2020-2021中考数学相似(大题培优 易错 难题)附详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021中考数学相似(大题培优易错难题)附详细答案
一、相似
1.如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=________,PD=________.
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
【答案】(1)8-2t;
(2)解:不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴,即,
∴AD= ,
∴BD=AB-AD=10- ,
∵BQ∥DP,
∴当BQ=DP时,四边形PDBQ是平行四边形,
即8-2t= ,解得:t= .
当t= 时,PD= ,BD=10- ,
∴DP≠BD,
∴▱PDBQ不能为菱形.
设点Q的速度为每秒v个单位长度,
则BQ=8-vt,PD= ,BD=10- ,
要使四边形PDBQ为菱形,则PD=BD=BQ,
当PD=BD时,即 =10- ,解得:t=
当PD=BQ,t= 时,即,解得:v=
当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.
(3)解:如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.
依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).
设直线M1M2的解析式为y=kx+b,
∴,
解得

∴直线M1M2的解析式为y=-2x+6.
∵点Q(0,2t),P(6-t,0)
∴在运动过程中,线段PQ中点M3的坐标(,t).
把x= 代入y=-2x+6得y=-2× +6=t,
∴点M3在直线M1M2上.
过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.
∴M1M2=2
∴线段PQ中点M所经过的路径长为2 单位长度.
【解析】【解答】(1)根据题意得:CQ=2t,PA=t,
∴QB=8-2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA= ,
∴PD= .
【分析】CQ=2t,PA=t,可得QB=8﹣2t,根据tanA=,可以表示PD;易得△APD∽△ACB,即可求得AD与BD的长,由BQ∥DP,可得当BQ=DP时,四边形PDBQ是平行四边形;求得此时DP与BD的长,由DP≠BD,可判定▱PDBQ不能为菱形;然后设点Q 的速度为每秒v个单位长度,由要使四边形PDBQ为菱形,则PD=BD PD=BQ,列方程即可求得答案.以C为原点,以AC所在的直线为x轴,建立平面直角坐标系,求出直线M1M2解析式,证明M3在直线M1M2上,利用勾股定理求出M1M2.
2.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P
运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.
(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.
【答案】(1)解:由直线:知:、;
∵,
∴,即.
设抛物线的解析式为:,代入,得:
,解得
∴抛物线的解析式:
(2)解:在中,,,则;
∵,
∴;
而;
∴,
∴当时,s有最小值,且最小值为1
(3)解:在中,,,则;
在中,,,则;
∴;
以P、B、D为顶点的三角形与相似,已知,则有两种情况:
,解得;
,解得;
综上,当或时,以P、B、D为顶点的三角形与相似
【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;
(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系
式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;
(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与
△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。

3.书籍开本有数学开本指书刊幅面的规格大小.如图①,将一张矩形印刷用纸对折后可
以得到2开纸,再对折得到4开纸,以此类推可以得到8开纸、16开纸……
若这张矩形印刷用纸的短边长为a.
(1)如图②,若将这张矩形印刷用纸ABCD(AB BC)进行折叠,使得BC与AB重合,点C落在点F处,得到折痕BE;展开后,再次折叠该纸,使点A落在E处,此时折痕恰好经
过点B,得到折痕BG,求的值.
(2)如图③,2开纸BCIH和4开纸AMNH的对角线分别是HC、HM.说明HC⊥HM.(3)将图①中的2开纸、4开纸、8开纸和16开纸按如图④所示的方式摆放,依次连接点A、B、M、I,则四边形ABMI的面积是________.(用含a的代数式表示,直接写出结果)
【答案】(1)解:∵四边形ABCD是矩形,
∴∠ABC ∠C 90°.
∵第一次折叠使点C落在AB上的F处,并使折痕经过点B,
∴∠CBE ∠FBE 45°,
∴∠CBE ∠CEB 45°,
∴BC CE a,BE .
∵第二次折叠纸片,使点A落在E处,得到折痕BG,
∴AB BE ,

