电源、地线、传输干扰及其对策
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源、地线、传输干扰及其对策
一、电源干扰及其对策
1.1 抑制电源干扰
微型计算机系统中的各个单元都需要使用直流电源,而直流电源一般是市电电网的交流电经过变压、整流、滤波、稳压后产生的,因此电网上的各种干扰便会引入系统。
除此之外,由于交流电源共用,各电子设备之间通过电源也会产生相互干扰,因此抑制电源干扰尤其重要。
电源干扰主要有以下几类:
1.1.1 电源线中的高频干扰
供电电力线相当于一个接受天线,能把雷电、电弧、广播电台等辐射的高频干扰信号通过电源变压器初级耦合到次级,形成对单片机系统的干扰。
1.1.2 感性负载产生的瞬变噪音
切断大容量感性负载时,能产生很大的电流和电压变化率,从而形成瞬变噪音干扰,成为电磁干扰的主要形式。
1.1.3 晶闸管通断时的干扰
晶闸管通断时的电流变化率很大,使得晶闸管在导通瞬间流过一个具有高次谐波的大电流,在电源阻抗上产生很大的压降,从而使电网电压出现缺口,这种畸变了的电压波形含有高次谐波,可以向空间辐射或通过传导耦合,干扰其它设备。
此外,还有电网电压波动或电压瞬时跌落产生干扰,等等。
1.2 电源干扰的抑制,通常可采用以下几种方法:
1.2.1 接地技术
实践证明,单片机系统设备的抗干扰与系统的接地方式有很大关系,接地技术往往是抑制噪音的重要手段。
良好的接地可以在很大程度上抑制系统内部噪音耦合,防止外部干扰的侵入,提高系统的抗干扰能力。
设备的金属外壳等要安全接地;屏蔽用的导体必须良好接地;
1.2.2 屏蔽线与双胶线传输
屏蔽线对静电干扰有强的抑制作用,而双胶线有抵消电磁感应干扰的作用。
开关信号检测线和模拟信号检测线可以使用屏蔽双胶线,来抵御静电和电磁感应干扰;特殊的干扰源也可以用屏蔽线连接,屏蔽了干扰源向外施加干扰。
1.2.3 隔离技术
信号的隔离目的之一是从电路上把干扰源和易干扰的部分隔离出来,使监控装置与现场仅保持信号联系,但不直接发生电的联系。
隔离的实质是把引进的干扰通道切断,从而达到隔离现场干扰的目的。
一般微型计算机控制系统既有弱电控制系统又有强电控制系统,通常实行弱电和强电隔离,是保证系统工作稳定、设备与操作人员安全的重要措施。
常用的隔离方式有光电隔离、变压器隔离、继电器隔离和布线隔离等。
1.2.4 模拟信号采样抗干扰技术
单片机应用系统中通常要对一个或多个模拟信号进行采样,并将其通过A/D 转换成数字信号进行处理。
为了提高测量精度和稳定性,不仅要保证传感器本身的转换精度、传感器供电电源的稳定、测量放大器的稳定、A/D转换基准电压的稳定,而且要防止外部电磁感应噪声的影响,如果处理不当,微弱的有用信号可能完全被无用的噪音信号淹没。
在实际工作中,可以采用具有差动输入的测量放大器,采用屏蔽双胶线传输测量信号,或将电压信号改变为电流信号,以及采用阻容滤波等技术。
在许多信号变化比较慢的采样系统中,如人体生物电(心电图、脑电图)采样、地震波记录等,影响最大的是50Hz的工频干扰。
因此对工频干扰信号的抑制是保证测量精度的重要措施之一。
抑制和消除工频干扰,常用的方法是在A/D转换电路之前加RC滤波器,或者采用采样时间是50Hz的工频周期整数倍的双积分式A/D转换器。
1.2.5 数字信号传输通道的抗干扰技术
数字输出信号可作为系统被控设备的驱动信号(如继电器等),数字输入信号可作为设备的响应回答和指令信号(如行程开关、启动按钮等)。
数字信号接口部分是外界干扰进入单片机系统的主要通道之一。
在工程设计中,对数字信号的输入/输出过程采取的抗干扰措施有:传输线的屏蔽技术,如采用屏蔽线、双胶线等;采用信号隔离措施;合理接地,由于数字信号在电平转换过程中形成公共阻抗干扰,选择合适的接地点可以有效抑制地线噪声。
二、地线干扰及其对策
2.1 地线干扰
2.1.1 地环路干扰
由于地线阻抗的存在,当电流流过地线时,就会在地线上产生电压。
当电流较大时,这个电压可以很大。
例如附近有大功率用电器启动时,会在地线在中流过很强的电流。
