冀教版六年级数学上册全册教案:第3课时 统计图对比
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冀教版六年级数学上册全册教案:第3课时统计图对比
第3课时统计图对比
教学目标:
1. 进一步熟悉条形统计图、折线统计图与扇形统计图的特点和长处,知道各类统计图表的主要区别,能灵活选用合适的统计图表来对相关数据进行描述和分析。
2. 能综合应用学过的统计知识,从统计图中准确提取统计信息,能够正确的解释统计结果,并作出正确的判断或简单预测。
3. 增加学习数学的兴趣。
教学重点:
知道各类统计图表的主要区别,能灵活选用合适的统计图表来对相关的数据进行描述和分析。
教学难点:
能灵活选用合适的统计图表来对相关数据进行描述和分析。
教学准备:
课前布置学生查找中国队在29届奥运会上获得金牌数。
教学过程:
一、创设情境,回顾整理
1. 学习第一例题
学生汇报是51枚之后,将这一数据填入统计表中。
你认为这些数据还能用什么更加直观的方法来表示吗?(条形统计图和折线统计图)
根据学生的回答,出示和这组数据对应的条形统计图以及折线统计图。
请学生将二者比较,思考下面的问题:
条形统计图和折线统计图表示数据时各有什么特点?
用条形统计图和折线统计图表示中国队获得金牌数各有什么优点?
将自己的想法在组内交流一下。
各小组派代表汇报本组看法。
请学生试着给课本上的这两幅统计图表上名称。
2. 学习第二个例题
出示例题,让学生审题。
让学生自己选择适当的统计图表示上面的数据。
请学生说说自己的想法。
把绘制好的统计图与同学交流,开展自评和互评活动,并在活动中对自己的统计图进行修改和完善工作,加深对条形统计图和折线统计图的优点的进一步认识。
3. 议一议
出示问题:统计下面的数据用那种统计图比较合适?说明理由。
1) 某城市2000年至2004年的小学生在校人数。
因为是反映同一个城市的小学生人数在这几年之内过的变化情况,所以用折线统计图比较好。
2) 某商场一年中各月份空调机销售量的变化情况。
因为是反映该商场在这一年中随着时间的推移,空调机的销售量发生变化的情况,所以用折线统计图更好一些。
3) 本校各年级学生人数
因为是反映同一时期几个并列的量之间的关系,所以用条形统计图比较好。
4) 本班学生喜欢各种颜色的比例。
因为要反映的是部分和整体的关系,所以用扇形统计图比较合适。
二、归纳总结
请学生针对本堂课经历的统计活动,读读自己的体会,对所学过的有关统计图表的知识进行梳理归纳。
三、布置作业
练一练相关习题。
板书设计:
教材分析:
本节教材内容是本册最后一节关于统计的新课内容,是学生在已经掌握统计表、条形统计图、折线统计图、扇形统计图的基础上进行的进一步学习,主要是培养学生的根据实际情况灵活的选用统计图来分析数据、解决问题的能力。
教学设想:
在本课的教学中,要充分体现学生自主学习、合作学习的方式,以学生活动为主,教师只进行必要的引导和点拨。
在出示例题后,请学生说一说自己打算采用那一种统计图来描述,作出这种选择的理由是什么。
提醒学生要很好的分工合作,保证每个同学都积极参与。
最后请学生针对本堂课经历的统计活动,谈谈自己的体会,对所学的有关统计图表的知识进行梳理归纳。
一、六年级数学上册应用题解答题
1.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到1.2米处做一个记号A,再从右端量到1.2米处做一个记号B。
这时,他发现A、B之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案)
2.下图中的阴影部分是由两个大小不同的正方形重叠而成的,图中阴影部分的面积是40
平方米,若以O点为圆心,分别以两个正方形的边长作半径,画出一个圆环,这个圆环的面积是多少平方米?
3.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。
例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。
图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。
4.食堂运来三种蔬菜,其中白菜的质量占28%,土豆的质量和其他两种蔬菜质量之和的比是2:3,土豆比白菜多24千克,食堂运来的三种蔬菜共多少千克?
5.甲乙两船同时从A码头出发,沿着同一条航线匀速向相距280千米的B码头航行,4小时后导航系统显示两船相距20千米。
已知甲船的速度是乙船的87.5%,求甲乙两船的速度。
(列方程解答)
6.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样合理安排这68名工人?请具体说明理由。
7.某商场一天内销售两种服装的情况是,甲种服装共卖得1560元,乙种服装共卖得1350元,若按两种服装的成本分别计算,甲种服装盈利25%,乙种服装亏本10%,试问该商场这一天是盈利还是亏本?盈或亏多少元?