(2)解:根据题意和(1)中的结论,有AH BH ,.
∴.
∵四边形ABCD是矩形,
∴∠A ∠B 90°,
∴△MAH∽△HBC,
∴∠AHM ∠BCH.
∵∠BCH ∠BHC 90°,
∴∠AHM ∠BHC 90°,
∴∠MHC 90°,
∴HC⊥HM.
(3)
【解析】【解答】解:(3)如图④,
根据题意知(1)中的结论,有BC=AD= a,AF=IG= a,NI=MP= a,OP= a,
又∵∠C=∠ADE=90°, ∠BEC=∠AED,
∴∆BCE≌∆ADE,
∴S ∆BCE=S ∆ADE,
同理可得,S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,
∴四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC
= .
【分析】(1)利用矩形的性质及第一次折叠使点C落在AB上的F处,可得出∠CBE=∠FBE=∠CEB=45°,可得出CE=BC,利用勾股定理可用含a的代数式求出BE的长,再根据第二次折叠纸片,使点A落在E处,得到折痕BG,可用含a的代数式表示出AB的长,然后求出AB与BC的比值。

(2)利用(1)的结论,可用含a的代数式表示出AH、BH、AM的长,就可求出
,利用矩形的性质可得出∠A = ∠B,再根据相似三角形的性质,证明△MAH∽△HBC,利用相似三角形的性质,去证明∠AHM + ∠BHC = 90°,然后利用垂直的定义可解答。

(3)利用已知条件证明∆BCE≌∆ADE,可证得S ∆BCE=S ∆ADE, S ∆AFH=S ∆IGH, S ∆INQ=S ∆MPQ,再根据四边形ABMI的面积=S矩形ADOF+S矩形IGON+S梯形BMPC,可求出答案。

4.已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.
(1)求抛物线的表达式;
(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;
(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.
【答案】(1)解:∵抛物线与x轴交于点A(1,0),B(5,0),∴ ,
解得
∴抛物线的解析式为
(2)解:∵ A(1,0),B(5,0),
∴ OA=1,AB=4.
∵ AC=AB且点C在点A的左侧,
∴ AC=4 .
∴ CB=CA+AB=8.
∵线段CP是线段CA、CB的比例中项,
∴ .
∴ CP= .
又∵∠PCB是公共角,
∴△CPA∽△CBP .
∴∠CPA= ∠CBP.
过P作PH⊥x轴于H.
∵ OC=OD=3,∠DOC=90°,
∴∠DCO=45°.∴∠PCH=45°
∴ PH=CH=CP =4,
∴ H(-7,0),BH=12,
∴ P(-7,-4),
∴,
tan∠CPA= .
(3)解:∵抛物线的顶点是M(3,-4),
又∵ P(-7,-4),
∴ PM∥x轴 .
当点E在M左侧,则∠BAM=∠AME.
∵∠AEM=∠AMB,
∴△AEM∽△BMA.
∴ ,
∴ .
∴ ME=5,∴ E(-2,-4).
过点A作AN⊥PM于点N,则N(1,-4).
当点E在M右侧时,记为点,
∵∠A N=∠AEN,
∴点与E 关于直线AN对称,则(4,-4).
综上所述,E的坐标为(-2,-4)或(4,-4).
【解析】【分析】(1)用待定系数法即可求解。

