2009-2013年北京高考真题--集合试题汇编

合集下载

13年高考真题——理科数学(北京卷)

13年高考真题——理科数学(北京卷)

2013年普通高等学校招生全国统一考试(北京)卷数学(理科)一.选择题:共8小题,每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( ) (A ){}0 (B ){}1,0-(C ){}0,1 (D ){}1,0,1- 2.在复平面内,复数()22i -对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.“ϕπ=”是“()sin 2y x ϕ=+过坐标原点”( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321 (D )6109875.函数()f x 的图象向右平移1个单位长度,所得图象与曲线x y e =关于y 轴对称,则()f x =( )(A )1x e + (B )1x e - (C )1x e -+ (D )1x e --6.若双曲线22221x y a b-=) (A )2y x =± (B)y = (C )2y x =± (D )2y x =7.直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,则l 与C 所围图形的面积等于( )(A )43 (B )2 (C )83 (D)8.设关于,x y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点()00,P x y ,满足0022x y -=,求得m 的取值范围是( )(A )(),4-∞ (B )(),13-∞ (C )(),23-∞- (D )(),53-∞-二.填空题:共6题,每小题5分,共30分。

9.在极坐标系中,点()2,6π到直线sin 2ρθ=的距离等于_____。

2013年普通高等学校招生全国统一考试(北京卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(北京卷)数学试题 (理科) word解析版

2013北京高考理科数学试题及解析第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

第一部分一、选择题1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 答案 B解析 ∵-1,0∈B,1∉B ,∴A ∩B ={-1,0}.2.在复平面内,复数(2-i)2对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 (2-i)2=4-4i +i 2=3-4i ,∴对应点坐标(3,-4),位于第四象限.3.“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.4.执行如图所示的程序框图,输出的S 值为( ).A .1 B.23 C.1321 D.610987答案 C解析 执行一次循环后S =23,i =1,执行第二次循环后,S =1321,i =2≥2,退出循环体,输出S 的值为1321.5.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ).A .e x +1B .e x -1C .e -x +1D .e -x -1 答案 D解析 与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1.6.若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( ).A .y =±2xB .y =±2xC .y =±12xD .y =±22x答案 B解析 由e =3,知c =3a ,得b =2a .∴渐近线方程y =±bax ,y =±2x .7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ).A.43 B .2 C.83 D.1623 答案 C解析 由C :x 2=4y ,知焦点P (0,1).∴直线l 的方程为y =1.∴所求面积S =4-⎠⎛2-2x 24 d x =4-⎪⎪x 3122-2=83.8.设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ).A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53答案 C 解析作不等式组表示的可行域,如图,要使可行域存在,必有m<1-2m.若可行域存在点P(x 0,y 0)满足x 0-2y 0=2,则可行域内含有直线y =12x -1上的点,只需边界点(-m,1-2m)在y=12x -1上方,且(-m ,m)在直线y =12x -1的下方.解不等式组⎩⎪⎨⎪⎧m<1-2m ,1-2m>-12m -1,m<-12m -1.得m<-23.第二部分二、填空题9.在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin θ=2的距离等于________. 答案 1解析 极坐标系中点⎝⎛⎭⎫2,π6对应直角坐标系中坐标为(3,1),极坐标系直线ρsin θ=2对应直角坐标系中直线方程为y =2,∴点到直线y =2的距离为d =1.10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 1(1-q n )1-q=2n +1-2.11. 如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA =3,PD ∶DB =9∶16,则PD =________,AB =________.答案 954解析 由PD ∶DB =9∶16.设PD =9a ,DB =16a ,由切割线定理,PA 2=PD·PB ,即9=9a ×25a ,∴a =15,所以PD =95.在Rt △PAB 中,PB =25a =5,∴AB =PB 2-PA 2=52-32=4.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________. 答案 96解析 将5张参观券分成4堆,有2个联号有4种分法,每种分法再分给4人,各有A 44种分法,∴不同的分法种类共有4A 44=96.13. 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.14. 如图,在棱长为2的正方体ABCDA 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.答案 255解析 取B 1C 1中点E 1,连接E 1E ,D 1E 1,过P 作PH ⊥D 1E 1,连接C 1H .∴EE 1⊥平面A 1B 1C 1D 1,PH ∥EE 1,∴PH ⊥底面A 1B 1C 1D 1,∴P 到C 1C 的距离为C 1H .当点P 在线段D 1E 上运动时,最小值为C 1到线段D 1E 1的距离.在Rt △D 1C 1E 1中,边D 1E 1上的高h =2×15=255.三、解答题15.在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A∴cos A =63.(2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去. 故c 的值为5.16.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解 (1)在3月1日到3月13日这13天中,5日,8日这两天空气重度污染.∴此人到达当日空气重度污染的概率P =213.(2)依题意X =0,1,2P (X =0)=513,P (X =1)=413,P (X =2)=413.∴随机变量X 的分布列为∴E (X )=0×513+1×413+2×413=1213D (X )=⎝⎛⎭⎫0-12132×513+⎝⎛⎭⎫1-12132×413+⎝⎛⎭⎫2-12132×413=116169. (3)由图知,从3月5日开始连续三天空气质量指数方差最大.17. 如图,在三棱柱ABCA 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求证二面角A 1BC 1B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.(1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , ∴AA 1⊥平面ABC . (2)解在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎪⎨⎪⎧ A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=03y 1-4z 1=0∴取向量n 1=(0,4,3)由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0)∴cos θ=n 1·n 2|n 1|·|n 2|=165×5=1625.(3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→. ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ. ∴AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0则λ=925,因此BD BC 1=925.18.设l 为曲线C :y =ln xx在点(1,0)处的切线.(1)求l 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方.(1)解 由y =ln xx ,得y ′=1-ln x x 2,x >0.∴k =y ′|x =1=1-ln 112=1.∴直线l 的方程为y =x -1,即x -y -1=0.(2)证明 要证明,除切点(1,0)外,曲线C 在直线l 下方.只要证明,对∀x >0且x ≠1时,x -1>ln xx.设f (x )=x (x -1)-ln x ,x >0,则f ′(x )=2x -1-1x =(2x +1)(x -1)x因此f (x )在(0,1)上单调递减,在(1,+∞)单调递增. ∴f (x )>f (1)=0,即x (x -1)>ln x故当x >0且x ≠1时,x -1>ln xx成立.因此原命题成立.19.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0)∴线段OB 的垂直平分线x =1. 在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32.∴|AC |=|y 2-y 1|= 3.因此菱形的面积S =12|OB |·|AC |=12×2×3= 3.(2)假设四边形OABC 为菱形. 因点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m1+4k 2因为M 为AC 和OB 交点,∴k OB =-14k.又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.故OABC 不是菱形,这与假设矛盾. 综上,四边形OABC 不是菱形.20.已知{a n}是由非负整数组成的无穷数列,该数列前n项的最大值记为A n,第n项之后各项a n+1,a n+2…的最小值记为B n,d n=A n-B n.(1)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:d n=-d(n=1,2,3…)的充分必要条件为{a n}为公差为d的等差数列;(3)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为 1.(1)解d1=1,d2=1,d3=3,d4=2.(2)证明充分性:若{a n}为公差为d的等差数列,则a n=a1+(n-1)d.于是A n=a n=a1+(n-1)d,B n=a n+1=a1+nd.因此d n=A n-B n=-d(n=1,2,3,…).必要性:因为d n=-d≤0,∴A n=B n+d n≤B n∵a n≤A n,a n+1≥B n∴a n≤a n+1,于是A n=a n,B n=a n+1.因此a n+1-a n=B n-A n=-d n=d.故数列{a n}是公差为d的等差数列.(3)证明1°首先{a n}中的项不能是0,否则d1=a1-0=2,矛盾.2°{a n}中的项不能超过2,用反证法证明如下:若{a n}中有超过2的项,设a k是第一个大于2的项.{a n}中一定存在项为1,否则与d1=1矛盾;当n≥k时,a n≥2,否则与d k=1矛盾;因此存在最大的i在2到k-1之间,使得a i=1,此时d i=A i-B i=2-B i≤2-2=0,矛盾.综上{a n}中没有超过2的项.所以由1°,2°知,{a n}中的项只能为1或2.∵对任意n≥1,a n≤2=a,∴A n=2,故B n=A n-d n=2-1=1.因此对任意正整数n,存在m满足m>n,且a m=1,即数列{a n}中有无穷多项为1.。