8.美美服装公司赶制360件演出服。
甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。
(1)甲、乙两组合作,需要几天完成?
(2)如果甲组先完成任务的40%,剩下的任务按5:4分派给乙、丙两组。
甲、乙、丙三个组分别做了多少件演出服?
9.生命在于运动。
为了进一步提高全体同学的身体素质,拥有健康强杜的体魄,东华
小学开展了“天天晨跑”活动。
陈刚共跑了60km,张华所跑路程是陈刚所跑路程的4
5
还多
8km。
张华共跑了多少km?
10.实验小学六年级有男生120人,女生人数与男生人数的比是3∶5,六年级学生总人数恰好占全校学生人数的20%,实验小学有学生多少人?
11.如下图,图(1)与图(2)外面是两个同样大的正方形,只是里面的涂色部分不一样。
如果图(1)中涂色部分的面积是2
235.5m,求图(2)中涂色部分的面积。
(单位:m)
12.一个疏菜大棚里种植菜椒的面积是450平方米,西红柿的种植面积比菜椒少20%,比黄瓜多12.5%,这个大棚里种植黄瓜的面积是多少平方米?
13.学校要买48 支钢笔,每支10 元。
三个商店有不同的出售方案。
甲商店:买5 支送 1 支;乙商店:一律九折;
丙商店:满500 元八折优惠。
学校去哪个商店买合算?
14.规定:如图1中,方格里的数表示在其周围8个方格中共有多少个△。
即以“1”为中心,在它的四周8个方格中只能有1个△;以“2”为中心,在它的四周8个方格中只能有2个△;以“3”为中心,在它的四周8个方格中只能有3个△;依此类推。
按上述规定,在如图2中一共可以画12个△。
现在已经画好了其中的2个,请你在合适的空格中补上其余的10个。
15.农夫将苹果树种在正方形果园里,为了保护苹果树,他在苹果树周围种了一些针叶树。
下图表示了不同列数的苹果树和针叶树数量的变化情况。
(1)完成下面的表格。
n苹果树数针叶树数
8
4
5
(2)如果用n表示苹果树的列数,当苹果树和针叶树的棵数相等时,n的值是多少?(3)农夫想用更多的树苗做一个更大的果园,当果园扩大时,哪一种树会增加的比较快?为什么?
16.下图依次排列着5盏灯,用不同位置上亮灯和灭灯表示一个具体的数(亮灯用表示,灭灯用表示)。
请根据下面前四种状况所表示的数,完成下列问题。
(1)写出图⑤表示的数。
(2)在图⑥中画出亮灯和灭灯的状况。
① 1 ②3
++=④1+9+81=91
③13913
⑤()⑥93
17.数与形。
(1)仔细观察每幅图和它下面的算式之间的关系,根据发现的规律,接着画出后面的两个图形,并完成图形下面的算式。
22
21213-=+=
2232325-=+= 2243437-=+= 2254==- 2265==- (2)根据上面的规律,完成下面的算式。
1002-992=( )+( )=( )
20202-20192=( )+( )=( )
18.海安某步行街要铺设一条人行道,人行道长400米,宽1.6米。
现在用边长都是0.4米的红、黄两种正方形地砖铺设(如图是铺设的局部图示)。
(1)请帮忙算一算,铺设这条人行道一共需多少块地砖?(不计损耗)
(2)铺设这条人行道一共需要多少块红色地砖?(不计损耗)
19.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?
(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?
20.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
21.甲乙两车分别从A 、B 两地相向而行,甲车行驶了1.5小时乙车才开始出发,乙车以80千米/时的速度行2.5小时与甲车相遇。
甲车中途休息了1小时,当两车相遇时,甲所行驶的路程占AB 两地总路程的37
,甲车的行驶速度是多少千米? 22.甲、乙两车同时从A 、B 两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B 地还有230千米,乙车离A 地还有160千米,求A 、B 两地的距离是多少千米?
23.涛涛读一本故事书,第一天读了这本书的1
6
,第二天读了这本书的
1
5
,这时还剩95页
没有读。
这本故事书共有多少页?
24.六(1)班女生人数比全班人数的3
5
多2人,男生有22人,全班有多少人?
25.一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12个桃子。
那么第一天和第二天所吃桃子的总数是多少个?
26.一个书架上下两层共有图书450本,如果将上层书增加它的5
8
,下层书增加它的
3
10
,
这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?
