大通区实验中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大通区实验中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.“互联网+”时代,倡导读书称为一种生活方式,调查机构为了解某小区老、中、青三个年龄阶
段的阅读情况,拟采用分层抽样的方法从该小区三个年龄阶段的人群中抽取一个容量为50的样本进行调查,已知该小区有老年人600人,中年人600人,青年人800人,则应从青年人抽取的人数为()A.10 B.20 C.30 D.40 2.如图,棱长为1的正方体ABCD﹣A1B1C1D1中,M为线段A1B上的动点,则下列结论正确的有()①三棱锥M﹣DCC1的体积为定值②DC1⊥D1M
③∠AMD1的最大值为90°④AM+MD1的最小值为2.
A.①②B.①②③ C.③④D.②③④
3.某几何体三视图如下图所示,则该几何体的体积是()
A.1+B.1+C.1+D.1+π
4.等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()
A.6 B.9 C.36 D.72
5.集合{}
1,2,3的真子集共有()
A.个B.个C.个D.个
6.设集合
3
|0
1
x
A x
x
-
⎧⎫
=<
⎨⎬
+
⎩⎭
,集合()
{}
2
|220
B x x a x a
=+++>,若A B
⊆,则的取值范围
()
A .1a ≥
B .12a ≤≤ C.a 2≥ D .12a ≤<
7. 如图给出的是计算
的值的一个流程图,其中判断框内应填入的条件是( )
A .i ≤21
B .i ≤11
C .i ≥21
D .i ≥11
8. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )
A .3
B .
C .
D .
9. 已知点A (0,1),B (3,2),C (2,0),若AD →=2DB →,则|CD →
|为( )
A .1 B.4
3
C.53
D .2 10.已知集合 M={x||x|≤2,x ∈R},N={﹣1,0,2,3},则M ∩N=( ) A .{﹣1,0,2} B .{﹣1,0,1,2} C .{﹣1,0,2,3}
D .{0,1,2,3}
11.二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( )
A .20
B .24
C .30
D .36
12.设S n 为等差数列{a n }的前n 项和,已知在S n 中有S 17<0,S 18>0,那么S n 中最小的是( ) A .S 10 B .S 9
C .S 8
D .S 7
二、填空题
13.在直角坐标系xOy中,已知点A(0,1)和点B(﹣3,4),若点C在∠AOB的平分线上且
||=2
,则=.
14.设R
m∈,实数x,y满足2360
3260
y m
x y
x y



-+≥

⎪--≤

,若18
2≤
+y
x,则实数m的取值范围是___________.
【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.
15.已知点E、F 分别在正方体的棱上,且, ,则面AEF与面ABC所成的二面角的正切值等于 .
16.命题“若a>0,b>0,则ab>0”的逆否命题是(填“真命题”或“假命题”.)
17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()
1
e
e
x
x
f x=-,其中e为自然对数的底数,则不等式()()
2
240
f x f x
-+-<的解集为________.
18.S n
=
++…
+=.
三、解答题
19
.2
()sin2
f x x x
=.
(1)求函数()
f x的单调递减区间;
(2)在ABC
∆中,角,,
A B C的对边分别为,,
a b c,若()1
2
A
f=,ABC

的面积为. 20.已知数列{a n}的前n项和为S n,且S n
=a n
﹣,数列{b n}中,b1=1,点P(b n,b n+1)在直线x﹣y+2=0上.
(1)求数列{a n},{b n}的通项a n和b n;
(2)设c n =a n •b n ,求数列{c n }的前n 项和T n .
21.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位
(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.
参考公式:2
2
()K ()()()()
n ad bc a b c d a c b d -=++++,()n a b c d =+++
【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力
22.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值;
(2)判断该函数的奇偶性;
(3)判断函数f(x)在(1,+∞)上的单调性,并证明.
23.如图,平面ABB1A1为圆柱OO1的轴截面,点C为底面圆周上异于A,B的任意一点.
(Ⅰ)求证:BC⊥平面A1AC;
(Ⅱ)若D为AC的中点,求证:A1D∥平面O1BC.
24.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;
(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.
大通区实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B 【解析】
试题分析:设从青年人抽取的人数为800,,2050600600800
x x x ∴=∴=++,故选B . 考点:分层抽样.
2. 【答案】A
【解析】解:①∵A 1B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1,又△DCC 1的面积
为定值,因此三棱锥M ﹣DCC 1的体积V=
=为定值,故①正确.
②∵A 1D 1⊥DC 1,A 1B ⊥DC 1,∴DC 1⊥面A 1BCD 1,D 1P ⊂面A 1BCD 1,∴DC 1⊥D 1P ,故②正确.
③当0<A 1P <
时,在△AD 1M 中,利用余弦定理可得∠APD 1为钝角,∴故③不正确;
④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP+PD 1的最小值,
在△D 1A 1A 中,∠D 1A 1A=135°,利用余弦定理解三角形得AD 1==
<2,
故④不正确. 因此只有①②正确. 故选:A .
3. 【答案】A
【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1; 正方体的边长为1,
∴几何体的体积V=V 正方体+=13+××π×12×1=1+