2013北京高考真题数学(理)含答案

2013北京高考真题数学(理)含答案

绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试数学(理)(北京卷)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}2.(5分)在复平面内,复数(2﹣i)2对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.5.(5分)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣16.(5分)若双曲线的离心率为,则其渐近线方程为()A.y=±2x B.C.D.7.(5分)直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A.B.2 C.D.8.(5分)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的取值范围是()A.B.C.D.二、填空题共6小题,每小题5分,共30分.9.(5分)在极坐标系中,点(2,)到直线ρsinθ=2的距离等于.10.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n项和S n=.11.(5分)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD:DB=9:16,则PD =,AB=.12.(5分)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.13.(5分)向量,,在正方形网格中的位置如图所示,若(λ,μ∈R),则=.14.(5分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.(13分)在△ABC中,a=3,b=2,∠B=2∠A.(Ⅰ)求cos A的值;(Ⅱ)求c的值.16.(13分)如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(14分)如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.(Ⅰ)求证:AA1⊥平面ABC;(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.18.(13分)设l为曲线C:y=在点(1,0)处的切线.(Ⅰ)求l的方程;(Ⅱ)证明:除切点(1,0)之外,曲线C在直线l的下方.19.(14分)已知A,B,C是椭圆W:上的三个点,O是坐标原点.(Ⅰ)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(Ⅱ)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由.20.(13分)已知{a n}是由非负整数组成的无穷数列,该数列前n项的最大值记为A n,第n项之后各项a n+1,a n+2…的最小值记为B n,d n=A n﹣B n.(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(Ⅱ)设d是非负整数,证明:d n=﹣d(n=1,2,3…)的充分必要条件为{a n}是公差为d的等差数列;(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为1.2013年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【分析】化简复数为代数形式,求出复数对应点的坐标,即可判断复数对应点所在象限.【解答】解:复数(2﹣i)2=4﹣4i+i2=3﹣4i,复数对应的点(3,﹣4),所以在复平面内,复数(2﹣i)2对应的点位于第四象限.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.3.【分析】按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.【解答】解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选:A.【点评】本题考查充要条件的判定,用到的知识是三角函数的图象特征.是基础题.4.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.5.【分析】首先求出与函数y=e x的图象关于y轴对称的图象的函数解析式,然后换x为x+1即可得到要求的答案.【解答】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选:D.【点评】本题考查了函数解析式的求解与常用方法,考查了函数图象的对称变换和平移变换,函数图象的平移遵循“左加右减,上加下减”的原则,是基础题.6.【分析】通过双曲线的离心率,推出a、b关系,然后直接求出双曲线的渐近线方程.【解答】解:由双曲线的离心率,可知c=a,又a2+b2=c2,所以b=a,所以双曲线的渐近线方程为:y==±x.故选:B.【点评】本题考查双曲线的基本性质,渐近线方程的求法,考查计算能力.7.【分析】先确定直线的方程,再求出积分区间,确定被积函数,由此利用定积分可求直线l与抛物线围成的封闭图形面积.【解答】解:抛物线x2=4y的焦点坐标为(0,1),∵直线l过抛物线C:x2=4y的焦点且与y轴垂直,∴直线l的方程为y=1,由,可得交点的横坐标分别为﹣2,2.∴直线l与抛物线围成的封闭图形面积为=(x﹣)=.故选:C.【点评】本题考查封闭图形的面积,考查直线方程,解题的关键是确定直线的方程,求出积分区间,确定被积函数.8.【分析】先根据约束条件画出可行域.要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,从而建立关于m的不等式组,解之可得答案.【解答】解:先根据约束条件画出可行域,要使可行域存在,必有m<﹣2m+1,要求可行域包含直线y=x﹣1上的点,只要边界点(﹣m,1﹣2m)在直线y=x﹣1的上方,且(﹣m,m)在直线y=x﹣1的下方,故得不等式组,解之得:m<﹣.故选:C.【点评】平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.二、填空题共6小题,每小题5分,共30分.9.【分析】先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,然后用点到直线的距离来解.【解答】解:在极坐标系中,点化为直角坐标为(,1),直线ρsinθ=2化为直角坐标方程为y=2,(,1),到y=2的距离1,即为点到直线ρsinθ=2的距离1,故答案为:1.【点评】本题关键是直角坐标和极坐标的互化,体现等价转化数学思想.10.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{a n}时首项为2,公比为2的等比数列.∴数列{a n}的前n项和为:S n===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.11.【分析】由PD:DB=9:16,可设PD=9x,DB=16x.利用切割线定理可得PA2=PD•PB,即可求出x,进而得到PD,PB.AB为圆O的直径,PA为圆O的切线,利用切线的性质可得AB⊥PA.再利用勾股定理即可得出AB.【解答】解:由PD:DB=9:16,可设PD=9x,DB=16x.∵PA为圆O的切线,∴PA2=PD•PB,∴32=9x•(9x+16x),化为,∴.∴PD=9x=,PB=25x=5.∵AB为圆O的直径,PA为圆O的切线,∴AB⊥PA.∴==4.故答案分别为,4.【点评】熟练掌握圆的切线的性质、切割线定理、勾股定理是解题的关键.12.【分析】求出5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号的组数,然后分给4人排列即可.【解答】解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4×=96种.故答案为:96.【点评】本题考查排列组合以及简单的计数原理的应用,正确分组是解题的关键,考查分析问题解决问题的能力.13.【分析】以向量、的公共点为坐标原点,建立如图直角坐标系,得到向量、、的坐标,结合题中向量等式建立关于λ、μ的方程组,解之得λ=﹣2且μ=﹣,即可得到的值.【解答】解:以向量、的公共点为坐标原点,建立如图直角坐标系可得=(﹣1,1),=(6,2),=(﹣1,﹣3)∵∴,解之得λ=﹣2且μ=﹣因此,==4故答案为:4【点评】本题给出向量用向量、线性表示,求系数λ、μ的比值,着重考查了平面向量的坐标运算法则和平面向量基本定理及其意义等知识,属于基础题.14.【分析】如图所示,取B1C1的中点F,连接EF,ED1,利用线面平行的判定即可得到C1C∥平面D1EF,进而得到异面直线D1E与C1C的距离.【解答】解:如图所示,取B1C1的中点F,连接EF,ED1,∴CC1∥EF,又EF⊂平面D1EF,CC1⊄平面D1EF,∴CC1∥平面D1EF.