即;由题意把A(1,0),B(5,0),代入解析式可得关于a、b的方程组,a + b + 5 = 0 ,25 a + 5 b + 5 = 0 ,解得a=1、b=-6,所以抛物线的解析式为 y =− 6 x + 5;
(2)过P作PH⊥x轴于H.由题意可得OA=1,AB=4.而AC=AB且点C在点A的左侧,所以
AC=4 ,则CB=CA+AB=8,已知线段CP是线段CA、CB的比例中项,所以,解得CP=
4,因为∠PCB是公共角,所以根据相似三角形的判定可得△CPA∽△CBP ,所以∠CPA= ∠CBP;因为OC=OD=3,∠DOC=90°,∠DCO=45°.所以∠PCH=45°,在直角三角形PCH中,PH=CH=CP sin 45 ∘=4,所以H(-7,0),BH=12,则P(-7,-4),在直角三角形PBH
中,tan ∠ CBP ==tan∠CPA;
(3)将(1)中的解析式配成顶点式得y=-4,所以抛物线的顶点是M(3,-4),而P点的纵坐标也为-4,所以PM∥x轴.分两种情况讨论:当点E在M左侧,则∠BAM=∠AME,而∠AEM=∠AMB,根据相似三角形的判定可得△AEM∽△BMA,所以可
得比例式,即,解得ME=5,所以E(-2,-4);当点E在M右侧时,记为点E ′ ,过点A作AN⊥PM于点N,则N(1,-4),因为∠A E ′ N=∠AEN,所以根据轴对称的意义可得点E ′ 与E 关于直线AN对称,则(4,-4).
5.在平面直角坐标系中,抛物线与轴的两个交点分别为A (-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点C的坐标;
(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;
(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.
【答案】(1)解:设抛物线的解析式为,
∵抛物线过点A(-3,0),B(1,0),D(0,3),
∴,解得,a=-1,b=-2,c=3,
∴抛物线解析式为,顶点C(-1,4);
(2)解:如图1,∵A(-3,0),D(0,3),
∴直线AD的解析式为y=x+3,
设直线AD与CH交点为F,则点F的坐标为(-1,2)
∴CF=FH,
分别过点C、H作AD的平行线,与抛物线交于点E,
由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,
∴直线EC的解析式为y=x+5,
直线EH的解析式为y=x+1,
分别与抛物线解析式联立,得,,
解得点E坐标为(-2,3),,;(3)解:①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,
∴,
分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,
由△CQM∽△QPN,
得 =2,
∵∠MCQ=45°,
设CM=m,则MQ=m,PN=QN=2m,MN=3m,
∴P点坐标为(-m-1,4-3m),
将点P坐标代入抛物线解析式,得,
解得m=3,或m=0(与点C重合,舍去)
∴P点坐标为(-4,-5);
②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,
∴,
延长CD交x轴于M,∴M(3,0)
过点M作CM垂线,交CP延长线于点F,作FN x轴于点N,
∴,
∵∠MCH=45°,CH=MH=4
∴MN=FN=2,
∴F点坐标为(5,2),
∴直线CF的解析式为y= ,
联立抛物线解析式,得,解得点P坐标为( , ),
综上所得,符合条件的P点坐标为(-4,-5),( , ).
【解析】【分析】(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用△ADE与△ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.
6.
(1)【探索发现】如图1,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.
(2)【拓展应用】如图2,在中,,BC边上的高,矩形PQMN 的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求出矩形PQMN面积的最大值用含a、h的代数式表示;
(3)【灵活应用】如图3,有一块“缺角矩形”ABCDE,,,,,小明从中剪出了一个面积最大的矩形为所剪出矩形的内角,直接写出该矩形的面积.
【答案】(1)
(2)解:,
∽,
,可得,
设,由,
当时,最大值为 .
(3)解:如图,过DE上的点P作于点G,延长GP交AE延长线于点I,过点P 作于点H,
则四边形AHPI和四边形BGPH均为矩形,
设,则,
,,,,
,,
由∽知,
即,得,

则矩形BGPH的面积,
当时,矩形BGPH的面积取得最大值,最大值为567.
【解析】【解答】(1)解:、ED为中位线,
,,,,
又,
四边形FEDB是矩形,
则,
故答案为:;
【分析】(1)由中位线知EF= BC、ED= AB、由可得;(2)由△APN∽△ABC知,可得PN=a- ,设PQ=x,由S矩形PQMN=PQ•PN=
,据此可得;(3)结合图形过DE上的点P作PG⊥BC于点G,延长GP交AE延长线于点I,过点P作PH⊥AB,设PG=x,知PI=28-x,由△EIP∽△EKD知
,据此求得EI= ,PH= ,再根据矩形BGPH的面积S=
可得答案.
7.如图,已知抛物线过点A 和B ,过点A 作直线AC//x轴,交y轴与点C。

(1)求抛物线的解析式;
(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D,连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;
(3)抛物线上是否存在点Q,使得 ?若存在,求出点Q的坐标;若不存在,请说明理由。