故选:A .
【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.
4.【答案】D
【解析】解:设等比数列{a n}的公比为q,
∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.
则a2a6=9×q6=72.
故选:D.
5.【答案】C
【解析】
考点:真子集的概念.
6.【答案】A
【解析】
考点:集合的包含关系的判断与应用.
【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 7.【答案】D
【解析】解:∵S=
并由流程图中S=S+
故循环的初值为1
终值为10、步长为1
故经过10次循环才能算出S=的值,
故i ≤10,应不满足条件,继续循环 ∴当i ≥11,应满足条件,退出循环 填入“i ≥11”. 故选D .
8. 【答案】B
【解析】解:依题设P 在抛物线准线的投影为P ′,抛物线的焦点为F ,
则F (,0),
依抛物线的定义知P 到该抛物线准线的距离为|PP ′|=|PF|, 则点P 到点M (0,2)的距离与P 到该抛物线准线的距离之和,
d=|PF|+|PM|≥|MF|=
=

即有当M ,P ,F 三点共线时,取得最小值,为.
故选:B . 【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思
想.
9. 【答案】
【解析】解析:选C.设D 点的坐标为D (x ,y ), ∵A (0,1),B (3,2),AD →=2DB →

∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),
∴⎩
⎪⎨⎪⎧x =6-2x ,y -1=4-2y 即x =2,y =53

∴CD →
=(2,53)-(2,0)=(0,53
),
∴|CD →
|=02+(53)2=53
,故选C.
10.【答案】A
【解析】解:由M 中不等式解得:﹣2≤x ≤2,即M=[﹣2,2], ∵N={﹣1,0,2,3}, ∴M ∩N={﹣1,0,2}, 故选:A .
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
11.【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=3,求得r=3,
故展开式中含x3项的系数为•(﹣1)3=﹣20,而所有系数和为0,
不含x3项的系数之和为20,
故选:A.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
12.【答案】C
【解析】解:∵S16<0,S17>0,
∴=8(a8+a9)<0,=17a9>0,
∴a8<0,a9>0,
∴公差d>0.
∴S n中最小的是S8.
故选:C.
【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题.
二、填空题
13.【答案】(﹣,).
【解析】解:∵,,
设OC与AB交于D(x,y)点
则:AD:BD=1:5
即D分有向线段AB所成的比为

解得:

又∵||=2
∴=(﹣,)
故答案为:(﹣,)
【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,
可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.
.
14.【答案】[3,6]
【解析】
15.【答案】
【解析】延长EF 交BC 的延长线于P ,则AP 为面AEF 与面ABC 的交线,因为,所以

面AEF 与面ABC 所成的二面角的平面角。

16.【答案】 真命题
【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,
则命题的逆否命题也为真命题,
故答案为:真命题.
【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.
17.【答案】()32-,
【解析】∵()1e ,e x x f x x R =-
∈,∴()()11x
x x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝
⎭,即函数()f x 为奇函数,又∵()0x x
f x e e
-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为
()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()
2240f x f x -+-<的解集为
()32-,
,故答案为()32-,. 18.【答案】
【解析】解:∵
=
=(