∴直线C1C上任一点到平面D1EF的距离是两条异面直线D1E与CC1的距离.过点C1作C1M⊥D1F,∵平面D1EF⊥平面A1B1C1D1.∴C1M⊥平面D1EF.过点M作MP∥EF交D1E于点P,则MP∥C1C.取C1N=MP,连接PN,则四边形MPNC1是矩形.可得NP⊥平面D1EF,在Rt△D1C1F中,C1M•D1F=D1C1•C1F,得=.∴点P到直线CC1的距离的最小值为.故答案为【点评】熟练掌握通过线面平行的性质即可得到异面直线的距离是解题的关键.三、解答题共6小题,共50分.解答应写出文字说明,演算步骤15.【分析】(Ⅰ)由条件利用正弦定理和二倍角公式求得cos A的值.(Ⅱ)由条件利用余弦定理,解方程求得c的值,再进行检验,从而得出结论.【解答】解:(Ⅰ)由条件在△ABC中,a=3,,∠B=2∠A,利用正弦定理可得,即=.解得cos A=.(Ⅱ)由余弦定理可得a2=b2+c2﹣2bc•cos A,即 9=+c2﹣2×2×c×,即c2﹣8c+15=0.解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90°,A=C=45°,△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去.当c=5时,求得cos B==,cos A==,∴cos2A=2cos2A﹣1==cos B,∴B=2A,满足条件.综上,c=5.【点评】本题主要考查正弦定理和余弦定理,以及二倍角公式的应用,注意把c=3舍去,这是解题的易错点,属于中档题.16.【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)由题意可知X所有可能取值为0,1,2,得出P(X=0),P(X=1),p(x=2)及分布列与数学期望;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:设A i表示事件“此人于5月i日到达该地”(i=1,2, (13)依据题意P(A i)=,A i∩A j=∅(i≠j)(Ⅰ)设B表示事件“此人到达当日空气质量优良”,则P(B)=…(3分)(Ⅱ)X的所有可能取值为0,1,2P(X=0)=,P(X=1)=,P(X=2)=…(6分)∴X的分布列为X0 1 2P…(8分)∴X的数学期望为E(X)=…(11分)(Ⅲ)从5月5日开始连续三天的空气质量指数方差最大.…(13分)【点评】本题考查了正确理解题意及识图的能力、古典概型的概率计算、随机变量的分布列及数学期望与方差,考查了数形结合的思想方法及审题与计算的能力.17.【分析】(I)利用AA1C1C是正方形,可得AA1⊥AC,再利用面面垂直的性质即可证明;(II)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,利用向量垂直于数量积得关系即可得出.【解答】(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)解:由AC=4,BC=5,AB=3.∴AC2+AB2=BC2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A1(0,0,4),B(0,3,0),B1(0,3,4),C1(4,0,4),∴,,.设平面A1BC1的法向量为,平面B1BC1的法向量为=(x2,y2,z2).则,令y1=4,解得x1=0,z1=3,∴.,令x2=3,解得y2=4,z2=0,∴.===.∴二面角A1﹣BC1﹣B1的余弦值为.(III)设点D的竖坐标为t,(0<t<4),在平面BCC1B1中作DE⊥BC于E,可得D,∴=,=(0,3,﹣4),∵,∴,∴,解得t=.∴.【点评】本题综合考查了线面垂直的判定与性质定理、面面垂直的性质定理、通过建立空间直角坐标系利用法向量求二面角的方法、向量垂直与数量积得关系等基础知识与基本方法,考查了空间想象能力、推理能力和计算能力.18.【分析】(Ⅰ)求出切点处切线斜率,代入代入点斜式方程,可以求解;(Ⅱ)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论.【解答】解:(Ⅰ)∵∴∴l的斜率k=y′|x=1=1∴l的方程为y=x﹣1证明:(Ⅱ)令f(x)=x(x﹣1)﹣lnx,(x>0)曲线C在直线l的下方,即f(x)=x(x﹣1)﹣lnx>0,则f′(x)=2x﹣1﹣=∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,又f(1)=0∴x∈(0,1)时,f(x)>0,即<x﹣1x∈(1,+∞)时,f(x)>0,即<x﹣1即除切点(1,0)之外,曲线C在直线l的下方【点评】本题考查的知识点是导数的几何意义,利用导数研究函数的单调性,是导数的综合应用,难度中档.19.【分析】(I)根据B的坐标为(2,0)且AC是OB的垂直平分线,结合椭圆方程算出A、C两点的坐标,从而得到线段AC的长等于.再结合OB的长为2并利用菱形的面积公式,即可算出此时菱形OABC的面积;(II)若四边形OABC为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A、C的横坐标满足=r2﹣1,从而得到A、C的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B不是W的顶点时,四边形OABC 不可能为菱形.【解答】解:(I)∵四边形OABC为菱形,B是椭圆的右顶点(2,0)∴直线AC是BO的垂直平分线,可得AC方程为x=1设A(1,t),得,解之得t=(舍负)∴A的坐标为(1,),同理可得C的坐标为(1,﹣)因此,|AC|=,可得菱形OABC的面积为S=|AC|•|BO|=;(II)∵四边形OABC为菱形,∴|OA|=|OC|,设|OA|=|OC|=r(r>1),得A、C两点是圆x2+y2=r2与椭圆的公共点,解之得=r2﹣1设A、C两点横坐标分别为x1、x2,可得A、C两点的横坐标满足x1=x2=•,或x1=•且x2=﹣•,①当x1=x2=•时,可得若四边形OABC为菱形,则B点必定是右顶点(2,0);②若x1=•且x2=﹣•,则x1+x2=0,可得AC的中点必定是原点O,因此A、O、C共线,可得不存在满足条件的菱形OABC综上所述,可得当点B不是W的顶点时,四边形OABC不可能为菱形.【点评】本题给出椭圆方程,探讨了以坐标原点O为一个顶点,其它三个顶点在椭圆上的菱形问题,着重考查了菱形的性质、椭圆的标准方程与简单几何性质等知识,属于中档题.20.【分析】(Ⅰ)根据条件以及d n=A n﹣B n的定义,直接求得d1,d2,d3,d4的值.(Ⅱ)设d是非负整数,若{a n}是公差为d的等差数列,则a n=a1+(n﹣1)d,从而证得d n=A n﹣B n=﹣d,(n=1,2,3,4…).若d n=A n﹣B n=﹣d,(n=1,2,3,4…).可得{a n}是一个不减的数列,求得d n=A n﹣B n=﹣d,即a n+1﹣a n=d,即{a n}是公差为d的等差数列,命题得证.(Ⅲ)若a1=2,d n=1(n=1,2,3,…),则{a n}的项不能等于零,再用反证法得到{a n}的项不能超过2,从而证得命题.【解答】解:(Ⅰ)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d1=A1﹣B1=2﹣1=1,d2=A2﹣B2=2﹣1=1,d3=A3﹣B3=4﹣1=3,d4=A4﹣B4=4﹣1=3.(Ⅱ)充分性:设d是非负整数,若{a n}是公差为d的等差数列,则a n=a1+(n﹣1)d,∴A n=a n=a1+(n﹣1)d,B n=a n+1=a1+nd,∴d n=A n﹣B n=﹣d,(n=1,2,3,4…).必要性:若d n=A n﹣B n=﹣d,(n=1,2,3,4…).假设a k是第一个使a k﹣a k﹣1<0的项,则d k=A k﹣B k=a k﹣1﹣B k≥a k﹣1﹣a k>0,这与d n=﹣d≤0相矛盾,故{a n}是一个不减的数列.∴d n=A n﹣B n=a n﹣a n+1=﹣d,即a n+1﹣a n=d,故{a n}是公差为d的等差数列.(Ⅲ)证明:若a1=2,d n=1(n=1,2,3,…),首先,{a n}的项不能等于零,否则d1=2﹣0=2,矛盾.而且还能得到{a n}的项不能超过2,用反证法证明如下:假设{a n}的项中,有超过2的,设a m是第一个大于2的项,由于{a n}的项中一定有1,否则与d1=1矛盾.当n≥m时,a n≥2,否则与d m=1矛盾.因此,存在最大的i在2到m﹣1之间,使a i=1,此时,d i=A i﹣B i=2﹣B i≤2﹣2=0,矛盾.综上,{a n}的项不能超过2,故{a n}的项只能是1或者2.下面用反证法证明{a n}的项中,有无穷多项为1.若a k是最后一个1,则a k是后边的各项的最小值都等于2,故d k=A k﹣B k=2﹣2=0,矛盾,故{a n}的项中,有无穷多项为1.综上可得,{a n}的项只能是1或者2,且有无穷多项为1.【点评】本题主要考查充分条件、必要条件的判断和证明,等差关系的确定,用反证法和放缩法证明数学命题,属于中档题.。