这个电流会在两个设备的连接电缆上产生电流。
由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成影响。
由于这种干扰是由电缆与地线构成的环路电流产生的,因此成为地环路干扰。
地环路中的电流还可以由外界电磁场感应出来。
2.1.2 公共阻抗干扰
当两个电路共用一段地线时,由于地线的阻抗,一个电路的地电位会受另一个电路工作电流的调制。
这样一个电路中的信号会耦合进另一个电路,这种耦合称为公共阻抗耦合。
2.2 地线干扰对策
2.2.1 地环路对策
从地环路干扰的机理可知,只要减小地环路中的电流就能减小地环路干扰。
如果能彻底消除地环路中的电流,则可以彻底解决地环路干扰的问题。
因此我们提出以下几种解决地环路干扰的方案。
A. 将一端的设备浮地如果将一端电路浮地,就切断了地环路,因此可以消除地环路电流。
但有两个问题需要注意,一个是出于安全的考虑,往往不允许电路浮地。
这时可以考虑将设备通过一个电感接地。
这样对于50Hz的交流电流设备接地阻抗很小,而对于频率较高的干扰信号,设备接地阻抗较大,减小了地环路电流。
但这样做只能减小高频干扰的地环路干扰。
另一个问题是,尽管设备浮地,但设备与地之间还是有寄生电容,这个电容在频率较高时会提供较低的阻抗,因此并不能有效地减小高频地环路电流。
B. 使用变压器实现设备之间的连接利用磁路将两个设备连接起来,可以切断地环路电流。
但要注意,变压器初次级之间的寄生电容仍然能够为频率较高的地环路电流提供通路,因此变压器隔离的方法对高频地环路电流的抑制效果较差。
提高变压器高频隔离效果的一个办法是在变压器的初次级之间设置屏蔽层。
但一定要注意隔离变压器屏蔽层的接地端必须在接受电路一端。
否则,不仅不能改善高频隔离效果,还可能使高频耦合更加严重。
因此,变压器要安装在信号接
收设备的一侧。
经过良好屏蔽的变压器可以在1MHz以下的频率提供有效的隔离。
C. 使用光隔离器另一个切断地环路的方法是用光实现信号的传输。
这可以说是解决地环路干扰问题的最理想方法。
用光连接有两种方法,一种是光耦器件,另一种是用光纤连接。
光耦的寄生电容一般为2pf,能够在很高的频率提供良好的隔离。
光纤几乎没有寄生电容,但安装、维护、成本等方面都不如光耦器件。
D. 使用共模扼流圈在连接电缆上使用共模扼流圈相当于增加了地环路的阻抗,这样在一定的地线电压作用下,地环路电流会减小。
但要注意控制共模扼流圈的寄生电容,否则对高频干扰的隔离效果很差。
共模扼流圈的匝数越多,则寄生电容越大,高频隔离的效果越差。
2.2.2 消除公共阻抗耦合
消除公共阻抗耦合的途径有两个,一个是减小公共地线部分的阻抗,这样公共地线上的电压也随之减小,从而控制公共阻抗耦合。
另一个方法是通过适当的接地方式避免容易相互干扰的电路共用地线,一般要避免强电电路和弱电电路共用地线,数字电路和模拟电路共用地线。
三、传输干扰及其对策
3.1 传输线干扰可简单划分为以下几种形式
3.1.1 电路性干扰
它是由于两个回路经公共阻抗耦合而产生的, 干扰量是电流, 通常是地回路耦合对其采用的措施是正确的信号接地即基准电位要准确。
3.1.2 电容性干扰
它产生的原因是由于在干扰源与干扰对象之间存在着弯化的电场, 干扰量是电压。
这是一种电磁耦合干扰。
3.1.3 电感性干扰
由于在干扰源中存在着变化的电流, 它形成交变磁场从而在干扰对象中产生感应电压。
这也是一种电磁耦合干扰。
抗电容性和电感性干扰的措施主要是空间隔离、屏蔽、对称和绞合以及正确接地等。
3.1.4 生波干扰
它是由传导电磁波或空间电磁波所引起的, 前者干扰量是传导电流和传导电压, 它是阻抗不匹配的结果, 后者干扰量是电场强度和磁场强度, 它也是电磁耦合干扰。
3.2 传输干扰对策
采取的对策是阻抗匹配、屏蔽、缩小信号线环的尺寸等,也可以从噪声信号的形式上分成串模和共模噪声干扰两种设计微机系统的任务之一就是针对不同情况, 采取相应的抗干扰措施, 并注意其相互之间的配合, 即传输线的抗干扰要与电源接地、软件等抗干扰措施配合使用, 以保证系统正常工作。