),
∴S n=++…+
=[(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)
=,
故答案为:.
【点评】本题主要考查利用裂项法进行数列求和,属于中档题.
三、解答题
19.【答案】(1)
5
,
36
k k
ππ
ππ
⎡⎤
++
⎢⎥
⎣⎦
(k∈Z);(2)
【解析】
试题分析:(1)根据3
222
262
k x k
πππ
ππ
+≤-≤+可求得函数()
f x的单调递减区间;(2)由1
2
A
f
⎛⎫
=

⎝⎭


3
A
π
=,再由三角形面积公式可得12
bc=,根据余弦定理及基本不等式可得的最小值. 1
试题解析:(1)111
()cos22sin(2)
22262
f x x x x
π
=-+=-+,
令3
222
262
k x k
πππ
ππ
+≤-≤+,解得
5
36
k x k
ππ
ππ
+≤≤+,k Z
∈,
∴()
f x的单调递减区间为5
[,]
36
k k
ππ
ππ
++(k Z
∈).
考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用.20.【答案】
【解析】解:(1)∵S n
=a n
﹣,
∴当n≥2时,a n=S n﹣S n﹣1
=a n

﹣,
即a n=3a n﹣1,.
∵a1=S1
=
﹣,∴a1=3.
∴数列{a n}是等比数列,∴a n=3n.
∵点P(b n,b n+1)在直线x﹣y+2=0上,
∴b n+1﹣b n=2,
即数列{b n}是等差数列,又b1=1,∴b n=2n﹣1.
(2)∵c n=a n•b n=(2n﹣1)•3n,
∵T n=1×3+3×32+5×33+…+(2n﹣3)3n﹣1+(2n﹣1)3n,
∴3T n=1×32+3×33+5×34+…+(2n﹣3)3n+(2n﹣1)3n+1,
两式相减得:﹣2T n=3+2×(32+33+34+…+3n)﹣(2n﹣1)3n+1,=﹣6﹣2(n﹣1)3n+1,
∴T n=3+(n﹣1)3n+1.
21.【答案】
【解析】(Ⅰ)根据题中的数据计算:
()2 2
4005017030150
6.25
80320200200
⨯⨯-⨯
K==
⨯⨯⨯
因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关
(Ⅱ)由已知得抽样比为81
=
8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3
a b c d e,选
取2人共有{},a b,{},a c,{},a d,{},a e,{},1a,{},2a,{},3a,{},b c,{},b d,{},b e,{},1b,{},2b,{},3b,{},c d,{},c e,{},1c,{},2c,{},3c,{},d e,{},1d,{},2d,{},3d,{},1e,{},2e,{},3e,{}
1,2,{}
1,3,{}
2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189
=
2814
P=.
22.【答案】
【解析】解:(1)∵f(x)=2x ﹣,且f(2)=,
∴4﹣=,
∴a=﹣1;(2分)
(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)
∵=,
∴函数为奇函数.…(6分)
(3)函数f(x)在(1,+∞)上是增函数,…(7分)
任取x1,x2∈(1,+∞),不妨设x1<x2,则
=
…(10分)
∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0
∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),
∴f(x)在(1,+∞)上是增函数…(12分)
【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.
23.【答案】
【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点
∴BC⊥AC …
又圆柱OO1中,AA1⊥底面圆O,
∴AA1⊥BC,即BC⊥AA1…
而AA1∩AC=A
∴BC⊥平面A1AC …
(Ⅱ)取BC中点E,连结DE、O1E,
∵D为AC的中点
∴△ABC中,DE∥AB,且DE=AB …
又圆柱OO1中,A1O1∥AB,且
∴DE∥A1O1,DE=A1O1
∴A1DEO1为平行四边形…
∴A1D∥EO1…
而A1D⊄平面O1BC,EO1⊂平面O1BC
∴A1D∥平面O1BC …
【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.
24.【答案】
【解析】解:(1)设等比数列{a n}的公比为q,∵数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),a1=2,
∴,,,
∴b1=1,=2q>0,=2q2,
又b3=3+b2.∴23=2q2,解得q=2.
∴a n=2n.
∴=a1•a2•a3…a n=2×22×…×2n=,
∴.
(2)c n===﹣
=,
∴数列{c n}的前n项和为S n=﹣
+…+
=﹣2
=﹣2+
=﹣﹣1.
【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.。

相关文档
最新文档