ·数学 ·必修5
课后巩固
第35页
第三章 3.3 3.3.2 第一课时
高考调研
新课标A版 ·数学 ·必修5
x+2y≥2,
1.已知x、y满足3x≥x+0y,≥1, 则z=2x+y(
)
y≥0,
A.有最大值1
B.有最小值1
C.有最大值4
D.有最小值4
答案 B
第36页
第三章 3.3 3.3.2 第一课时
高考调研
Байду номын сангаас
新课标A版 ·数学 ·必修5
第三章 不等式
第1页
第三章 不等式
高考调研
新课标A版 ·数学 ·必修5
3.3 二元一次不等式(组)与简单的线性规划问题
第2页
第三章 不等式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

把问题1的有关数据列表表示如下: 甲产品 乙产品 资源限额 (1件) (1件) 4 0 1 2 0 4 2 3 16 12 8
资源
A种配件 B种配件 所需时间 利润(万元)
设甲,乙两种产品分别生产x,y件,
设甲,乙两种产品分别生产x,y件,由己知条件可得:
x 2y 8 4 x 16 4 y 12 x 0 y 0
在线性约束下求线性目标函数 的最值问题,统称为线性规划,
满足线性约束的解(x,y)叫做可行解, 所有可行解组成的集合叫做可行域
使目标函数取得最值的可行解叫做这个 问题的最优解
变式:若生产一件甲产品获利1万元, 生产一件乙产品获利3万元,采用哪种 生产安排利润最大?
变式:求利润z=x+3y的最大值. y
y x x y 1 y 1
y x x y 1 y 1
y
x+y=1
A
目标函数: Z=2x+y y=x
Zmin=-3
O x B C
y=-1
B:(-1,-1) C:(2,-1)
2x+y=0
Zmax=3
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行 域有公共点且纵截距最大或最小的直线 (3)求:通过解方程组求出最优解; (4)答:作出答案。
y
o
x工厂用A,B两种配件生产甲,乙两种产品, 每生产一件甲种产品需要4个A配件耗时1h, 每生产一件乙种产品需要4个B配件耗时2h, 该厂每天最多可从配件厂获得16个A配件和 12个B配件,按每天工作8小时计算,该厂所有 可能的日生产安排是什么?
若生产1件甲种产品获利2万元,生产1 件乙 种产品获利3万元,采用哪种生产安排利润最大?
y
4 3 4
8
x
0
将上面不等式组表示成平面上的区域,区域内 所有坐标为整数的点P(x,y),安排生产任务x,y 都是有意义的.
问题:求利润2x+3y的最大值.
若设利润为z,则z=2x+3y,这样上述问题转化为: 当x,y在满足上述约束条件时,z的最大值为多少? 2 z 2 把z=2x+3y变形为y=- x+ ,这是斜率为- , 3 3 3 z 在y轴上的截距为 的直线, 3
Zmax 4 2 2 3 14
x 2y 8 象这样关于x,y一次不等 4 x 16 式组的约束条件称为 线性约束条件 4 y 12 x 0 Z=2x+3y称为目标函数,(因这里 目标函数为关于x,y的一次式,又 y0
称为线性目标函数
x 2y 8 4 x 16 4 y 12 x 0 y 0
4 N(2,3) 3
4
0
x 8 1 y x4 2
1 z y x 3 3
zmax 2 3 3 11
[练习]解下列线性规划问题:
1、求z=2x+y的最大值,使式中的x、y满足约束条件:
体验: 一、先定可行域和平移方向,再找最优解。 二、最优解一般在可行域的顶点处取得. 三、在哪个顶点取得不仅与B的符号有关, 而且还与直线 Z=Ax+By的斜率有关.
小 结
本节主要学习了线性约束下如何求目 标函数的最值问题 正确列出变量的不等关系式,准确作出 可行域是解决目标函数最值的关健 线性目标函数的最值一般都是在可行域 的顶点或边界取得. 把目标函数转化为某一直线,其斜率与 可行域边界所在直线斜率的大小关系一定要 弄清楚.
当点P在可允许的取值范围变化时,
z 求截距 的最值,即可得z的最值. 3
问题:求利润z=2x+3y的最大值. y
x 2y 8 4 x 16 4 y 12 x 0 y 0
4 3
M(4,2)
4
0
x 8 1 y x4 2
2 z y x 3 3
相关文档
最新文档