27.水果店运进一批桂园,第一天售出1
2
,第二天售出余下的3
5
,还剩36千克没有卖,这
批桂园有多少千克?
28.我们已经学习了“外方内圆”(如下图1)的问题,现在让你继续研究,你会有新的发现。
2
8846450.2413.76
S S Sπ
=-=⨯-⨯=-=
正
阴影圆
(1)图2的阴影部分面积是多少?(列式计算)
(2)通过上面两个图形的计算,你是否有所发现,按你的发现,那么如图3这样正方形中有16个小圆,阴影部分的面积是()。
29.如图:两个同心圆的周长相差18.84厘米,两个正方形的周长相差多少厘米?
30.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是4:3,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。
已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米?
31.一项工程,甲队单独完成需要20天,乙队单独完成需要12天。
现在乙队先工作几天,剩下的由甲队单独完成。
工作中各自的工作效率不变,全工程前后一共用了14天,共得劳务费2万元。
如果按各自的工作量计算,甲、乙各获得多少万元?
32.一本故事书有180页,小红第一天看了全书的.
(1)如果第二天看的相当于第一天的,第二天看了多少页?
(2)如果第一天与第二天看的页数比是5:4,第二天看了多少页?
(3)如果第二天看了全书的,第二天比第一天多看多少页?
33.“外方内圆”是中国建筑中经常能见到的设计,而且“外方”与“内圆”的面积比是固定的。
(1)如图所示,“内圆”的半径是r,它的面积是________;“外方”的面积是________。
(用含有字母的式子表示以上结果)
(2)所以,S外方:S内圆=________:________。
(3)如图中正方形的面积是20平方厘米,那么图中“内圆”的面积是多少平方厘米?34.甲、乙两车同时从A、B两地相向而行,两车在离中点20千米处相遇,已知甲车每小时行50千米,乙车每小时比甲车多行20%,求A、B两地间的路程。
35.小明观察到某赛车场赛道和学校操场跑道形状一样,于是测量了相关数据如下:直道的长度85.96m,半圆形跑道的直径72.6m。
某型号赛车左、右轮的距离是2m,转弯时,外侧的轮子比内侧的轮子要多行一些路。
当该赛车在上述赛道上跑一圈时,外轮比内轮多行多少米?
36.红光农场去年植树的数量比前年成活的树木多40%,去年的成活率是60%。
去年成活的树木数量是前年成活树木的百分之多少?
37.一项工程,甲队单独完成需要60天。
若甲队先单独做18天,则剩余的甲、乙两队合作24天可以完成。
乙队单独完成这项工程需要多少天?
38.有一批货物,第一天运走了全部的1
3
,第二天运走了剩下的一半,第三天运走了308
千克,正好运完。
这批货物一共有多少千克?
39.如图为某学校花坛,它由一个圆心角∠AOB=30°,半径AO=6米的扇形以及分别以AO、
BO的1
3
为直径的6个相等的半圆组成,求此花坛的面积。
40.一批零件平均分给甲、乙两人来做.两人同时加工,当甲完成时乙还有18个没有做.已知甲、乙两人每小时生产零件个数的比是5:4.这批零件一共多少个?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.2米或3米
【分析】
方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);
方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。
【详解】
①
(1.2+1.2)÷(1+20%)=2(米)
②
(1.2+1.2)÷(1-20%)=3(米)
答:这根竹竿可能是2米或3米。
2.6平方米
【分析】
阴影部分的面积=大正方形的面积-小正方形的面积,而圆环的面积=π(大圆半径2-小圆半径2),大圆半径=大正方形的边长,小圆半径=小正方形的边长,所以大圆半径2=大正方形的面积,小圆半径2=小正方形的面积,所以圆环的面积=π×阴影部分的面积,据此作答即可。
【详解】
解:设大正方形边长为R,小正方形边长为r,则S阴=R2-r2=40(m2)
S圆环=π(R2-r2)=125.6(m2)
答:这个圆环面积是125.6平方米。
3.图2(19:47:26);
图3
【分析】
(1)同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数,注意灯灭表示0,那么图2左侧第1列代表1,第2列代表1+8=9,也就是19时;第3列表示4,第4列表示1+2+4=7,也就是47分;第5列表示2,第6列表示2+4=6,也就是26秒;(2)图3是左侧第1列是0,所以不涂;第2列是7,从下往上涂代表数字1、2、4的灯亮;第3列代表数字4的灯亮,其它灯灭;第4列代表数字1、8的灯亮;第5列代表数字1、4的灯亮,其它灯灭;第6列代表数字2、4的灯亮,其它灯灭。
【详解】
据分析可得,图2代表(19:47:26);
图3是:
故答案为:图2(19:47:26);
图3是。
【点睛】