2013年普通高等学校招生全国统一考试数学理试题(北京卷)

2013年普通高等学校招生全国统一考试数学理试题(北京卷)

2013北京高考理科数学试题 第一部分 (选择题 共40分)一、 选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限 3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件S 值为A.1B.23 C.1321D.610987 5.函数f (x )的图象向右平移1个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1e x - C. 1ex -+ D. 1ex --6.若双曲线22221x y a b-=,则其渐近线方程为A.y =±2xB.y =C.12y x =±D.y x = 7.直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83D.38.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是 A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C.2,3⎛⎫-∞- ⎪⎝⎭ D.5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 . 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = . 11.如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD= ;AB=.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ= .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,1B三、解答题共6小题,共80分。

2009年北京卷理科高考真题数学试卷-学生用卷

2009年北京卷理科高考真题数学试卷-学生用卷

2009年北京卷理科高考真题数学试卷-学生用卷第I卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分)1、【来源】 2009年高考真题北京卷理科第1题5分2019~2020学年宁夏银川兴庆区宁夏回族自治区银川一中高二下学期期中文科第1题5分在复平面内,复数对应的点位于().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2009年高考真题北京卷理科第2题5分已知向量,不共线,,,若,则().A. 且与同向B. 且与反向C. 且与同向D. 且与反向3、【来源】 2009年高考真题北京卷理科第3题5分2018~2019学年10月北京顺义区北京市顺义区牛栏山第一中学高三上学期月考理科第5题5分2017~2018学年北京西城区北京市第四十三中学高一上学期期中第7题4分2016~2017学年12月北京西城区北京市第三十五中学高三上学期月考理科第4题2016~2017学年北京东城区北京市第一六五中学高一上学期期中第9题4分为了得到函数的图象,只需要把函数的图象上所有的点().A. 向左平移个单位长度,再向上平移个单位长度B. 向右平移个单位长度,再向上平移个单位长度C. 向左平移个单位长度,再向下平移个单位长度D. 向右平移个单位长度,再向下平移个单位长度4、【来源】 2009年高考真题北京卷理科第4题5分2020~2021学年12月陕西西安碑林区西安建筑科技大学附属中学高二上学期月考理科("名校+"教育联合体)第10题4分2009年高考真题北京卷文科第6题5分2017~2018学年12月北京海淀区北京市中关村中学高二上学期月考理科第7题4分2016~2017学年北京朝阳区北京市日坛中学高二上学期期中理科第7题4分若正四棱柱的底面边长为,与底面成角,则到底面的距离为().A. B. C. D.5、【来源】 2009年高考真题北京卷理科第5题5分2014~2015学年北京西城区北京市第三十九中学高三上学期期中理科第2题2011~2012学年北京西城区北京市第四中学高三上学期期中理科第2题5分2018~2019学年黑龙江哈尔滨南岗区哈尔滨市第三中学高三上学期期末理科第3题5分2012年北京西城区高三期中理科“”是“”的().A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6、【来源】 2009年高考真题北京卷理科第6题5分2021年湖南岳阳高三下学期高考模拟(5月)第7题5分若(,为有理数),则().A. B. C. D.7、【来源】 2020~2021学年安徽合肥高二下学期期末理科(六校联盟)第10题5分2013~2014学年北京高二下学期期中理科第9题4分2018~2019学年浙江宁波慈溪市高二下学期期中第5题4分2016~2017学年北京东城区北京市第二十七中学高三上学期期中理科第6题5分2017~2018学年北京房山区良乡中学高二下学期期中理科第6题4分用到这个数字,可以组成没有重复数字的三位偶数的个数为().A. B. C. D.8、【来源】 2009年高考真题北京卷理科第8题5分2009年北京高考理科点在直线上,若存在过的直线交抛物线于,两点,且,则称点为“点”,那么下列结论中正确的是().A. 直线上的所有点都是“点”B. 直线上仅有有限个点是“点”C. 直线上的所有点都不是“点”D. 直线上有无穷多个点(但不是所有的点)是“点”第II卷(非选择题共90分)二、填空题(本大题共6小题,每小题5分,共30分)9、【来源】 2009年高考真题北京卷理科第9题5分.10、【来源】 2009年高考真题北京卷理科第10题5分2016~2017学年浙江绍兴绍兴县绍兴市第一中学高二下学期期末理科第12题3分若实数,满足,则的最小值为.11、【来源】 2009年高考真题北京卷理科第11题5分设是偶函数.若曲线在点处的切线的斜率为,则该曲线在点处的切线的斜率为.12、【来源】 2009年高考真题北京卷理科第12题5分2009年高考真题北京卷文科第13题5分椭圆的焦点为,点在椭圆上.若,则;的大小为.13、【来源】 2009年高考真题北京卷理科第13题5分2018~2019学年12月北京海淀区北京市第五十七中学高一上学期月考第11题5分2018~2019学年6月北京海淀区清华大学附属中学高二下学期月考第11题5分2011~2012学年北京西城区北京市第四中学高三上学期期中理科第10题5分若函数,则不等式的解集为.14、【来源】 2009年高考真题北京卷理科第14题5分2009年北京高考北京卷理科已知数列满足:,,,,则;.三、解答题(本大题共6小题,共80分)15、【来源】 2009年高考真题北京卷理科第15题13分2016~2017学年北京西城区北京师范大学附属中学高三上学期期中理科第15题13分2019~2020学年北京西城区北京市第十四中学高三上学期期中第15题13分2016~2017学年北京东城区北京市第一七一中学高三上学期期中理科第15题12分2019~2020学年9月重庆两江新区重庆市两江育才中学校高二上学期月考第18题12分在中,角的对边分别为(1) 求的值.(2) 求的面积.16、【来源】 2009年高考真题北京卷理科第16题14分如图,在三棱锥中,底面,,,,点,分别在棱,上,且.(1) 求证:平面.(2) 当为的中点时,求与平面所成的角的大小.(3) 是否存在点使得二面角为直二面角?并说明理由.17、【来源】 2009年高考真题北京卷理科第17题13分某学生在上学路上要经过个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是.(1) 求这名学生在上学路上到第三个路口时首次遇到红灯的概率.(2) 求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.18、【来源】 2009年高考真题北京卷理科第18题13分2017~2018学年12月陕西西安灞桥区高二上学期月考理科第21题12分2009年北京高考设函数.(1) 求曲线在点处的切线方程;(2) 求函数的单调区间;(3) 若函数在区间内单调递增,求的取值范围.19、【来源】 2009年高考真题北京卷理科第19题14分已知双曲线的离心率为,右准线方程为.(1) 求双曲线的方程;(2) 设直线是圆上的动点处的切线,与双曲线交于不同的两点,证明的大小为定值.20、【来源】 2009年高考真题北京卷理科第20题13分2017~2018学年12月北京东城区北京市第一六六中学高三上学期月考理科第20题13分已知数集具有性质:对任意的,,与两数中至少有一个属于.(1) 分别判断数集与是否具有性质,并说明理由.(2) 证明:,且.(3) 证明:当时,,,,,成等比数列.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 D;5 、【答案】 A;6 、【答案】 C;7 、【答案】 B;8 、【答案】 A;9 、【答案】;10 、【答案】;11 、【答案】;12 、【答案】;;13 、【答案】;14 、【答案】;;15 、【答案】 (1) .;(2) .;16 、【答案】 (1) 证明见解析.;(2) .;(3) 存在,理由见解析.;17 、【答案】 (1) .;(2) 的分布列是:.;18 、【答案】 (1) .;(2) 若,函数单调递减区间为函数单调递增区间为.若,函数单调递增区间为;函数单调递减区间为.;(3) .;19 、【答案】 (1) 双曲线的方程为.;(2) 的大小为.;20 、【答案】 (1) 证明见解析.;(2) 证明见解析.;(3) 证明见解析.;。