【答案】(1)解:∵点A、B在抛物线上,
∴,
解得:
∴抛物线解析式为:y= x2 - x.
(2)当P在直线AD上方时,
设P坐标为(x,),则有AD=x-,
PD=,
当△OCA∽△ADP时,,
即,
整理得:3x2-9x+18=2x-6,即3x2-11x+24=0,
解得:x=,
即x=或x=(舍去),
此时P();
当△OCA∽△PDA时,,即,
整理得:,即x2-
解得:,即x=4或(舍去),
此时P(4,6);
当点P(0,0)时,也满足△OCA∽△PDA;
当P在直线AD下方时,同理可得,P的坐标为(),
综上,P的坐标为()或(4,6)或()或(0,0)
(3)解:∵A ,
∴AC= ,OC=3,
∴OA=2 ,
∴ = ·OC·AC= ·OA·h= ,
∴h= ,
又∵ = ,
∴△AOQ边OA上的高=3h= ,
过O作OM⊥OA,截取OM= ,过点M作MN∥OA交y轴于点N ,过M作HM⊥x轴,(如图),
∵AC= ,OA=2 ,
∴∠AOC==30°,
又∵MN∥OA,
∴∠MNO=∠AOC=30°,OM⊥MN,
∴ON=2OM=9,∠NOM=60°,
即N(0,9),
∴∠MOB=30°,
∴MH= OM= ,
∴OH= = ,
∴M(,),
设直线MN解析式为:y=kx+b,
∴,

∴直线MN解析式为:y=- x+9,
∴,
∴x - x-18=0,
(x-3 )(x+2 )=0,
∴x =3 ,x =-2 ,
∴或,
∴Q点坐标(3 ,0)或(-2 ,15),
∴抛物线上是否存在点Q,使得 .
【解析】【分析】(1)将A、B两点坐标代入抛物线解析式得到一个二元一次方程方程组,解之即可得抛物线解析式.
(2)设P坐标为(x,),表示出AD与PD,由相似分两种情况得比例求出x 的值,即可确定出P坐标。