本题考查数与形,解答本题的关键就是理解同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数的概念。
4.200千克
【分析】
将蔬菜总质量看作单位“1”,根据土豆的质量和其他两种蔬菜质量之和的比是2:3,可得土豆
占总质量的
2
23
,用24千克÷对应分率即可。
【详解】
24÷(
2
23
-28%)
=24÷3 25
=200(千克)
答:食堂运来的三种蔬菜共200千克。
【点睛】
关键是确定单位“1”,找到已知数量的对应分率。
5.甲船35千米/时,乙船40千米/时
【分析】
设乙船速度是x千米/时,则甲船速度是87.5%x千米/时,乙船速度×时间-甲船速度×时间=20千米,列出方程求出乙船速度,乙船速度×87.5%=甲船速度。
【详解】
解:设乙船速度是x千米/时,则甲船速度是87.5%x千米/时。
4x-87.5%x×4=20
4x-3.5x=20
0.5x=20
x=40
40×87.5%=35(千米/时)
答:甲船速度是35千米/时,乙船速度是40千米/时。
【点睛】
用方程解决问题的关键是找到等量关系,整体数量×部分对应百分率=部分数量。
6.(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x=48
加工大齿轮的人数是:68-x=68-48=20(人);
答:20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
7.盈利;盈利162元
【分析】
由题意可知,甲种服装盈利25%,就是比成本多了25%,那么卖价就是成本的1+25%=125%;乙种服装亏本10%,就是比成本少了10%,那么卖价就是成本的1-10%=90%;根据“已知一个数的百分之几是多少,求这个数”,用除法计算出甲种服装和乙种服装的成本价,然后把一天的销售总额加起来跟成本总价相比,就知道是盈亏多少了。
【详解】
1560÷(1+25%)
=1560÷1.25
=1248(元)
1350÷(1-10%)
=1350÷90%
=1500(元)
1560+1350=2910(元)
1248+1500=2748(元)
2910-2748=162(元)
答:该商场这一天盈利了,盈利162元。
【点睛】
解答此题的关键是要求出甲乙两种服装的成本价,根据已知一个数的百分之几是多少,求这个数用除法计算。
8.(1)40
9
天
(2)甲:144件乙:120件
丙:96件 【分析】
(1)工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间,据此解答即可; (2)甲组先完成任务的40%,剩下的任务占60%,求出剩下的任务;剩下的任务按 5∶4 分派给乙、丙,则乙完成的占剩下任务的九分之五,丙完成的占剩下任务的九分之四。
【详解】
(1)111810⎛⎫÷+ ⎪⎝⎭
9140=÷
40
9
=
(天) 答:甲、乙两组合作,需要40
9
天完成。
(2)360×40%=144(件)
()360140%⨯-
3600.6⨯= 216=(件) 5
21612054
⨯+=(件) 4
2169654
⨯
+=(件) 答:甲、乙、丙三个组分别做了144,120,96件演出服。
【点睛】
本题考查工程问题、百分数、按比例分配,解答本题的关键是掌握按比例分配解决问题的方法。
9.56km
【分析】
张华所跑路程是陈刚所跑路程的五分之四还多8km ,先用乘法求出陈刚所跑路程的五分之四是多少,再加上8千米就是张华共跑的路程,据此解答即可。
【详解】 46085
⨯+
=48+8 =56(千米)
答:张华共跑了56千米。
【点睛】
本题考查分数乘法,解答本题的关键是掌握分数乘法的计算方法。
10.960人 【分析】
六年级女生人数与男生人数的比是3∶5,说明男生人数是六年级人数的
5
53
+,据此求出六年级人数,再用六年级人数除以占全校学生人数的百分率,求出全校学生人数即可。
【详解】 5
12020%53
÷
÷+ 19220%=÷ 960=(人)
答:实验小学有学生960人。
【点睛】
本题考查按比例分配、百分数,解答本题的关键是找准单位“1”。
11.300平方米 【分析】
根据圆环的面积S =π(R 2-r 2),图(1)中涂色部分是一个圆环的面积,已知圆环的面积,据此求出大圆和小圆的半径平方之差,进而求出大圆的半径。
大圆直径是正方形的边长,图(2)中涂色部分的面积就是大正方形的面积减去小正方形的面积,据此解答。
【详解】 235.5÷3.14+5×5 =75+25 =100(平方米) 10×10=100(平方米) 大圆的半径是10米。
10×2=20(米),5×2=10(米) 20×20-10×10 =400-100 =300(平方米)
答:图(2)中涂色部分的面积是300平方米。
【点睛】
此题考查阴影部分的面积计算,求出大圆的直径是解题关键。
12.450×(1–20%)÷(1+12.5%)=320(平方米) 【详解】 略
13.丙店
【解析】
【详解】
甲商店:48÷(5+1)=8(支)
(48-8)×10
=40×10
=400(元)
乙商店:
10×90%×48=432(元)
丙商店:
可买50支以达到优惠要求.