2013年北京(理科:英语、语文、数学、综合)高考真题 共4套 及答案

2013年北京(理科:英语、语文、数学、综合)高考真题 共4套 及答案

A. had been made
B. was made
C.made
24.
the course very difficult, she decided to move to a lower level.
A. Find B. Finding C. To find D. Found
25. --- Do you think Mom and Dad late?
--- No, Swiss Air is usually on time.
A. were B. will be C. would be D. have been
26. I have an appointment Dr. Smith, but I need to change it.
6. When will the woman go to see the movie?
A. Friday. B. Saturday
C. Sunday
7. Where will the woman sit for the movie?
A. In the front. B. In the middle C. At the back
第二节(共 10 小题;每小题 1.5 分,共 15 分) 听下面 4 段对话或独白。每段对话或独白后有几道小题,从每题所给的 A、B、C 三个选项中 选出最佳选项。 听每段对话或独白前,你将有 5 秒钟的时间阅读每小题。听完后,每小题将 给出 5 秒钟的作答时间。每段对话或独 白你将听两遍。
听第 6 段材料,回答第 6 至 7 题。
B. Making an apology to the woman.
C. Inviting the woman to lunch.

2013年普通高等学校招生全国统一考试(北京卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(北京卷)数学试题 (理科) word解析版

2013北京高考理科数学试题及解析第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

第一部分一、选择题1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 答案 B解析 ∵-1,0∈B,1∉B ,∴A ∩B ={-1,0}.2.在复平面内,复数(2-i)2对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 (2-i)2=4-4i +i 2=3-4i ,∴对应点坐标(3,-4),位于第四象限.3.“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.4.执行如图所示的程序框图,输出的S 值为( ).A .1 B.23 C.1321 D.610987答案 C解析 执行一次循环后S =23,i =1,执行第二次循环后,S =1321,i =2≥2,退出循环体,输出S 的值为1321.5.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ).A .e x +1B .e x -1C .e -x +1D .e -x -1 答案 D解析 与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1.6.若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( ).A .y =±2xB .y =±2xC .y =±12xD .y =±22x答案 B解析 由e =3,知c =3a ,得b =2a .∴渐近线方程y =±bax ,y =±2x .7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ).A.43 B .2 C.83 D.1623 答案 C解析 由C :x 2=4y ,知焦点P (0,1).∴直线l 的方程为y =1.∴所求面积S =4-⎠⎛2-2x 24 d x=4-⎪⎪x 3122-2=83.8.设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ).A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 答案 C 解析作不等式组表示的可行域,如图,要使可行域存在,必有m<1-2m.若可行域存在点P(x 0,y 0)满足x 0-2y 0=2,则可行域内含有直线y =12x -1上的点,只需边界点(-m,1-2m)在y=12x -1上方,且(-m ,m)在直线y =12x -1的下方.解不等式组⎩⎪⎨⎪⎧m<1-2m ,1-2m>-12m -1,m<-12m -1.得m<-23.第二部分二、填空题9.在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin θ=2的距离等于________. 答案 1解析 极坐标系中点⎝⎛⎭⎫2,π6对应直角坐标系中坐标为(3,1),极坐标系直线ρsin θ=2对应直角坐标系中直线方程为y =2,∴点到直线y =2的距离为d =1.10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 1(1-q n )1-q=2n +1-2.11. 如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA =3,PD ∶DB =9∶16,则PD =________,AB =________.答案 954解析 由PD ∶DB =9∶16.设PD =9a ,DB =16a ,由切割线定理,PA 2=PD·PB ,即9=9a ×25a ,∴a =15,所以PD =95.在Rt △PAB 中,PB =25a =5,∴AB =PB 2-PA 2=52-32=4.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________. 答案 96解析 将5张参观券分成4堆,有2个联号有4种分法,每种分法再分给4人,各有A 44种分法,∴不同的分法种类共有4A 44=96.13. 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.14. 如图,在棱长为2的正方体ABCDA 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.答案 255解析 取B 1C 1中点E 1,连接E 1E ,D 1E 1,过P 作PH ⊥D 1E 1,连接C 1H .∴EE 1⊥平面A 1B 1C 1D 1,PH ∥EE 1,∴PH ⊥底面A 1B 1C 1D 1,∴P 到C 1C 的距离为C 1H .当点P 在线段D 1E 上运动时,最小值为C 1到线段D 1E 1的距离.在Rt △D 1C 1E 1中,边D 1E 1上的高h =2×15=255.三、解答题15.在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A∴cos A =63.(2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去. 故c 的值为5.16.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解 (1)在3月1日到3月13日这13天中,5日,8日这两天空气重度污染.∴此人到达当日空气重度污染的概率P =213.(2)依题意X =0,1,2P (X =0)=513,P (X =1)=413,P (X =2)=413.∴随机变量X 的分布列为∴E (X )=0×513+1×413+2×413=1213D (X )=⎝⎛⎭⎫0-12132×513+⎝⎛⎭⎫1-12132×413+⎝⎛⎭⎫2-12132×413=116169. (3)由图知,从3月5日开始连续三天空气质量指数方差最大.17. 如图,在三棱柱ABCA 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求证二面角A 1BC 1B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.(1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , ∴AA 1⊥平面ABC . (2)解在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎪⎨⎪⎧ A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=03y 1-4z 1=0∴取向量n 1=(0,4,3)由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0)∴cos θ=n 1·n 2|n 1|·|n 2|=165×5=1625.(3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→. ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ. ∴AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0则λ=925,因此BD BC 1=925.18.设l 为曲线C :y =ln xx在点(1,0)处的切线.(1)求l 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方.(1)解 由y =ln xx ,得y ′=1-ln x x 2,x >0.∴k =y ′|x =1=1-ln 112=1.∴直线l 的方程为y =x -1,即x -y -1=0.(2)证明 要证明,除切点(1,0)外,曲线C 在直线l 下方.只要证明,对∀x >0且x ≠1时,x -1>ln xx.设f (x )=x (x -1)-ln x ,x >0,则f ′(x )=2x -1-1x =(2x +1)(x -1)x因此f (x )在(0,1)上单调递减,在(1,+∞)单调递增. ∴f (x )>f (1)=0,即x (x -1)>ln x故当x >0且x ≠1时,x -1>ln xx成立.因此原命题成立.19.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0)∴线段OB 的垂直平分线x =1. 在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32.∴|AC |=|y 2-y 1|= 3.因此菱形的面积S =12|OB |·|AC |=12×2×3= 3.(2)假设四边形OABC 为菱形. 因点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m1+4k 2因为M 为AC 和OB 交点,∴k OB =-14k.又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.故OABC 不是菱形,这与假设矛盾. 综上,四边形OABC 不是菱形.20.已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N *,a n +4=a n ),写出d 1,d 2,d 3,d 4的值;(2)设d 是非负整数,证明:d n =-d (n =1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列;(3)证明:若a 1=2,d n =1(n =1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为 1.(1)解 d 1=1,d 2=1,d 3=3,d 4=2. (2)证明 充分性:若{a n }为公差为d 的等差数列,则a n =a 1+(n -1)d . 于是A n =a n =a 1+(n -1)d ,B n =a n +1=a 1+nd . 因此d n =A n -B n =-d (n =1,2,3,…).必要性:因为d n =-d ≤0,∴A n =B n +d n ≤B n ∵a n ≤A n ,a n +1≥B n∴a n ≤a n +1,于是A n =a n ,B n =a n +1. 因此a n +1-a n =B n -A n =-d n =d . 故数列{a n }是公差为d 的等差数列. (3)证明 1°首先{a n }中的项不能是0,否则d 1=a 1-0=2,矛盾. 2°{a n }中的项不能超过2,用反证法证明如下:若{a n }中有超过2的项,设a k 是第一个大于2的项. {a n }中一定存在项为1,否则与d 1=1矛盾; 当n ≥k 时,a n ≥2,否则与d k =1矛盾;因此存在最大的i 在2到k -1之间,使得a i =1,此时d i =A i -B i =2-B i ≤2-2=0,矛盾.综上{a n}中没有超过2的项.所以由1°,2°知,{a n}中的项只能为1或2.∵对任意n≥1,a n≤2=a,∴A n=2,故B n=A n-d n=2-1=1.因此对任意正整数n,存在m满足m>n,且a m=1,即数列{a n}中有无穷多项为1.。