(3)根据点A坐标得AC= ,OC=3,由勾股定理得OA=2 ,根据三角形面积公式可得△AOC边OA上的高h= ,又 = 得△AOQ边OA上的高为;过O作
OM⊥OA,截取OM= ,过点M作MN∥OA交y轴于点N ,过M作HM⊥x轴,(如图),根据直角三角形中,30度所对的直角边等于斜边的一半,从而求出N(0,9),在
Rt△MOH中,根据直角三角形性质和勾股定理得M(,);用待定系数法求出直线MN解析式,再讲直线MN和抛物线解析式联立即可得Q点坐标.
8.如图,在矩形ABCD中,AB=6,BC=4,动点Q在边AB上,连接CQ,将△BQC沿CQ所在的直线对折得到△CQN,延长QN交直线CD于点M.
(1)求证:MC=MQ
(2)当BQ=1时,求DM的长;
(3)过点D作DE⊥CQ,垂足为点E,直线QN与直线DE交于点F,且,求BQ的长.
【答案】(1)解:证明:∵四边形ABCD是矩形,
∴DC AB
即∠MCQ=∠CQB,
∵△BQC沿CQ所在的直线对折得到△CQN
∴∠CQN=∠CQB,
即∠MCQ=∠MQC,
∴MC=MQ.
(2)解:∵四边形ABCD是矩形,△BQC沿CQ所在的直线对折得到△CQN,
∴∠CNM=∠B=90°,
设DM=x,则MQ=MC=6+x,MN=5+x,
在Rt△CNM中,MB2=BN2+MN2,
即(x+6)2=42+(x+5)2,
解得:x= ,
∴DM= ,
∴DM的长2.5.
(3)解:解:分两种情况:
①当点M在CD延长线上时,如图所示:
由(1)得∠MCQ=∠MQC,
∵DE⊥CQ,
∴∠CDE=∠F,
又∵∠CDE=∠FDM,
∴∠FDM=∠F,
∴MD=MF.
过M点作MH⊥DF于H,则DF=2DH,
又,
∴,
∵DE⊥CQ MH⊥DF,
∴∠MHD=∠DEC=90°,
∴△MHD∽△DEC
∴,
∴DM=1,MC=MQ=7,
∴MN=
∴BQ=NQ=
②当点M在CD边上时,如图所示,类似可求得BQ=2.
综上所述,BQ的长为或2.
【解析】【分析】(1)由矩形的性质得出∠B=90°,AB=CD=6,CD∥AB,得出∠MCQ=∠CQB,由折叠的性质得出△CBQ≌△CNQ,求出BC=NC=4,NQ=BQ=1,∠CNQ=∠B=90°,∠CQN=∠CQB,得出∠CNM=90°,∠MCQ=∠CQN,证出MC=MQ.(2)设DM=x,则MQ=MC=6+x,MN=5+x,在Rt△CNM中,由勾股定理得出方程,解方程即
可.(3)分两种情况:①当点M在CD延长线上时,由(1)得:∠MCQ=∠CQM,证出∠FDM=∠F,得出MD=MF,过M作MH⊥DF于H,则DF=2DH,证明△MHD∽△CED,得
出,求出MD= CD=1,MC=MQ=7,由勾股定理得出MN即可解决问题.
②当点M在CD边上时,同①得出BQ=2即可.
9.已知:如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,点P从点B出发,沿BC 向点C匀速运动,速度为lcm/s;同时,点Q从点A出发,沿AB向点B匀速运动,速度为2cm/s;当一个点停止运动时,另一个点也停止运动连接PQ,设运动时间为t(s)(0<t <2.5),解答下列问题:
(1)①BQ=________,BP=________;(用含t的代数式表示)
②设△PBQ的面积为y(cm2),试确定y与t的函数关系式________;
(2)在运动过程中,是否存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一?如果存在,求出t的值;不存在,请说明理由;
(3)在运动过程中,是否存在某一时刻t,使△BPQ为等腰三角形?如果存在,求出t的值;不存在,请说明理由.
【答案】(1)5﹣2t;t;y=﹣ t2+ t
(2)解:不存在,
理由:∵AC=3,BC=4,
∴S△ABC= ×3×4=6,
由(1)知,S△PBQ=﹣ t2+ t,
∵△PBQ的面积为△ABC面积的二分之一,
∴﹣ t2+ t=3,
∴2t2﹣5t+10=0,
∵△=25﹣4×2×10<0,
∴此方程无解,
即:不存在某一时刻t,使△PBQ的面积为△ABC面积的二分之一
(3)解:由(1)知,AQ=2t,BQ=5﹣2t,BP=t,
∵△BPQ是等腰三角形,
∴①当BP=BQ时,
∴t=5﹣2t,
∴t=,
②当BP=PQ时,如图2过点P作PE⊥AB于E,
∴BE= BQ=(5﹣2t),
∵∠BEP=90°=∠C,∠B=∠B,
∴△BEP∽△BCA,
∴,
∴,
∴t=
③当BQ=PQ时,如图3,过点Q作QF⊥BC于F,
∴BF= BP= t,
∵∠BFQ=90°=∠C,∠B=∠B,
∴△BFQ∽△BCA,
∴,
∴,
∴t=,
即:t为秒或秒或秒时,△BPQ为等腰三角形.
【解析】【解答】(1)①在Rt△ABC中,AC=3cm,BC=4cm,
根据勾股定理得,AB=5cm,
由运动知,BP=t,AQ=2t,
∴BQ=AB﹣AQ=5﹣2t,
故答案为:5﹣2t,t;
②如图1,过点Q作QD⊥BC于D,
∴∠BDQ=∠C=90°,
∵∠B=∠B,
∴△BDQ∽△BCA,
∴,
∴,
∴DQ=(5﹣2t)
∴y=S△PBQ=BP•DQ= ×t× (5﹣2t)=﹣ t2+ t;
【分析】(1)①先利用勾股定理求出AB,即可得出结论;②过点Q作QD⊥BC于D,进而得出△BDQ∽△BCA,用t表示出DQ,最后用三角形的面积公式即可得出结论;(2)先求出△ABC的面积,再利用△PBQ的面积为△ABC面积的二分之一,建立关于t的方程,进而判断出此方程无解,即可得出结论;(3)分三种情况,利用等腰三角形的性质和相似三角形的性质,得出比例式建立关于t的方程求解,即可得出结论.
10.如图①所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.
(1)【问题引入】
若点O是AC的中点,,求的值;
温馨提示:过点A作MN的平行线交BN的延长线于点G.
(2)【探索研究】
若点O是AC上任意一点(不与A,C重合),求证:;
(3)【拓展应用】
如图②所示,点P是△ABC内任意一点,射线AP,BP,CP分别交BC,AC,AB于点D,E,F.若,,求的值.
【答案】(1)解:过点A作MN的平行线交BN的延长线于点G.∵ON∥AG,∴ .∵O是AC的中点,∴AO=CO,∴NG=CN.∵MN∥AG,∴,∴
.
(2)解:证明:由(1)可知,,∴ =1
(3)解:在△ABD中,点P是AD上一点,过点P的直线与AB,BD的延长线分别相交于
点F,C.由(2)可得 .在△ACD中,过点P的直线与AC,CD的延长线分别相交于点E,B.由(2)可得
【解析】【分析】(1)作AG∥MN交BN延长线于点G,证△ABG∽△MBN得 ,
即 ,同理可证△ACG∽△OCN得 ,结合AO=CO,得NG=CN,从而由进行求解,
(2)由 , 可知: ,
(3)由(2)可知,在△ABD中有 , 在△ACD中有 ,
从而 ,因此可得: . 11.在平面直角坐标系中,直线与x轴交于点B,与y轴交于点C,二次函数
的图象经过点B,C两点,且与x轴的负半轴交于点A,动点D在直线BC 下方的二次函数图象上.
(1)求二次函数的表达式;
(2)如图1,连接DC,DB,设△BCD的面积为S,求S的最大值;
(3)如图2,过点D作DM⊥BC于点M,是否存在点D,使得△CDM中的某个角恰好等于∠ABC的2倍?若存在,直接写出点D的横坐标;若不存在,请说明理由.
【答案】(1)解:直线,当时,;当时,,∴, .
∵二次函数的图象经过,两点,
∴解得
∴二次函数的表达式为: .
(2)解:过点作轴于点,交于点,过点作于点,
依题意设,则 .
其中,
∴,






