珠海市初中数学函数基础知识全集汇编

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

珠海市初中数学函数基础知识全集汇编
一、选择题
1.在平面直角坐标系xoy 中,四边形0ABC 是矩形,且A ,C 在坐标轴上,满足3OA = ,OC=1.将矩形OABC 绕原点O 以每秒15°的速度逆时针旋转.设运动时间为t 秒()06t ≤≤ ,旋转过程中矩形在第二象限内的面积为S ,表示S 与t 的函数关系的图象大致如右图所示,则矩形OABC 的初始位置是( )
A .
B .
C .
D . 【答案】D
【解析】
【分析】 【详解】
解:根据图形可知当t=0时,s=0,所以矩形OABC 的初始位置不可能在第二象限,所以A 、C 错误;
因为1OC =,所以当t=2时,选项B 中的矩形在第二象限内的面积为S=1331236
⨯⨯=,所以B 错误, 因为3OA =
t=2时,选项D 中的矩形在第二象限内的面积为S=13132⨯=,故选D . 考点:1.图形旋转的性质;2.直角三角形的性质;3.函数的图象.
2.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )
A .
B .
C .
D .
【答案】B
【解析】
【分析】
根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.
【详解】 解:14362ABC S ∆=
⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322
BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .
【点睛】
本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.
3.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )
A.B.C.D.
【答案】C
【解析】
【分析】
分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.
【详解】
解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.
∵△ABC和△A′B′C′均为等边三角形,
△DBC′为等边三角形.
∴DE=3
BC′=
3
x,
∴y=1
2
BC′•DE=
3
4
x2.
当x=1时,y=3
,且抛物线的开口向上.
如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.
∵y=1
2
B′C′•A′E=
1
2
33
∴函数图象是一条平行与x轴的线段.
如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.
y=1
2
B′C•DE=
3
(x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.
故选:C.
【点睛】
本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.
4.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()
A.他们都骑了20 km
B.两人在各自出发后半小时内的速度相同
C.甲和乙两人同时到达目的地
D.相遇后,甲的速度大于乙的速度
【答案】C
【解析】
【分析】
首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.
【详解】
解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;
B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;
C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;
D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;
故答案为:C.
【点睛】
此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.
5.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后的时间x (时)之间的函数关系如图所示,则当16x ≤≤,y 的取值范围是( )
A .864311y ≤≤
B .64811y ≤≤
C .883y ≤≤
D .816y ≤≤
【答案】C
【解析】
【分析】
根据图像分别求出03x 剟
和314x <„时的函数表达式,再求出当x=1,x=3,x=6时的y 值,从而确定y 的范围.
【详解】
解:设当03x 剟
时,设y kx =, 38k ∴=, 解得:83
k =, 83
y x ∴=; 当314x <„时,设y ax b =+,
∴38140
a b a b +=⎧⎨+=⎩, 解得:81111211a b ⎧=-⎪⎪⎨⎪=⎪⎩
, 81121111
y x ∴=-+; ∴当1x =时,8
3y =,当3x =时,y 有最大值8,当6x =时,y 的值是
6411
, ∴当16x 剟时,y 的取值范围是883y 剟.
【点睛】
本题主要考查了求一次函数表达式和函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
6.下列说法:①函数6y x =-的自变量x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算|92|-的结果为7:⑥相等的圆心角所对的弧相等;⑦1227-的运算结果是无理数.其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】
根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.
【详解】
解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;
②对角线相等且互相平分的四边形是矩形;故错误;
③正六边形的中心角为60°;故正确;
④对角线互相平分且垂直的四边形是菱形;故错误;
⑤计算|9-2|的结果为1;故错误;
⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;
⑦122723333-=-=-是无理数;故正确.
故选:B .
【点睛】
本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.
7.如图所示,菱形ABCD 中,直线l ⊥边AB ,并从点A 出发向右平移,设直线l 在菱形ABCD 内部截得的线段EF 的长为y ,平移距离x =AF ,y 与x 之间的函数关系的图象如图2所示,则菱形ABCD 的面积为( )
A .3
B 3
C .3
D .3【答案】C
【分析】
将图1和图2结合起来分析,分别得出直线l过点D,B和C时对应的x值和y值,从而得出菱形的边长和高,从而得其面积.
【详解】
解:由图2可知,当直线l过点D时,x=AF=a,菱形ABCD的高等于线段EF的长,此时y=EF=3;
直线l向右平移直到点F过点B时,y=3;
当直线l过点C时,x=a+2,y=0
∴菱形的边长为a+2﹣a=2
(3)=4
∴当点E与点D重合时,由勾股定理得a2+2
∴a=1
∴菱形的高为3
∴菱形的面积为23.
故选:C.
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间t(小时)之间的函数图象是
A.B.
C.D.
【答案】C
【解析】
分三段讨论:
①两车从开始到相遇,这段时间两车距迅速减小;
②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;
③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;
结合图象可得C选项符合题意.故选C.
9.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()
A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时
C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早
1
12
小时
【答案】D
【解析】
试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行
驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A
地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;
C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;
D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,
符合题意.
故选D.
考点:函数的图象.
10.如图甲,在四边形ABCD中,AD//BC,∠C=90°动点P从点C出发沿线段CD向点D运动.到达点D即停止,若E、F分别是AP、BP的中点,设CP=x,△PEF的面积为y,且y与x 之间的函数关系的图象如图乙所示,则线段AB长为()
A.22B.23C.25D.26【答案】C
【解析】
【分析】
根据三角形中位线定理,得到S△PEF=1
4
S△ABP,由图像可以看出当x为最大值CD=4时,
S△PEF=2,可求出AD=4,当x为0时,S△PEF=3,可求出BC=6;过点A作AG⊥BC于点G,根据勾股定理即可得解.
【详解】
解:∵E、F分别为AP、BP的中点,
∴EF∥AB,EF=1
2 AB,
∴S△PEF=1
4
S△ABP,
根据图像可以看出x的最大值为4,∴CD=4,
∵当P在D点时,△PEF的面积为2,∴S△ABP=2×4=8,即S△ABD=8,
∴AD=2
4
ABD
S
V=
28
4