2013年北京高考语文、数学(文史类、理工类)、文综、理综试题及答案解析汇总word版

2013年北京高考语文、数学(文史类、理工类)、文综、理综试题及答案解析汇总word版

2013年北京高考语文、数学(文史类、理工类)、文综、理综试题及答案解析汇总2013年普通高等学校招生全国统一考试语文 (北京卷)本试卷共8页,150分。

考试时长150分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回。

一、本大题共5小题。

每小题3分,共15分。

1.下列词语,字形与加点字的注音全部正确的一项是()A.养殖.业与日剧.增便笺.(jiān)独辟蹊.(xī)径B.醉醺.醺席不暇.暖泥淖.(nào)向隅.(yú)而泣C.滥.摊子自由竞.争卷帙.(dié)运筹帷幄.(wò)D.颤巍.巍信笔涂鸭.蠹.(dù)虫湮.(yīn)没无闻2.下列语句中,没有语病的一项是()A.近几年,食品药品在安全方面出现的问题被媒体曝光,不同职能部门各管一段的监管模式也因此受到了社会的质疑。

B.第九届中国国际园林博览会在北京永定河西岸盛大开幕,对于513公顷的园博园,为了方便游客,专门开设了电瓶车专线。

C.据世界黄金协会分析,2013年春节前后中国黄金需求高涨的原因,主要由于消费者对中国经济前景充满信心所致。

D.日前,交通管理部门就媒体对酒驾事故的连续报道做出了积极回应,表示要进一步加大对交通违法行为的查处。

3.依次填入句中横线处的词语,正确的一项是()①文学艺术创造来源于生活,作家塑造的人物形象,往往是以现实生活中的真实人物为创作而形成的。

②一辆运载盐酸的货车在高速公路上发生侧翻事故,交通、消防部门的人员迅速赶赴出事现场,并做出了紧急。

③保险丝是电路安全的报警器,当电路里的电流超过允许值时,保险丝就会,从而切断电源,保障线路和电器的安全。

A.原形处置融化 B.原型处治融化C.原型处置熔化 D.原形处治熔化4.给下面语句排序,衔接恰当的一项是()①因为较弱的电磁辐射,也会对人的神经系统与心血管系统产生一定的干扰。

②人的大脑和神经会产生微弱的电磁波,当周围电器发出比它强数百万倍的电磁波时,人的神经活动就会受到严重干扰。

2013年北京卷高考试题及答案理数

2013年北京卷高考试题及答案理数

掌门1对1教育 高考真题2013年普通高等学校招生全国统一考试数学(理)(北京卷)第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={-1,0,1},B={x|-1≤x <1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点”的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.执行如图所示的程序框图,输出的S 值为A.1B.23C.1321D.6109875.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex 关于y 轴对称,则f(x)=A.1e x +B. 1e x -C. 1e x -+D. 1e x --6.若双曲线22221x y a b -=3A.y=±2xB.y=2x ±C.12y x =±D.22y x =±7.直线l 过抛物线C:x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83 D.1628.设关于x,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P(x 0,y 0)满足x 0-2y 0=2.求得m 的取值范围是 A.B. 1,3⎛⎫-∞ ⎪⎝⎭C. 2,3⎛⎫-∞- ⎪⎝⎭ D. 5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分) 二、填空题共6题,每小题5分,共30分.9.在极坐标系中,点(2,6π)到直线ρsinθ=2的距离等于 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = .11.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA=3,PD:DB=9:16,则PD= ,AB= .12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少一张,如果分给同一人的两张参观券连号,那么不同的分法种数是.13.向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λμ= .14.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E 上,点P到直线CC1的距离的最小值为.三、解答题共6小题,共80分。

2009-2013年北京高考真题--导数大题汇编

2009-2013年北京高考真题--导数大题汇编

_________高考题库,荣誉出品__________●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●2009-2013年北京高考真题--导数大题汇编5年高考真题分类汇编-教师卷题号一总分得分△注意事项:1.本系列试题包含2009至2013年北京市高考真题,并经过精心校对。

2.本系列文档包含全部试题分类汇编,命名规律为:2009-2013年北京高考真题--******试题汇编。

3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。

i.、解答题(本大题共5小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。

(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。

【答案解析】解:(1)'()2cos (2cos )f x x x x x x 因为曲线()y f x 在点(,())a f a 处的切线为y b 所以'()0()f a f a b ,即22cos 0sin cos a a a a a a a b ,解得01a b (2)因为2cos 0x 所以当0x 时'()0f x ,()f x 单调递增当0x 时'()0f x ,()f x 单调递减所以当0x 时,()f x 取得最小值(0)1f ,所以b 的取值范围是(1,)2.(2012年北京高考真题数学(文))。