∵,∴抛物线开口向下.
又∵,
∴当时,有最大值,
(3)解:或
在轴上取点,使,则 .
过点作∥交延长线于点,过点作轴于点,
设点的坐标为,则,
.
在中,,解得 .∴ .
当时,
∴ .
∴ .
易证∽ .
∴ .
∴ , .
∴ .
∵,
∴直线的函数表达式为: .
由,解得:,(舍).
∴点的横坐标为2.
②当时,方法同①,可确定点的横坐标为
【解析】【分析】(1)先求得点B、C的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)过点作轴于点,交于点,过点
作于点,设,则 .用含有a的代数式表示出的长,再根据得到S与a的二次函数关系,利用二次函数的性质即可解答;(3)在x轴上取点K,使CK=BK,则∠OKC=2∠ABC,过点B作BQ∥MD交CD延
长线于点Q,过点Q作QH⊥x轴于点H,分∠DCM=∠QCB=2∠ABC和∠CDM=∠CQB=2∠ABC两种情况求点D的横坐标即可.
12.如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.
(1)求证:CM2=MN MA;
(2)若∠P=30°,PC=2,求CM的长.
【答案】(1)解:中,点是半圆的中点,


又,

,即;
(2)解:连接、,
是的切线,

又,

设的半径为,


解得:,
又是直径,


是等腰直角三角形,
在中,由勾股定理得,即,
则,
.
【解析】【分析】(1)由知,根∠CMA=∠NMC据证ΔAMC∽ΔCMN 即可得;(2)连接OA、DM,由直角三角形PAO中∠P=30°知
,据此求得OA=OC=2,再证三角形CMD是等腰直角三角形得CM 的长.。

相关文档
最新文档