=4,
当点P在C点时,S△PEF=3,
∴S△ABP=3×4=12,即S△ABC=12,
∴BC=2
4
ABC
S
V=
212
4

=6,
过点A作AG⊥BC于点G,
∴∠AGC=90°,
∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵∠BCD=90°,
∴∠ADC=180°-90°=90°,
∴四边形AGCD 是矩形,
∴CG=AD=4,AG=CD=4,
∴BG=BC-CG=6-4=2,
∴AB=2242+=25.
故选C. 【点睛】
本题主要考查了动点的函数问题,三角形中位线定理,勾股定理.
11.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2
cm S 与()t s 之间的函数图象大致是( )
A .
B .
C .
D .
【答案】A
【解析】
【分析】
先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.
【详解】
解:由题意得2228AB BC +=,2AB BC =+,
可解得8AB =,6BC =,即6AD =,
①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,
S △APQ =211222
AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;
②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,
S △APQ =118422
AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;
故选:A .
【点睛】
本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.
12.某生物小组观察一植物生长,得到的植物高度y (单位:厘米)与观察时间x (单位:天)的关系,并画出如图所示的图象(AC 是线段,直线CD 平行于x 轴).下列说法正确的是( ).
①从开始观察时起,50天后该植物停止长高;
②直线AC 的函数表达式为165
y x =
+; ③第40天,该植物的高度为14厘米;
④该植物最高为15厘米.
A .①②③
B .②④
C .②③
D .①②③④
【答案】A
【解析】
【分析】
①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;
②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,
③把x=40代入②的结论进行计算即可得解;
④把x=50代入②的结论进行计算即可得解.
【详解】
解:∵CD∥x轴,
∴从第50天开始植物的高度不变,
故①的说法正确;
设直线AC的解析式为y=kx+b(k≠0),
∵经过点A(0,6),B(30,12),

3012
6
k b
b
+=


=


解得:
1
5
6
k
b

=


⎪=


∴直线AC的解析式为
1
6
5
y x
=+(0≤x≤50),
故②的结论正确;
当x=40时,
1
40614
5
y=⨯+=,
即第40天,该植物的高度为14厘米;故③的说法正确;
当x=50时,
1
50616
5
y=⨯+=,
即第50天,该植物的高度为16厘米;
故④的说法错误.
综上所述,正确的是①②③.
故选:A.
【点睛】
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.
13.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()
A.B.
C.D.
【答案】B
【解析】
【分析】
首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.
【详解】
解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,
别时叮咛语千万,时间在加长,路程不变,
学子满载信心去,学子离家越来越远,
老父怀抱希望还,父亲回家离家越来越近,
故选:B.
【点睛】
此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.
14.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )
A.A B.B C.C D.D
【答案】D
【解析】
根据题意,设小正方形运动的速度为v,分三个阶段;
①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,
②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,
③小正方形穿出大正方形,S=Vt×1,
分析选项可得,D 符合,
故选D .
【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.
15.已知:[]
x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦
.则下列结论正确的个数是( )
(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()
0f k =或1.
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】
根据题中所给的定义,依次作出判断即可.
【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦
,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦
,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦
,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,
故选:C .
【点睛】
本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.
16.如图,点P 是▱ABCD 边上的一动点,E 是AD 的中点,点P 沿E→D→C→B 的路径移动,设P 点经过的路径长为x ,△BAP 的面积是y ,则下列能大致反映y 与x 的函数关系的图象是( )
A. B.C.D.
【答案】D
【解析】
【分析】
根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.
【详解】
通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;
故选D.
【点睛】
本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.
17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()
A.B.C.D.
【答案】C
【解析】
【分析】
首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.
【详解】
根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。

故选:C.
【点睛】
此题考查函数的图象,解题关键在于观察图形
18.小亮的奶奶出去散步,从家走了20分钟到一个离家900米的报亭,奶奶看了10分钟报纸后,用了15分钟返回家,下面图中的哪一幅能表示奶奶离家的时间与距离之间的关系()
A.B.
C.D.
【答案】D
【解析】
【分析】
根据函数图像的横坐标确定时间,纵坐标确定离家距离,然后进行判断即可解答.
【详解】
解: 0分钟到报亭离家的距离随时间的增加而增加,看报10分钟,离家的距离不变;15分钟回家离家的距离岁时间的增加而减少,故D符合题意.
故答案为D.
【点睛】
本题考查了函数图像的应用,根据图像确定出时间与离家距离的关系是解答本题的关键.
19.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元,则y与x之间的函数关系式为()
A.y=-1
2
x B.y=
1
2
x C.y=-2x D.y=2x
【答案】D
【解析】
依题意有:y=2x,
故选D.
20.下列各曲线中,表示y是x的函数的是()A.B.
C.D.
【答案】B
【解析】
【分析】
根据函数的意义即可求出答案.
【详解】
解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.
故选:B.
【点睛】
此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.。

相关文档
最新文档