50×10×80%=400(元)
432>400由此可以发现,乙店花钱最多,甲乙两店虽然各花了400元,但是丙店多买了两支,所以到丙店最合算.
14.见详解
【分析】
根据题意,“1”的四周8个方格中只能有1个△;“2”的四周8个方格中只能有2个△;“3”的四周8个方格中只能有3个△,由此根据图中的两个三角形,进而画出其它的三角形。
【详解】
如图:
【点睛】
关键是根据题意得出规律,再由规律解决问题。
15.(1)
n苹果树数针叶树数
(1)(1)8
(2)4(16)
5(25)(40)
(2)n=8
(3)当n<4时,针叶树的数量会增加的比较快。
当n>4时,苹果树的数量会增加的比较快。
因为,果园扩大时,列数每增大1列,由n增加到n+1;苹果树的数量会增加(n+1)2-n2=2n+1棵,针叶树的数量总是固定增加8棵。
那么当2n+1<8,即n<4时,针叶树的数量会增加的比较快;当2n+1>8,即n>4时,n越大苹果树的数量会增加的越快。
【详解】
略
16.117;
【解析】
【详解】
略
17.(1)
=5+4
=9;
=6+5
=11
(2)100;99;199
2020;2019;4039
【分析】
观察可知,大正方形和空白正方形的边长依次增加1,相邻两个数的平方的差等于这两个数的和,据此分析。
【详解】
(1)
2221213-=+= 2232325-=+= 2243437-=+= 2254=5+4=9
- 2265=6+5=11
- (2)根据上面的规律,完成下面的算式。
1002-992=100+99=199 20202-20192=2020+2019=4039 【点睛】
数和图形的规律是相对应的,图形的排列有什么变化规律,数的排列就有相应的变化规律。
18.(1)4000块;(2)1000块 【分析】
(1)利用长方形面积公式:S =ab ,计算人行道的面积,然后用人行道的面积除以每块地砖的面积,就是所需块数。
(2)根据图形的排列规律,每4×4=16(块)方砖中,有4块是红色的,求所需地砖块数包含几个16,再乘4,计算所需红色地砖的块数即可。
【详解】
(1)400×1.6÷(0.4×0.4) =640÷0.16 =4000(块)
答:铺设这条人行道一共需4000块地砖。
(2)4000÷16×4 =250×4 =1000(块)
答:铺设这条人行道一共需要1000块红色地砖。
【点睛】
本题主要考查数与形结合的规律,关键是根据图示发现地砖排列的规律。
19.(1)12.75元
(2)20%
【分析】
(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;
(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。
【详解】
(1)2040÷200÷80%
=10.2÷80%
=12.75(元)
答:每支钢笔的标价是12.75元。
(2)(2040÷200-8.5)÷8.5
=1.7÷8.5
=20%
答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。
【点睛】
本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。
20.18升
【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27×
=90×
=18(升)
答:这个水池早晨用去了18升水.
21.50千米/时
【分析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。
据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘法求出甲路程。
分析题意,甲先是行驶了1.5小时,中途停了1小时,所以后续又是行驶了1.5小时,共行驶了3小时。
用甲路程除以甲行驶的时间,求出甲的速度即可。
【详解】
总路程:
80×2.5÷(1-3
7
)
=200÷4 7
=350(千米)
甲路程:350×3
7
=150(千米)
甲速度:
150÷(1.5+2.5-1)
=150÷3
=50(千米/时)
答:甲车的行驶速度是50千米/时。
【点睛】
本题考查了相遇问题,相遇时甲乙两车的路程和恰好等于总路程。
22.975千米
【分析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的1
5。
相遇后两车又行驶了
3小时,行驶了全程的3
5。
把全程看作单位“1”,则两车剩下的路程共占全程的(1-
3
5
),用
两车剩下的路程之和除以(1-3
5
)即可求出全程。
【详解】
1 5×3=
3
5
(230+160)÷(1-3
5
)
=390÷2 5
=975(千米)。