2009至2018年北京高考真题分类汇编之集合

2009至2018年北京高考真题分类汇编之集合

2009至2018年北京高考真题分类汇编之集合精心校对版△注意事项:1.本系列试题包含2009年-2018年北京高考真题的分类汇编。

2.本系列文档有相关的试题分类汇编,具体见封面。

3.本系列文档为北京双高教育精心校对版本4.本系列试题涵盖北京历年(2011年-2020年)高考所有学科一 、选择题(本大题共10小题,每小题0分,共0分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2013年北京高考真题数学(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.(2012年北京高考真题数学(文))已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则A B =3.(2011年北京高考真题数学(文))已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞) 4.(2009年北京高考真题数学(文))设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<5.(2010年北京高考真题数学(文))集合,则=(A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3}2{03},{9}P x Z x M x R x =∈≤<=∈≤PM(A )(,1)-∞- (B )2(1,)3--(C )2(,3)3-(D )(3,)+∞姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●6.(2014年北京高考真题数学(文))若集合{}0,1,2,4A =,{}1,2,3B =,则AB =( )(A ){}0,1,2,3,4 (B ){}0,4 (C ){}1,2 (D ){}37.(2015年北京高考真题数学(文))若集合A={x|﹣5<x <2},B={x|﹣3<x <3},则A∩B=( )A . {x|﹣3<x <2}B . {x|﹣5<x <2}C . {x|﹣3<x <3}D . {x|﹣5<x <3}8.(2016年北京高考真题数学(文))已知集合{|24},{|3>5}A x x B x x x =<<=<或,则AB =(A ){|2<<5}x x (B ){|<45}x x x >或(C ){|2<<3}x x (D ){|<25}x x x >或 9.(2017年北京高考真题数学(文))已知U =R ,集合{|22}A x x x =<->或,则(A )(2,2)- (B )(,2)(2,)-∞-+∞(C )[2,2]- (D )(,2][2,)-∞-+∞ 10.(2018年北京高考真题数学(文))已知集合A ={x||x |<2},B ={−2,0,1,2},则AB =(A ){0,1}(B ){−1,0,1} (C ){−2,0,1,2}(D ){−1,0,1,2}二 、填空题(本大题共2小题,每小题0分,共0分)11.(2009年北京高考真题数学(文))设A 是整数集的一个非空子集,对于k A ∈,如果1k A-∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.12.(2015年北京高考真题数学(文))如图,△ABC 及其内部的点组成的集合记为D ,P (x ,y )为D 中任意一点,则z=2x+3y 的最大值为 .2009至2018年北京高考真题分类汇编之集合答案解析一、选择题1.B2.D3.D4.A5.B6.C7.A8.C9.C10.A二、填空题11.612.7。

2015高考物理2009-2013高考真题考点汇编:第二章 相互作用(3个考点,含解析)

2015高考物理2009-2013高考真题考点汇编:第二章 相互作用(3个考点,含解析)

第二章 相互作用考点一 力的概念及常见的三种力1.(2011·江苏,3分)如图所示,石拱桥的正中央有一质量为 m的对称楔形石块,侧面与竖直方向的夹角为 α,重力加速度为 g .若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为( )A.mg 2sin αB.mg 2cos αC.12mg tan αD.12mg cot α 解析:以楔形石块为研究对象,它受到竖直向下的重力和垂直侧面斜向上的两个支持力,利用正交分解法可解得:2F sin α=mg ,则F =mg 2sin α,A 正确. 答案:A2.(2011·江苏,3分)如图所示,置于水平地面的三脚架上固定着一质量为m 的照相机.三脚架的三根轻质支架等长,与竖直方向均成30°角,则每根支架中承受的压力大小为( )A.13mg B .23mg C.36mg D .239mg 解析:本题考查力的平衡,意在考查考生受力分析的能力.题中每根支架对照相机的作用力F 沿每根支架向上,这三个力的合力等于照相机的重力,所以有3F cos30°=mg ,得F =mg 3cos 30°=239mg ,故选项D 正确. 答案:D考点二 力的合成与分解3.(2012·浙江理综,6分)如图所示,与水平面夹角为30°的固定斜面上有一质量m =1.0 kg 的物体。

细绳的一端与物体相连。

另一端经摩擦不计的定滑轮与固定的弹簧秤相连。

物体静止在斜面上,弹簧秤的示数为4.9 N 。

关于物体受力的判断(取g =9.8 m/s 2)。

下列说法正确的是( )A .斜面对物体的摩擦力大小为零B .斜面对物体的摩擦力大小为4.9 N ,方向沿斜面向上C .斜面对物体的支持力大小为4.9 3 N ,方向竖直向上D .斜面对物体的支持力大小为4.9 N ,方向垂直斜面向上解析:因物体的重力沿斜面方向的分力mg sin 30°=1×9.8×0.5 N =4.9 N ,与弹簧秤的示数相等,故斜面对物体的摩擦力大小为0,则选项A 正确,选项B 错误;斜面对物体的支持力大小为mg cos 30°=1×9.8×32N=4.9 3 N,方向垂直斜面向上,则选项C、D错误。

2013北京高考数学试题及详解

2013北京高考数学试题及详解

2013北京高考理科数学试题第一部分(选择题共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}【答案】B【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合相关知识的总结讲解.2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限【答案】D【解析】【难度】容易【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点的” ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】. 【难度】容易【点评】本题考察简易逻辑关系,.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,例题中有完全相同类型题目的计算.在高考精品班数学(理)强化提高班中有对集合、简易逻辑相关知识的总结讲解.4.执行如图所示的程序框图,输出的S值为 ( )A.1B.23 C.1321D.610987【答案】C【解析】【难度】中等【点评】本题算法初步。

在高二数学(理)强化提高班上学期,第一章《算法初步》有详细讲解,其中第02讲有完全相似的题目。

在高考精品班数学(理)强化提高班中有对程序框图题目相关的总结讲解。

5.函数f(x)的图象向右平移一个单位长度,所得图象与y=e x关于y 轴对称,则f(x)= ( )A.1e x +B. 1e x -C. 1e x -+D. 1e x -- 【答案】D 【解析】【难度】中等【点评】本题考查分段函数值域求解。

2013北京高考真题及答案精校

2013北京高考真题及答案精校

本试卷共16页,共150分,考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分:听力理解(共三节:30 分)第一节(共5 小题;每小题1.5 分,共7.5 分)听下面5 段对话,每段对话有一道小题,从每题所给的A、B、C 三个选项中选出最佳选项,听完每段对话后,你将有10 秒钟的时间来回答有关小题和阅读下一小题。

每段对话你将听一遍。

例:What is the man going to rend?A.A newspaperB.A magazineC.A book答案是A1.What room does the man want?A.SimpleB.DoubleC.Twin2.What will the man buy?A.VegetableB.MeatC.Bread3.What does the man plan to do?A.Go fishingB.Go joggingC.Go camping4.How much is the change?A.$8B.$ 42C.$505.What’s the weather like this afternoon?第二节(共10 小题;每小题1.5 分,共15 分)听下面4 段对话或独白。

每段对话或独白后有几道小题,从每题所给的A、B、C 三个选项中选出最佳选项。

听每段对话或独白前,你将有5 秒钟的时间阅读每小题。

听完后,每小题将给出5 秒钟的作答时间。

每段对话或独白你将听两遍。

听第 6 段材料,回答第6 至7 题。

6.When will the woman go to see the movie?A.Friday.B.SaturdayC.Sunday7.Where will the woman sit for the movie?A.In the front.B.In the middleC.At the back听第7 段材料,回答第8 至9 题。

集合高考真题完整版完整版.doc

集合高考真题完整版完整版.doc

集合高考真题汇编(2017.1)已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R (2016.1)设集合{1,3,5,7}A = ,{|25}B x x =≤≤,则A B =I(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7}(2015.1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2(2014.1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则M B =I ( )(A ) )1,2(- (B ) )1,1(- (C ) )3,1( (D ) )3,2(-(2013.1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B =I ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} (2012.1)已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则( )(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A∩B=∅(2011.1)已知集合M={0,1,2,3,4},N={1,3,5},P=M N I ,则P 的子集共有( )(A )2个 (B )4个 (C )6个 (D )8个(2013.5)已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是:( )(A )p q ∧ (B )p q ⌝∧ (C )p q ∧⌝ (D )p q ⌝∧⌝ (2017.1)设集合{}{}123234A B ==,,, ,,, 则=A B U A. {}123,4,, B. {}123,, C. {}234,, D. {}134,,(2016.1)已知集合,则 (A ) (B ) (C ) (D ) (2015.1)已知集合A={x|﹣1<x <2},B={x|0<x <3},则A ∪B=( )A .(﹣1,3)B .(﹣1,0)C .(0,2)D .(2,3) {123}A =,,,2{|9}B x x =<A B =I {210123}--,,,,,{21012}--,,,,{123},,{12},(2014.1)设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =I ( )A.∅B. {}2C. {0}D. {2}-(2013.1)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1} (2014.3)函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,也不是q 的必要条件答案:ABDBABBBADABCC 高考一、考试中途应饮葡萄糖水大脑是记忆的场所,脑中有数亿个神经细胞在不停地进行着繁重的活动,大脑细胞活动需要大量能量。

2013年北京卷高考试题及答案文数

2013年北京卷高考试题及答案文数

掌门1对1教育 高考真题2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本卷和答题卡一并交回。

第一部分 (选择题 共40分)一、 选择题共8小题。

每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A ∩B= (A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} (2)设a,b,c ∈R,且a>b,则(A )ac>bc(B )<(C )a 2>b 2(D )a 3>b 3(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是(A )y=(B)y=e -x(C )y=-x 2+1 (D)y=lg ∣x ∣ (4)在复平面内,复数i (2-i )对应的点位于(A )第一象限 (B )第二象限 (C )第三象限(D )第四象限(5)在△ABC 中,a=3,b=5,sinA= ,则sinB=(A ) (B ) (C ) (D )1(6)执行如图所示的程序框图,输出的S 值为 (A )1(B )23(C )1321(D )610987(7)双曲线x 2-2y m =12 (A )m >12(B )m ≥1(C )m >1 (D )m >2(8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点, P 到各顶点的距离的不同取值有(A )3个 (B )4个 (C )5个 (D )6个第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分。

(9)若抛物线y 2=2p x 的焦点坐标为(1,0)则p=____;准线方程为__ ___.(10)某四棱锥的三视图如图所示,该四棱锥的体积 为__________.(11)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q=__________;前n 项s n =_____.(12)设D 为不等式组0,20,30x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D 上的点与点(l ,0)之间的距离的最小值为___________.(13)函数f (x )=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.(14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足 =λAB+μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________. 三、解答题共6小题,共80分。

2013年北京高考数学文部分试题及解析

2013年北京高考数学文部分试题及解析

2013年北京高考数学(文)部分试题及解析北京新东方中小学个性化学习部邹圣莉一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}【答案】B【解析】考察集合的交集运算,注意看清题目,B集合中元素的范围是左闭右开,故答案为A∩B={-1,,0}(2)设a,b,c∈R,且a>b,则( )(A)ac>bc (B)<(C)a2>b2(D)a3>b3【答案】D【解析】考察不等式的基本性质。

利用特值法和排除法结合可快速判断。

A:由于c的正负号不确定,若c为零或负数,不成立,则错误;B:若a=0,无意义,错误;C:a=-1,b=1就不满足,错误;答案只能为D。

另外从函数的单调性的角度亦可快速判断,A容易排除,BCD四个选项分别代表了反比例函数,二次函数,三次幂函数,只有三次幂函数定义域为R且在R上单调递增。

(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是(A)y= (B)y=e-x (C)y=-x2+1 (D)y=lg∣x∣【答案】C【解析】考察函数的性质。

根据偶函数,可以排除A,B,由于y=lg∣x∣,当x>0时单调递增,排除D。

(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】A【解析】i(2-i)=2i- i2 = 2i+1,对应点(1,2),在第一象限。

(5)在△ABC中,a=3,b=5,sinA= ,则sinB(A)(B)(C ) (D )1【答案】B【解析】考察解三角形中的正弦定理,2sin sin sin a b c R A B C ===,355sin 1sin 93B B =⇒=(6)执行如图所示的程序框图,输出的S 值为(A )1 (B )23(C )1321(D )610987【答案】C【解析】S=1, i=0⇒S=23i=1⇒S=1321i=2,满足i ≥2,则输出此时的S(7)双曲线x ²-2y m=1的离心率大于2的充分必要条件是 (A )m >(B )m ≥1(C )m>1(D )m >2【答案】C【解析】222211,,1,2,11ma b m c m e m +===+=>>则(8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有(A )3个 (B )4个 (C )5个 (D )6个 【答案】B【解析】设正方体边长为3,则BP 2=1+2=3, D 1P 2=4+8=12, DP 2=1+8=9,B 1P 2=2+4=6, AP 2=CP 2=1+5=6, A 1P 2=C 1P 2=5+4=9, 故共有4个不同的取值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009-2013年北京高考真题--集合试题汇编 5年高考真题分类汇编-教师卷
△注意事项: 1.本系列试题包含2009至2013年北京市高考真题,并经过精心校对。

2.本系列文档包含全部试题分类汇编,命名规律为: 2009-2013年北京高考真题--******试题汇编。

3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。

一、、选择题(本大题共5小题,每小题0分,共0分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.(2013年北京高考真题数学(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B = ( ) A .{}0 B .{}1,0- C .{}0,1 D .{}1,0,1- 【答案解析】B 2.(2012年北京高考真题数学(文))已知集合{320}A x x =∈+>R ,{(1)(3)0}B x x x =∈+->R ,则A B =I 【答案解析】D 3.(2011年北京高考真题数学(文))已知全集U=R,集合P={x ︱x 2≤1},那么 A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 【答案解析】D 4.(2010年北京高考真题数学(文))集合,则= (A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 【答案解析】B
2{03},{9}P x Z x M x R x =∈≤<=∈≤P M I (A )(,1)-∞- (B )2(1,)3-- (C )2(,3)3- (D )(3,)+∞ 姓名:_______
___班级:__________考号:__________ ●-
--------------
-------
---密-
----
---------封-
----
-------
--线-
---
--
-
---
--
-
-内
-
-
--
-
-
--
---
--
-
请---
--
-
-
-
-
--
-
--不
-
---
--
-
--
-
--
-
-
要-
-
-
-----
------答-
-------
------题-
---
-----
----------
------●
5.(2009年北京高考真题数学(文))设集合21{|2},{1}2
A x x
B x x =-
<<=≤,则A B = ( ) A .{12}x x -≤< B .1{|1}2x x -
<≤ C .{|2}x x < D .{|12}x x ≤<
【答案解析】A
二、、填空题(本大题共1小题,每小题0分,共0分)
6.(2009年北京高考真题数学(文))设A 是整数集的一个非空子集,对于k A ∈,如果1k A
-∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有个.
【答案解析】6。

相关文档
最新文档